)
2.4(a-b)-3(a+b)-b等于(
)
A.a-2b B.a
C.a-6b D.a-8b
答案 D
解析 原式=4a-4b-3a-3b-b=a-8b.
1
3.在△ABC 中,D 是 AB 边上一点.若 = , = +λ,则
2
λ=
.
1
答案
2
解析 ∵ = ,∴D 是 AB 的中点.
|| ||
,则是以 A 为起点,向量
与
所在线段为邻边的菱形对角线对应
|| ||
的向量,即在∠BAC 的平分线上.
∵=λ,∴, 共线.
∴点 P 的轨迹一定通过△ABC 的内心.
方法点睛 (1)三角形的内心:三角形内切圆的圆心,三角形三条角平分线的
交点,内心到三角形三边的距离相等.
=x+y 且 x+y=1.
2.利用向量共线求参数的方法
判断、证明向量共线问题的思路是根据向量共线定理寻求唯一的实数λ,
使得b=λa(a≠0).而已知向量共线求λ,常根据向量共线的条件转化为相应向
量系数相等求解,利用待定系数法建立方程,从而解方程求得λ的值.若两向
量不共线,必有向量的系数为零.
(2)三角形的外心:三角形外接圆的圆心,三角形三条边的中垂线的交点,外
心到三角形三个顶点的距离相等.若M是△ABC内一点,且满足
||=| |=| |,则点 M 为△ABC 的外心.
(3)三角形的垂心:三角形三条高线的交点.
(4)三角形的重心:三角形三条中线的交点.若 G 是△ABC 内一点,且满足 +
C.b-a D.a-b
(2)已知2a-b=m,a+3b=n,那么a,b用m,n可以表示为