仿真技术在设计发动机冷却系统中的应用
- 格式:pdf
- 大小:1.01 MB
- 文档页数:3
基金项目:上海新代车辆技术有限公司资助(Q20013)收稿日期:2002-09-19 第20卷 第9期计 算 机 仿 真2003年9月 文章编号:1006-9348(2003)09-0039-04发动机冷却系统的建模与仿真肖成永1,李健2,张建武1(1.上海交通大学机械工程学院,上海200030;2.上海新代车辆技术有限公司,上海200050)摘要:该文在基于M AT LAB/SIM U LINK 的环境中建立了某重型汽车柴油发动机冷却系统模型。
该系统主要由发动机、节温器、散热器、水泵以及空气冷却系统组成。
模型着重考虑了节温器的迟滞和热惯性等非线性特点,并建立了风扇的风速控制逻辑。
在不同运行状况下仿真结果与相应的发动机实测数据基本一致,表明所建立的模型具有较好的温度预测能力。
关键词:柴油机冷却系统;建模;仿真;迟滞中图分类号:TP271+.62;U270 文献标识码:A1 前言发动机冷却系统是保障发动机正常稳定运行的重要辅助系统。
它通过冷却水的循环带走了发动机运转过程中散发出来没有转化为机械能的热量,从而避免了因大量热量的累积而造成的金属疲劳脆化和润滑油的失效。
用计算机对冷却系统性能进行仿真分析是近几年来发动机研究的热点。
本文基于热力学理论,在M AT LAB/SI M U LI NK 环境中建立发动机冷却系统的仿真模型,分析了冷却系统各组件的工作特性,并以实验数据对模型进行验证。
2 冷却系统的结构整个发动机冷却系统由两个体系构成:冷却水回路和冷却空气通道。
冷却水回路包括发动机、水管、节温器、散热器和冷却水泵等。
冷却空气依次通过中冷器、散热器、风扇和发动机,并带走发动机所产生的热量。
图1 冷却系统的构成图1中的发动机是整个系统的热源,发动机燃油燃烧产生的能量,约三分之一作为热量通过汽缸壁传导到冷却系统或直接散发到大气中。
图中的箭头指明了水在系统中流动的方向。
节温器通过蜡球操纵对流量进行控制。
当节温器没有打开时,水全部通过旁路通道经水泵流回发动机;当节温器打开时,冷却水进入散热器;散热器流出的水和旁路的水在水泵处混合。
探析计算机仿真5种方法在汽车工程中的应用计算机仿真是指通过计算机模拟现实世界中的物理过程或系统行为的过程。
在汽车工程中,计算机仿真可以帮助工程师们提前了解和评估汽车设计、性能和安全等方面的表现,从而提高设计效率和降低开发成本。
目前主要有以下五种方法在汽车工程中广泛应用:1. 动力学仿真:动力学仿真是通过建立整车动力学模型,模拟汽车在不同行驶状态下的运动和行为。
它可以帮助工程师们分析汽车的悬挂系统、转向系统、制动系统等对汽车行驶稳定性和操控性能的影响,优化动力总成的匹配,预测车辆的燃油消耗和排放等情况。
2. 碰撞仿真:碰撞仿真主要用于模拟汽车在碰撞事故中的行为和损伤情况。
通过建立包括车身结构、车灯、玻璃等在内的完整车辆模型,工程师们可以模拟不同碰撞情况下车辆的变形程度和受力分布,预测车辆的安全性能,优化车身结构和材料,减少碰撞对驾乘人员的伤害。
3. 流体力学仿真:流体力学仿真主要用于模拟汽车外部流场和内部流动。
通过建立包括车辆外形在内的三维模型,工程师们可以模拟车辆在不同速度和风向下的空气流场,优化车辆的空气动力学性能,减少空气阻力和提高燃油经济性。
流体力学仿真还可以用于模拟汽车内部风道和空调系统的流动,分析和改善车内空气质量和乘坐舒适性。
4. 热传递仿真:热传递仿真主要用于模拟汽车发动机、排气系统、冷却系统等的热传递和温度分布情况。
通过建立包括涡轮机、气缸、冷却器等在内的系统模型,工程师们可以优化冷却系统的设计和组成,提高发动机的散热效果,减少零部件的热应力和磨损,提高发动机的可靠性和寿命。
5. 声学仿真:声学仿真主要用于模拟汽车产生的噪声和振动。
通过建立包括发动机、轮胎、车身等在内的模型,工程师们可以模拟汽车在不同行驶条件下产生的噪声和振动,分析其来源和传播途径,优化车辆的隔音和减振措施,提高驾乘舒适性。
计算机仿真在汽车工程中的应用广泛且重要。
通过这些仿真方法,工程师们可以更加准确地预测汽车在不同条件下的表现,优化设计方案,提高汽车的性能和安全性。
热仿真使用的方法1. 热仿真简介热仿真是一种通过计算机模拟和分析热传导、传热、温度分布等热学问题的方法。
它可以帮助工程师和设计师在产品设计和工艺优化中预测和改进热性能,提高产品的可靠性和效率。
2. 热仿真的应用领域热仿真广泛应用于各个工程领域,包括电子器件、汽车工业、航空航天、建筑设计等。
以下是一些常见的应用领域:2.1 电子器件在电子器件设计中,热仿真可以帮助优化散热系统以确保器件在正常工作温度范围内运行。
通过模拟器件的温度分布,可以确定是否需要增加散热片或风扇来降低温度。
2.2 汽车工业在汽车工业中,热仿真可以用于设计发动机冷却系统、制动系统和空调系统等。
通过模拟流体流动和传热过程,可以预测不同工况下的温度分布和传热效率,从而优化系统设计。
2.3 航空航天在航空航天领域,热仿真可以用于设计飞机发动机的冷却系统、隔热材料和热防护结构。
通过模拟高温环境下的热传导和辐射过程,可以评估材料的性能并改进设计。
2.4 建筑设计在建筑设计中,热仿真可以用于评估建筑物的能源效率和室内舒适性。
通过模拟建筑物的热传导、太阳辐射和空气流动,可以优化保温材料、窗户设计和通风系统等。
3. 热仿真方法热仿真方法包括数值方法和实验方法两种主要方式。
下面将详细介绍这两种方法及其常见的应用。
3.1 数值方法数值方法是基于数学模型和计算机算法进行热仿真分析的一种方法。
常见的数值方法包括有限元法(Finite Element Method, FEM)、有限差分法(Finite Difference Method, FDM)和边界元法(Boundary Element Method, BEM)等。
3.1.1 有限元法(FEM)有限元法是一种将连续物体离散化为有限个单元进行计算的方法。
它将物体划分为小的几何单元,并在每个单元内建立方程来描述热传导过程。
通过求解这些方程,可以得到整个系统的温度分布和传热性能。
有限元法适用于复杂几何形状和边界条件的问题,如电子器件散热、建筑物热传导等。
14310.16638/ki.1671-7988.2020.16.047发动机冷却系统仿真计算分析赵宏霞,张华磊,任小龙,屈光洪(北京电子科技职业学院 汽车工程学院,北京 100176)摘 要:文章针对某型号国V 柴油机,应用Flowmaster 软件建立发动机一维冷却系统模型,输入各元件流阻特性等边界条件,完成发动机冷却系统不同工况下的系统稳态模拟计算,得到系统和各元件的流量、压力分布和温升等情况,并对冷却系统工作能力进行预测、评价,根据计算分析结果提出改善建议,指导冷却系统的结构设计及试验,大大缩短研发时间,降低研发成本。
关键词:冷却系统;流阻特性;稳态;仿真分析中图分类号:U464.138 文献标识码:B 文章编号:1671-7988(2020)16-143-03Engine Cooling System Simulation AnalysisZhao Hongxia, Zhang Hualei, Ren Xiaolong, Qu Guanghong( Beijing Polytechnic, Automotive engineering institute, Beijing 100176 )Abstract: The Article Based on a type of V diesel engine, apply Flowmaster to built 1D model of the cooling system, input each element ’s boundary conditions such as flow resistance characteristics, to complete steady-state simulation of engine cooling system under different working conditions, get the distribution of flow rate, pressure and temperature etc., to forecast and evaluation the working ability of the cooling system, provide improvement suggestions according to the result of calculation and analysis, and to guide the structure of the cooling system design and experiment, shorten the development time, reduce research costs.Keywords: Cooling system; Resistance characteristics; Steady-state; Simulation CLC NO.: U464.138 Document Code: B Article ID: 1671-7988(2020)16-143-03引言冷却系统作用是在所有工况下,保证发动机在最适宜的温度下工作,冷却系统匹配是否合适将直接影响到发动机的使用寿命和燃油经济性。
机械设计基础中的CAE原理与应用在机械设计领域中,计算机辅助工程(CAE)是一种应用广泛的方法,它通过计算机模拟和分析技术,对机械系统的设计进行预测、分析和优化。
CAE技术的出现,为机械设计师提供了一种高效、准确的工具,能够在设计阶段就对产品的性能、可靠性进行评估,帮助设计师在短时间内找到最佳方案。
本文将探讨机械设计基础中的CAE原理与应用。
一、CAE的基本原理CAE是计算机辅助工程的缩写,它的基本原理是利用数值计算方法和仿真技术对机械系统进行建模、分析和优化。
CAE主要包括结构力学分析、流体力学分析和热传导分析等方面。
在机械系统设计中,CAE可以帮助设计师预测产品的受力情况、变形情况以及温度分布等,并通过分析这些数据来评估产品的工作性能。
二、CAE在机械设计中的应用1. 结构力学分析结构力学分析是CAE技术中应用最广泛的领域之一。
通过结构力学分析,设计师可以对机械零部件的受力情况进行准确的评估。
例如,在设计机械零部件时,可以通过CAE技术分析零件的应力分布情况,以确保零件的强度和刚度满足设计要求。
此外,结构力学分析还可以帮助设计师优化零件的设计,减少材料的使用量,降低成本。
2. 流体力学分析流体力学分析是CAE技术另一个重要的应用领域。
在机械设计中,流体力学分析可以帮助设计师分析液体或气体在机械系统中的流动情况。
例如,在设计管道系统时,可以通过CAE技术模拟流体在管道中的流动速度、压力分布等,以确保管道的设计符合流体力学要求。
此外,流体力学分析还可以帮助设计师改善流体系统的性能,提高能量利用效率。
3. 热传导分析热传导分析是CAE技术在机械设计中的另一个应用领域。
在机械系统中,热传导分析可以帮助设计师评估机械零件的温度分布情况。
例如,在设计发动机冷却系统时,可以通过CAE技术模拟冷却液在发动机中的流动情况,以评估零件的温度分布情况。
通过热传导分析,设计师可以找到可能存在的热点,并采取相应措施降低零件的温度。
CFD仿真技术在航空发动机中的应用摘要:随着科学技术的发展,航空航天和空间技术有了飞跃的发展,在这些飞跃的发展技术中主要的技术就是CAE技术。
航空工业可以说是CAE技术发展的摇篮,各种CAE技术正是在以航空工业为主的实际工业应用的推动下在不到半个世纪时间里迅猛发展起来的。
以ANSYS、LS-DYNA、Nastran、CFX、Fluent等为代表的高端CAE软件早已活跃在全球航空工业中。
关键词:CFD仿真技术;航空发动机;应用1 引言目前国际知名企业的航空发动机研制周期从过去的10~15年缩短到6~8年甚至4~5年,试验机也从过去的40~50台减少到10台左右。
在发达国家的航空企业里CAE已经作为产品研发设计与制造流程中不可逾越的一种强制性的工艺规范加以实施,在生产实践作为必备工具普遍应用。
2、CFD技术国内外使用状况简介CFD作为CAE技术的一种,已经越来越多的被国内外航空企业广泛的得以应用。
第一个商用CFD软件包FLUENT,由与美国空军合作的流体技术服务公司Creare公司于1983年推出的。
商业CFD软件的开发及应用,加速了航空工业的发展,使得基于虚拟样机仿真的现代设计方法成为了可能。
以波音公司航空研发发展历史为例,不难发现,波音公司先后采用了经典的实验测试方法、半经验的方法、空气动力学的计算、政府内部及企业的CFD代码及广泛的采用CFD商业代码。
在波音公司2005年的软件应用报告中明确指明,在1998至2005年内,其公司每年数值仿真成果的增加量都接近84%左右,采用CAE/CFD的速度超过了工业的成长速度,CFD技术已经成为其设计的主要手段之一。
另外从美国软件公司ANSYS公司的销售业绩报告上显示,航空工业上的应用产值是其公司的主要收益来源之一。
CFD软件正以其强大的优势在研发中发挥的巨大的作用,例如在NISA的报告中提到,原本需要7年完成的维吉尼亚级潜水艇的设计,通过CFD技术的应用,5年就顺利完成;而预计需要11年完成的B-2轰炸机的飞行测试,则在短短的4年内就通过了测试。
计算机仿真技术在工程领域中的应用伴随着计算机技术的发展和应用范围扩大,计算机仿真技术越来越重要。
它可以模拟出复杂的物理过程,优化设计和生产过程,降低成本和风险,并且可以提高工程系统的可靠性和安全性。
在工程领域中,计算机仿真技术是一个不可或缺的工具,已经被广泛应用于各个行业。
一、航空航天航空航天业是计算机仿真技术的主要应用领域之一。
使用计算机仿真技术,可以模拟各种空气动力学现象,优化飞行器的设计。
例如,可以通过计算机模拟飞行器在高速飞行时的气动力学特性,进一步优化飞行器的形状和结构,从而使其更高效、更可靠和更安全。
此外,在航空航天领域还可以利用计算机仿真技术来模拟飞行器各部件的运行情况,包括发动机、冷却系统、电气系统等,从而进行飞行器整体性能的优化。
二、汽车制造汽车制造业也是另一个典型的计算机仿真技术应用领域。
利用计算机仿真技术,可以进行汽车零部件的优化设计,模拟出汽车行驶时的稳定性、耐久性、安全性和舒适性等。
例如,当设计汽车发动机时,可以通过计算机仿真模拟各种条件下的燃烧过程,预测出发动机的功率、油耗和排放量等,以便进行优化。
此外,在汽车制造过程中,利用计算机仿真技术可以帮助制定出最佳的生产计划方案和生产工艺规程,从而提高生产效率和降低生产成本。
三、建筑工程在建筑工程领域中,计算机仿真技术也呈现出越来越广泛的应用。
例如,在建筑设计阶段,可以使用计算机仿真技术模拟各种条件下的建筑物外形、内部结构以及环境条件(如采光、通风、能耗等),帮助设计师在最短时间内找到最优解。
同时,利用计算机仿真技术还可以模拟出建筑物在各种自然灾害(如地震、洪水等)和人为错误情况下的受损情况,从而更好地保证建筑物的安全和稳定性。
四、电子信息领域计算机仿真技术在电子信息领域中的应用也不容忽视。
例如,当设计芯片电路时,可以利用计算机仿真技术预测出电路的各种性能指标,从而确保电路的正常工作。
此外,在通信系统中,使用计算机仿真技术可以预测无线信号在各种障碍物中的传播和衰减情况,优化通信系统的设计和信号传输效率。