人教A版高一数学必修一综合提高测试题(1)
- 格式:doc
- 大小:191.50 KB
- 文档页数:3
高中数学培优讲义练习(人教A 版2019必修一)综合测试卷:必修一全册(提高篇)一.选择题(共8小题,满分40分,每小题5分)1.(5分)已知全集U =R ,集合A ={x |x >1 },B ={x |−2≤x <2 },则如图中阴影部分表示的集合为()A .{x |x ≥−2 }B .{x |x <−2 }C .{x |1<x <2 }D .{x |x ≤1 }【解题思路】用集合表示出韦恩图中的阴影部分,再利用并集、补集运算求解作答。
【解答过程】由韦恩图知,图中阴影部分的集合表示为∁U (A ∪B)。
因集合A ={x |x >1 },B ={x |−2≤x <2 },则A ∪B ={x|x ≥−2},又全集U =R 。
所以∁U (A ∪B)={x|x <−2}。
故选:B 。
2.(5分)(2022·辽宁·高一期中)已知p:|1−2x |≤5,q:x 2−4x +4−9m 2≤0(m >0)若q 是p 的充分不必要条件,则实数m 的取值范围是() A .(0,13)B .(0,13]C .(13,43)D .[13,43]【解题思路】解不等式,求出俩命题的解,然后根据充分不必要条件,得出不等关系,从而求出实数m 的范围。
【解答过程】解:由题意在p:|1−2x |≤5中。
解得:−2≤x ≤3。
在q:x 2−4x +4−9m 2≤0(m >0)中。
解得:−3m +2≤x ≤3m +2。
∵q 是p 的充分不必要条件∴{−3m +2≥−23m +2≤3m >0 ,等号不同时成立。
∴0<m ≤13。
故选:B 。
3.(5分)(2022·山东·高一期中)已知x >0,y >0,且x +y +xy =3,若不等式x +y ≥m 2−m 恒成立,则实数m 的取值范围为() A .−2≤m ≤1 B .−1≤m ≤2 C .m ≤−2或m ≥1D .m ≤−1或m ≥2【解题思路】首先根据基本不等式得到(x +y )min =2,结合题意得到m 2−m ≤(x +y )min ,即m 2−m ≤2,再解不等式即可。
高一数学必修1综合测试题3套(附答案)高一数学综合检测题(1)一、选择题:(每小题5分,共60分,请将所选答案填在括号内) 1.已知集合M ⊂≠{4,7,8},且M 中至多有一个偶数,则这样的集合共有 ( )(A)3个 (B) 4个 (C) 5个 (D) 6个2.已知S={x|x=2n,n ∈Z}, T={x|x=4k ±1,k ∈Z},则 ( ) (A)S ⊂≠T (B) T ⊂≠S (C)S ≠T (D)S=T 3.已知集合P={}2|2,y y x x R =-+∈, Q={}|2,y y x x R =-+∈,那么P Q 等( )(A)(0,2),(1,1) (B){(0,2 ),(1,1)} (C){1,2}(D){}|2y y ≤4.不等式042<-+ax ax 的解集为R ,则a 的取值范围是 ( )(A)016<≤-a (B)16->a (C)016≤<-a (D)0<a5. 已知()f x =5(6)(4)(6)x x f x x -≥⎧⎨+<⎩,则(3)f 的值为 ( )(A)2 (B)5 (C)4 ( D)3 6.函数243,[0,3]y x x x =-+∈的值域为 ( )(A)[0,3] (B)[-1,0] (C)[-1,3] (D)[0,2] 7.函数y=(2k+1)x+b 在(-∞,+∞)上是减函数,则 ( )(A)k>12 (B)k<12 (C)k>12- (D).k<12-8.若函数f(x)=2x +2(a-1)x+2在区间(,4]-∞内递减,那么实数a 的取值范围为( )(A)a ≤-3 (B)a ≥-3 (C)a ≤5 (D)a ≥3 9.函数2(232)x y a a a =-+是指数函数,则a 的取值范围是( )(A) 0,1a a >≠ (B) 1a = (C) 12a = ( D)121a a ==或10.已知函数f(x)14x a -=+的图象恒过定点p ,则点p 的坐标是 ( )(A )( 1,5 ) (B )( 1, 4) (C )( 0,4) (D )( 4,0)11.函数y =( )(A )[1,+∞] (B) (23,)+∞ (C) [23,1] (D)(23,1]12.设a,b,c 都是正数,且346a b c ==,则下列正确的是( )(A) 111c a b =+ (B) 221C a b =+ (C) 122C a b =+ (D)212ca b =+二、填空题:(每小题4分,共16分,答案填在横线上)13.已知(x,y )在映射 f 下的象是(x-y,x+y),则(3,5)在f 下的象是 ,原象是 。
第一章综合测试答案解析一、 1.【答案】A【解析】A 显然正确;0不是集合,不能用符号“⊆”,B 错误;∅不是M 中的元素,C 错误;M 为无限集,D 错误. 2.【答案】D【解析】{}=0469B ,,,,B ∴的子集的个数为42=16. 3.【答案】D【解析】对于①,当=4a 为正整数;对于②,当=1x 时,为正整数;对于③,当=1y 时,为正整数,故选D .4.【答案】A【解析】由1231x --<<,得12x <<,即{}|12x x x ∈<<,由30x x -()<,得03x <<,即{}|03x x x ∈<<,{}|12x x <<是{}|03x x <<的真子集,{}|03x x <<不是{}|12x x <<的子集,故选A .5.【答案】D【解析】两个集合的交集其实就是曲线和直线的交点,注意结果是两对有序实数对. 6.【答案】B【解析】{=|=0A B x x 或}1x ≥,A 错误;{}=12A B ,,B 正确;{}{}R =|1=0A B x x B ()< ,C 错误;{}R =|0A B x x ()≠ ,D 错误.7.【答案】B【解析】方法一:11a a ⇒⇒>,1011a a ⇒-⇒)>>,∴甲是乙的充要条件,故选B .方法二:20a a a a ⎧⇔⎨⎩>,>,,1a ∴>,故选B .8.【答案】C【解析】由题意得N M ⊆,由Venn 图(图略)可知选C . 9.【答案】C【解析】由题意知,0=2bx a-为函数2=y ax bx c ++图象的对称轴方程,所以0y 为函数y 的最小值,即对所有的实数x ,都有0y y ≥,因此对任意x ∈R ,0y y ≤是错误的,故选C .10.【答案】D【解析】{}=|1U B x x - > ,{}=|0U A B x x ∴ > .{}=|0U A x x ≤ ,{}=|1U B A x x ∴- ≤ .{=|0U U A B B A x x ∴ ()()> 或}1x -≤.11.【答案】A【解析】一元二次方程2=0x x m ++有实数解1=1404m m ⇔∆-⇔≥≤.当14m <时,14m ≤成立,但14m ≤时,14m <不一定成立.故“14m <”是“一元二次方程2=0x x m ++有实数解”的充分不必要条件.12.【答案】C【解析】A C A B ⊇ ()(),U U A C A B∴⊆ ()() ,∴①为真命题.A C A B ⊆ ()(),U U A C A B∴⊇ ()() ,即U U U U A C A B ⊇ ()() ,∴②为真命题.由Venn 图(图略)可知,③为假命题.故选C . 二、13.【答案】x ∀∈R ,210x +≥【解析】存在量词命题的否定是全称量词命题. 14.【答案】0【解析】依题意得,23=3m m ,所以=0m 或=1m .当=1m 时,违反集合中元素的互异性(舍去). 15.【答案】充分不必要【解析】由=2a 能得到1)(2)0(=a a --,但由1)(2)0(=a a --得到=1a 或=2a ,而不是=2a ,所以=2a 是1)(2)0(=a a --的充分不必要条件. 16.【答案】12【解析】设全集U 为某班30人,集合A 为喜爱篮球运动的15人,集合B 为喜爱乒乓球运动的10人,如图.设所求人数为x ,则108=30x ++,解得=12x . 三、17.【答案】(1)命题的否定:有的正方形不是矩形,假命题(2.5分) (2)命题的否定:不存在实数x ,使31=0x +,假命题.(5分) (3)命题的否定:x ∀∈R ,2220x x ++>,真命题.(7.5分)(4)命题的否定:存在0x ,0y ∈R ,00110x y ++-<,假命题.(10分)18.【答案】(1){=|1U A x x - < 或1x ≥,{=|12U A B x x ∴()≤≤ .(6分) (2){}=|01A B x x <<,{=|0U A Bx x ∴ ()≤ 或}1x ≥.(12分) 19.【答案】①若=A ∅,则2=240p ∆+-()<,解得40p -<<.(4分)②若方程的两个根均为非正实数,则12120=200.10.=x x p p x x ∆⎧⎪+-+⎨⎪⎩≥,()≤,解得≥>(10分) 综上所述,p 的取值范围是{}|4p p ->.(12分) 20.【答案】证明:①充分性:若存在0x ∈R ,使00ay <,则2220004=4b ab b a y ax bx ----() 222000=444b abx a x ay ++-200=240b ax ay +-()>,∴方程=0y 有两个不等实数根.(6分)②必要性:若方程=0y 有两个不等实数根. 则240b ab ->,设0=2bx a-, 则20=22b b ay a a b c a a ⎡⎤-+-+⎢⎥⎣⎦()() 2224==0424b b ac b ac --+<(10分) 由①②知,“方程=0y 有两个不等实根”的充要条件是“存在0x ∈R ,使00ay <”.(12分) 21.【答案】(1)当=2a 时,{}=|17A x x ≤≤,{}=|27AUB x x -≤≤,(3分){R =|1A x x < 或}7x >,{}R =|21A B x x - ()≤< .(6分)(2)=A B A ,A B ∴⊆.①若=A ∅,则123a a -+>,解得4a -<;(8分)②若A ∅≠,则12311212234.a a a a a -+⎧⎪⎪---⎨⎪+⎪⎩≤,≥,解得≤≤≤,(10分)综上可知,a 的取值范围是1|412a a a ⎧⎫--⎨⎬⎩⎭<或≤≤.(12分)22.【答案】设选修甲、乙、丙三门课的同学分别组成集合A ,B ,C ,全班同学组成的集合为U ,则由已知可画出Venn 图如图所示.(2分)选甲、乙而不选丙的有2924=5-(人), 选甲、丙而不选乙的有2824=4-(人), 选乙、丙而不选甲的有2624=2-(人),(6分) 仅选甲的有382454=5---(人), 仅选乙的有352452=4---(人), 仅选丙的有312442=1---(人),(8分)所以至少选一门的人数为24542541=45++++++,(10分) 所以三门均未选的人数为5045=5-.(12分)第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}=|23M x x -<<,则下列结论正确的是( ) A .2.5M ∈ B .0M ⊆C .M ∅∈D .集合M 是有限集2.已知集合{}=023A ,,,{}=|=B x x ab a b A ∈,,,则集合B 的子集的个数是( ) A .4B .8C .15D .163.下列存在量词命题中,真命题的个数是( )①存在一个实数a 为正整数;②存在一个实数x ,使为正整数;③存在一个实数y 为正整数. A .0B .1C .2D .34.已知1231p x --:<<,30q x x -:()<,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.设集合{}2=|=+M x y y x x (,),{}N=|=+16x y y x (,),则M N 等于( ) A .416(,)或412-(,)B .{420,,}412-, C .{412(,),}420-(,)D .{420(,),}412-(,)6.若集合{}=|1A x x ≥,{}=012B ,,,则下列结论正确的是( ) A .{}=|0A B x x ≥B .{}=12A B ,C .{}R =01A B (),D .{}R =|1A B x x()≥7.甲:“1a >”是乙:“a ”的( ) A .既不充分也不必要条件 B .充要条件 C .充分不必要条件D .必要不充分条件8.已知全集*=U N ,集合{}*=|=2M x x n n ∈N ,,{}*=|=4N x x n n ∈N ,,则( )A .=U M NB .=U U M N ()C .=U U M N ()D .=U U M N ()9.已知0a >,函数2=++y ax bx c .若0x 满足关于x 的方程2+b=0ax ,则下列选项中的命题为假命题的是( )A .存在x ∈R ,y y 0≤B .存在x ∈R ,0y y ≥C .对任意x ∈R ,y y 0≤D .对任意x ∈R ,0y y ≥10.已知=U R ,{}=|0A x x >,{}=|1B x x -≤,则U U A B B A ()() 等于( )A .∅B .{}|0x x ≤C .{}|1x x ->D .{|0x x >或}1x -≤11.“14m <”是“一元二次方程2++=0x x m 有实数解”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件12.已知U 为全集,A ,B ,C 是U 的子集,A C A B ⊆ ()(),A C A B ⊇ ()(),则下列命题中,正确的个数是( )①U U A C A B ⊆ ()() ; ②U U U U A C A B ⊇ ()() ;③C B ⊆. A .0B .1C .2D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.命题:“0x ∃∈R ,2+10x <”的否定是________.14.设集合{}2=33A m ,,{}=33B m ,,且=A B ,则实数m 的值是________. 15.若a ∈R ,则“=2a ”是“(1)(2)=0a a --”的________条件.16.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)写出下列命题的否定并判断其真假. (1)所有正方形都是矩形;(2)至少有一个实数0x 使3+1=0x ;(3)0x ∃∈R ,2+2+20x x ≤;(4)任意x ,y ∈R ,+1+10x y -≥.18.(本小题满分12分)设全集=U R ,集合{}=|11A x x -≤<,{}=|02B x x <≤.(1)求U A B () ;(2)求U A B() .19.(本小题满分12分)已知{}2=|+2++1=0A x x p x x ∈Z (),,若{}|0=A x x ∅ >,求p 的取值范围.20.(本小题满分12分)已知2=0y ax bx c a b c a ++∈R (,,,且≠).证明:“方程=0y 有两个不相等的实数根”的充要条件是“存在0x ∈R ,使00ay <”.21.(本小题满分12分)已知集合{}=|12+3A x a x a -≤≤,{}=|24B x x -≤≤,全集=.U R(1)当=2a 时,求A B 和R A B () ;(2)若=A B A ,求实数a 的取值范围.22.(本小题满分12分)某班有学生50人,学校开设了甲、乙、丙三门选修课,选修甲的有38人,选修乙的有35人,选修丙的有31人,兼选甲、乙两门的有29人,兼选甲、丙两门的有28人,兼选乙、丙两门的有26人,甲、乙、丙三门均选的有24人,那么这三门均未选的有多少人?。
2021年高中数学 综合测试题 新人教A 版必修1一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设A ∪{-1,1}={-1,0,1},则满足条件的集合A 共有( ) A .2个 B .4个 C .6个D .8个解析 可用列举法写出A ={0},{-1,0},{0,1},{-1,0,1}共4个. 答案 B2.设集合M ={y |y =2x ,x ∈R },N ={x |y =log a (x +1),a >0,a ≠1},则M 与N 的关系是( )A .MN B .M NC .M =ND .M ∩N =∅解析 M ={y |y >0,y ∈R },N ={x |x >-1,x ∈R }, ∴MN .答案 A3.设函数f (x )=a-|x |(a >0,且a ≠1),f (2)=4,则( )A .f (-2)>f (-1)B .f (-1)>f (-2)C .f (1)>f (2)D .f (-2)>f (2)解析 ∵f (2)=4,∴a -2=4,∴a =12,∴f (x )=⎝ ⎛⎭⎪⎫12-|x |=2|x |.∴f (-2)=22=4,f (-1)=2. ∴f (-2)>f (-1). 答案 A4.函数f (x )=lg ⎝ ⎛⎭⎪⎫21-x +a 是奇函数,则a 的值为( )A .0B .1C .-1D .不存在解析 由f (0)=0,得a =-1. 答案 C5.函数f (x )对任意x ∈R ,都有f (x )=12f (x +1),当0≤x ≤1时,f (x )=x (1-x ),则f (-1.5)的值是( )A.14 B .-54C.18D.116解析 由题意知,f (-1.5)=12f (-1.5+1)=12f (-0.5)=14f (-0.5+1)=14f ⎝ ⎛⎭⎪⎫12 =14×12⎝ ⎛⎭⎪⎫1-12=116. 答案 D6.定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 24-xx ≤0,f x -1-fx -2x >0,则f (3)的值为( )A .-1B .-2C .1D .2解析 ∵3>0,∴f (3)=f (3-1)-f (3-2)=f (2)-f (1)=f (2-1)-f (2-2)-f (1)=-f (0)=-log 24=-2.答案 B7.函数f (x )=1+log 2x 与g (x )=2-x +1在同一坐标系下的图象大致是( )解析f(x)=1+log2x过点(1,1),g(x)=2-x+1也过点(1,1).答案 C8.三个数60.7,0.76,log0.76的大小顺序是( )A.0.76<log0.76<60.7B.0.76<60.7<log0.76C.log0.76<0.76<60.7D.log0.76<60.7<0.76解析∵60.7>1,0<0.76<1,log0.76<0,∴60.7>0.76>log0.76,故选C.答案 C9.下列给出的四个函数f(x)的图象中能表示函数y=f(x)-1没有零点的是( )答案 C10.已知函数f (x )=log 12x ,则方程⎝ ⎛⎭⎪⎫12|x |=|f (x )|的实根个数是( )A .1B .2C .3D .2 006解析 ∵f (x )为偶函数,∴f (2)=f (-2).又∵-2<-32<-1,且f (x )在(-∞,-1)上是增函数,∴f (2)<f ⎝ ⎛⎭⎪⎫-32<f (-1).在同一平面直线坐标系中作出函数y =⎝ ⎛⎭⎪⎫12|x |及y =|log 12x |的图象如图,易得B.答案 B11.某新品牌电视投放市场后,第一个月销售100台,第二个月销售200台,第3个月销售400台,第四个月销售810台,则下列函数模型中能较好反映销售量y 与投放市场的月数x 之间的关系的是( )A .y =100xB .y =50x 2-50x +100 C .y =50·2xD .y =100log 2x +100解析 把x =1,2,3,4分别代入A 、B 、C 、D 知,C 正确. 答案 C12.若a <b <c ,则函数f (x )=(x -a )·(x -b )+(x -b )(x -c )+(x -c )·(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内解析 令y 1=(x -a )(x -b )+(x -b )(x -c )=(x -b )[2x -(a +c )],y 2=-(x -c )(x -a ),由a <b <c 作出函数y 1,y 2的图象(图略),由图可知两函数图象的两个交点分别位于区间(a ,b )和(b ,c )内,即函数f (x )的两个零点分别位于区间(a ,b )和(b ,c )内.答案 A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上.) 13.函数y =(log 3a )x在R 上为增函数,则a 的取值范围是________. 解析 由题意知log 3a >1.∴a >3 答案 (3,+∞)14.已知函数f (x )在区间(0,+∞)上有定义,且对任意正数x ,y ,都有f (xy )=f (x )+f (y ),则f (1)=________.解析 令x =y =1,则有f (1)=f (1)+f (1), ∴f (1)=0. 答案 015.设f (x )=x 3+bx +c 是[-1,1]上的增函数,且f ⎝ ⎛⎭⎪⎫-12·f ⎝ ⎛⎭⎪⎫12<0,则方程f (x )=0在[-1,1]内实根有________个.解析 依题意知,f (x )=0在⎝ ⎛⎭⎪⎫-12,12内有一个实根,又知f (x )在[-1,1]内是增函数,所以在[-1,1]内f (x )=0只有一个实根.答案 116.已知函数f (x )=lg(2x-b )(b 为常数),若x ∈[1,+∞)时,f (x )≥0恒成立,则b 的取值范围是________.解析 ∵要使f (x )=lg(2x-b )在x ∈[1,+∞)上,恒有f (x )≥0,∴2x-b ≥1在x ∈[1,+∞)上恒成立,即2x≥b +1恒成立.又∵指数函数g (x )=2x在定义域上是增函数.∴只要2≥b +1成立即可,解得b ≤1. 答案 (-∞,1]三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)设集合A ={x |0<x -a <3},B ={x |x ≤0或x ≥3},分别求满足下列条件的实数a 的取值范围:(1)A ∩B =∅; (2)A ∪B =B .解 ∵A ={x |0<x -a <3}, ∴A ={x |a <x <a +3}.(1)当A ∩B =∅时,有⎩⎪⎨⎪⎧a ≥0,a +3≤3,解得a =0.(2)当A ∪B =B 时,有A ⊆B ,所以a ≥3或a +3≤0,解得a ≥3或a ≤-3.18.(本小题满分12分)(1)计算:⎝ ⎛⎭⎪⎫279 12 +(lg5)0+⎝ ⎛⎭⎪⎫2764- 13 ; (2)解方程:log 3(6x-9)=3.解 (1)原式=⎝ ⎛⎭⎪⎫259 12 +(lg5)0+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫343- 13 =53+1+43=4. (2)由方程log 3(6x-9)=3得 6x-9=33=27,∴6x =36=62, ∴x =2.经检验,x =2是原方程的解.19.(本小题满分12分)已知函数f (x )=x 3-x 2+x 2+14,求证:存在x 0∈⎝ ⎛⎭⎪⎫0,12,使f (x 0)=x 0.证明 令g (x )=f (x )-x =x 3-x 2-x 2+14,∵g (0)=14>0,g ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫123-⎝ ⎛⎭⎪⎫122-14+14=-18<0,∴g (0)·g ⎝ ⎛⎭⎪⎫12<0. 又函数g (x )在⎝ ⎛⎭⎪⎫0,12上是连续的, ∴存在x 0∈(0,12),使得g (x 0)=0,即f (x 0)=x 0.20.(本小题满分12分)f (x )是定义在R 上的奇函数,当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (x )在(-1,0)上的解析式; (2)证明:f (x )在(0,1)上是减函数.解 (1)设x ∈(-1,0),则-x ∈(0,1),由x ∈(0,1)时,f (x )=2x4x +1知f (-x )=2-x 4-x +1=2x4x +1,又f (x )为奇函数知,-f (x )=2x4x +1,即f (x )=-2x4x +1.故当x ∈(-1,0)时,f (x )=-2x4x +1.(2)证明:设0<x 1<x 2<1,则f (x 2)-f (x 1)=2x 24x 2+1-2x 14x 1+1=2x 1+x 2-12x 1-2x 24x 1+14x 2+1.由0<x 1<x 2<1知,2x 1<2x 2, ∴2x 1-2x 2<0.又4x 1+1>0,4x 2+1>0,2x 1+x 2-1>0, ∴f (x 2)-f (x 1)<0,即f (x 2)<f (x 1).因此,f (x )在(0,1)上是减函数.21.(本小题满分12分)设函数y =f (x )的定义域为R ,并且满足f (x +y )=f (x )+f (y ),f ⎝ ⎛⎭⎪⎫13=1,当x >0时,f (x )>0.(1)求f (0)的值; (2)判断函数的奇偶性;(3)如果f (x )+f (2+x )<2,求x 的取值范围. 解 (1)令x =y =0,则f (0)=f (0), ∴f (0)=0.(2)令y =-x ,得f (0)=f (x )+f (-x )=0, ∴f (-x )=-f (x ),故函数f (x )是R 上的奇函数. (3)任取x 1,x 2∈R ,x 1<x 2,则x 2-x 1>0.∵f (x 2)-f (x 1)=f (x 2-x 1+x 1)-f (x 1)=f (x 2-x 1)+f (x 1)-f (x 1)=f (x 2-x 1)>0, ∴f (x 1)<f (x 2).故f (x )是R 上的增函数.∵f ⎝ ⎛⎭⎪⎫13=1,∴f ⎝ ⎛⎭⎪⎫23=f ⎝ ⎛⎭⎪⎫13+13=f ⎝ ⎛⎭⎪⎫13+f ⎝ ⎛⎭⎪⎫13=2. ∴f (x )+f (2+x )=f [x +(2+x )]=f (2x +2)<f ⎝ ⎛⎭⎪⎫23.又由y =f (x )是定义在R 上的增函数,得2x +2<23,解之得x <-23.故x ∈⎝⎛⎭⎪⎫-∞,-23.22.(本小题满分12分)为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用新工艺,把二氧化碳转化为一种可利用的产品.已知该单位每月处理二氧化碳最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似表示为y =12x 2-200x +80000,且每处理1吨二氧化碳得到可利用的化工产品价值为100元.(1)若该单位每月成本支出不超过105000元,求月处理量x 的取值范围;(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?解 (1)设月处理量为x 吨,则每月处理x 吨二氧化碳可获化工产品价值为100x 元,则每月成本支出f (x )为f (x )=12x 2-200x +80000-100x ,x ∈[400,600].若f (x )≤105000,即12x 2-300x -25000≤0,即(x -300)2≤140000,∴300-10014≤x ≤10014+300.∵10014+300≈674>600,且x ∈[400,600],∴该单位每月成本支出不超过105000元时,月处理量x 的取值范围是{x |400≤x ≤600}.(2)f (x )=12x 2-300x +80000=12(x 2-600x +90000)+35000 =12(x -300)2+35000,x ∈[400,600], ∵12(x -300)2+35000>0, ∴该单位不获利.由二次函数性质得当x =400时,f (x )取得最小值.f (x )min =12(400-300)2+35000=40000.∴国家至少需要补贴40000元.y26913 6921 椡32355 7E63 繣vT25127 6227 戧37182 913E 鄾31378 7A92 窒E|21108 5274 剴3]E20385 4FA1価。
高中数学人教A版(2019)必修一综合测试卷一、单选题(共12题;共24分)1.(2分)已知集合A={x|x2<1},集合B={x|log2x<0},则A∩B=()A.(0,1)B.(−1,0)C.(−1,1)D.(−∞,1) 2.(2分)已知角α的终边经过点P(−1,√3),则sin2α=()A.√32B.−√32C.−12D.−√343.(2分)已知幂函数y=f(x)的图象过点(12,√22),则log4f(2)的值为()A.−14B.14C.−2D.24.(2分)由y=2sin(6x−16π)的图象向左平移π3个单位,再把所得图象上所有点的横坐标伸长到原来的2倍后,所得图象对应的函数解析式为()A.y=2sin(3x−16π)B.y=2sin(3x+16π)C.y=2sin(3x−112π)D.y=2sin(12x−16π)5.(2分)若sin(π3−α)=14,则cos(π3+2α)=().A.−78B.−14C.14D.786.(2分)已知函数f(x)={2x−1x>0−x2−2x x≤0,若函数g(x)=f(x)−m有3个零点,则实数m 的取值范围()A.(0, 12)B.(12,1]C.(0,1]D.(0,1)7.(2分)对于函数f(x)=x3cos3(x+ π6),下列说法正确的是()A.f(x)是奇函数且在(﹣π6,π6)上递增B.f(x)是奇函数且在(﹣π6,π6)上递减C.f(x)是偶函数且在(0,π6)上递增D.f(x)是偶函数且在(0,π6)上递减8.(2分)若函数f(x)为偶函数,且在(0,+∞)上是减函数,又f(﹣3)=0,则f(x)+f(−x)2x<0的解集为()A.(-3,3)B.(-∞,-3)∪(3,+∞) C.(-3,0)∪(3,+∞)D.(-∞,-3)∪(0,3).9.(2分)已知函数f(x)={x2,x≤0lg(x+1),x>0,若f(x0)>1,则x0的取值范围为()A.(-1,1)B.(-1,+∞)C.(−∞,9)D.(−∞,−1)∪(9,+∞)10.(2分)已知奇函数f(x)的定义域为(−∞,0)∪(0,+∞),且对任意正实数x1,x2(x1≠x2),恒有f(x1)−f(x2)x1−x2﹥0 ,则一定有()A.f(3)>f(−5)B.f(−3)<f(−5)C.f(−5)>f(3)D.f(−3)>f(−5)11.(2分)已知函数f(x)是定义在R上的偶函数,且在(−∞,0)上单调递减,若a=f(log215),b=f(log24.1),c=f(20.8),则a,b,c的大小关系是()A.a<b<c B.b<a<c C.c<a<b D.c<b<a12.(2分)将函数y=sin2x的图象向右平移φ(0<φ<π2)个单位长度得到f(x)的图象,若函数f(x)在区间[0,π3]上单调递增,且f(x)的最大负零点在区间(−5π12,−π6)上,则φ的取值范围是()A.(π6,π4]B.(π12,π4]C.(π6,π2)D.(π12,π2)二、填空题(共4题;共4分)13.(1分)若a>0,b>0,a+2b=1,则1a+a+1b的最小值为.14.(1分)若函数f(x)={log2x,x>0−2x−a,x≤0有且只有一个零点,则a的取值范围是.15.(1分)设f(x)是定义在[−2b,3+b]上的偶函数,且在[−2b,0]上为增函数,则f(x−1)≥f(3)的解集为.16.(1分)下列命题中:①已知函数y=f(2x+1)的定义域为[0,1],则函数y=f(x)的定义域为[1,3];②若集合A={x|x2+kx+4=0}中只有一个元素,则k=±4;③函数y=11−2x在(−∞,0)上是增函数;④方程2|x|=log2(x+2)+1的实根的个数是1.所有正确命题的序号是(请将所有正确命题的序号都填上).三、解答题(共6题;共65分)17.(10分)若集合A={x ∈R| x2−x−12≤0}和B={ x ∈R|2m-1≤x≤m+1}.(1)(5分)当m=−3时,求集合A∪B.(2)(5分)当B∩A=B时,求实数m的取值范围.18.(10分)(1)(5分)计算(lg14−lg25)÷10012的值;(2)(5分)已知tanα=2,求2sinα−3cosα4sinα−9cosα和sinαcosα的值.19.(10分)已知函数f(x)=a(sin2x−π6)−a+b(a,b∈R,且a<0).(1)(5分)若当x∈[0,π2]时,函数f(x)的值域为[−5,1],求实数a,b的值;(2)(5分)在(1)条件下,求函数f(x)图像的对称中心.20.(15分)已知二次函数f(x)=ax2+bx+c的图象过点(0,3),且不等式ax2+bx+c≤0的解集为{x|1≤x≤3}.(1)(5分)求f(x)的解析式;(2)(5分)若g(x)=f(x)−(2t−4)x在区间[−1,2]上有最小值2,求实数t的值;(3)(5分)设ℎ(x)=mx2−4x+m,若当x∈[−1,2]时,函数y=ℎ(x)的图象恒在y= f(x)图象的上方,求实数m的取值范围.21.(10分)已知m∈R,命题p:对任意x∈[0 , 8],不等式log13(x+1)≥m2−3m恒成立,命题q:存在x∈(0 , 2π3),使不等式2sin2x+2sinxcosx≤√2m(sinx+cosx)成立.(1)(5分)若p为真命题,求m的取值范围;(2)(5分)若p∧q为假,p∨q为真,求m的取值范围.22.(10分)已知奇函数f(x)与偶函数g(x)均为定义在R上的函数,并满足f(x)+g(x)=2x (1)(5分)求f(x)的解析式;(2)(5分)设函数ℎ(x)=f(x)+x①判断ℎ(x)的单调性,并用定义证明;②若f(log2m)+f(2log2m−1)≤1−3log2m,求实数m的取值范围答案解析部分1.【答案】A【解析】【解答】根据题意:集合 A ={x|−1<x <1} ,集合 B ={x|0<x <1} , ∴A ∩B =(0,1)故答案为: A .【分析】先解不等式得集合A 与B ,再根据交集定义得结果.2.【答案】B【解析】【解答】角 α 的终边经过点p (﹣1, √3 ),其到原点的距离r =√1+3= 2Cos α=−12 ,sin α=√32∴sin2α=2 sin α cos α=2×(−12)×√32=−√32.故答案为:B .【分析】先求出点P 到原点的距离,再用三角函数的定义依次算出正、余弦值,利用二倍角公式计算结果即可.3.【答案】B【解析】【解答】设幂函数的表达式为 f(x)=xn,则 (12)n =√22,解得 n =12 ,所以 f(x)=x 12 ,则 log 4f(2)=log 4212=12log 2212=12×12=14.故答案为:B.【分析】利用幂函数图象过点 (12,√22) 可以求出函数解析式,然后求出 log 4f(2) 即可。
综合检测试题选题明细表一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|2x-1≥1},B={y|y=log3x,x∈A},则∁B A等于( B )A.(0,1)B.[0,1)C.(0,1]D.[0,1]解析:由题得A={x|2x-1≥20}={x|x≥1},B={y|y≥0},所以∁B A={x|0≤x<1}.故选B.2.若a=0.60.7,b=0.70.6,c=lg 3,则下列结论正确的是( D )A.b>c>aB.c>a>bC.a>b>cD.b>a>c解析:因为y=x0.6为增函数,y=0.6x为减函数,所以0.70.6>0.60.6>0.60.7>0.61,c=lg 3<lg √10=0.5, 所以b>a>c.故选D.3.已知正实数x ,y 满足x+2y=2xy ,则x+y 的最小值为( D ) A.4 B.√2 C.√3 D.√2+32解析:因为正实数x ,y 满足x+2y=2xy , 所以x+2y xy=2,即1y +2x =2,所以x+y=(x+y 2)·(1y +2x )=x 2y +1+12+y x ≥32+2√x 2y ·y x =32+√2,当且仅当x 2=2y 2时,等号成立. 故选D.4.已知函数f(x)为奇函数,当x>0时,f(x)=log 2(x+1)+ax ,且f(-3)=a ,则f(7)等于( B ) A.12B.-12C.log 23D.2解析:因为函数f(x)为奇函数,当x>0时,f(x)=log 2(x+1)+ax ,且f(-3)=-f(3)=a ,所以f(3)=-a ,即2+3a=-a ,所以a=-12,则f(7)=log 28+7a=3-72=-12.故选B.5.已知2sin 2α=1+cos 2α,则tan 2α等于( D ) A.-43 B.43C.-43或0 D.43或0解析:因为{2sin2α=1+cos2α,sin 22α+cos 22α=1,所以{sin2α=0,cos2α=-1或{sin2α=45,cos2α=35.所以tan 2α=0或tan 2α=43.故选D.6.将函数f(x)=sin(2x+π6)的图象分别向左、向右平移ϕ(ϕ>0)个单位长度后,所得的图象都关于y 轴对称,则ϕ的最小值分别为( A ) A.π6,π3B.π3,π6C.2π3,5π6D.π6,π12解析:函数f(x)的图象向左平移ϕ个单位长度得到函数g(x)= sin(2x+2ϕ+π6)的图象,因为g(x)图象关于y 轴对称,则2ϕ+π6=π2+k π,k ∈Z ,即ϕ=π6+kπ2,k∈Z ,而ϕ>0, 则ϕmin =π6;函数f(x)的图象向右平移ϕ个单位长度得函数h(x)=sin(2x-2ϕ+π6)的图象,因为函数h(x)关于y 轴对称,则有-2ϕ+π6=π2+k π,k ∈Z ,即ϕ=-π6-kπ2,k ∈Z ,而ϕ>0,则ϕmin =π3,所以ϕ的最小值分别为π6,π3.故选A.7.如图所示,其对应的函数解析式可能是( B )A.f(x)=1|x -1|B.f(x)=1||x |-1|C.f(x)=11-x2D.f(x)=11+x 2解析:函数的定义域为{x|x ≠±1},排除选项A 和D ,当x ∈(1,+∞)时,f(x)>0,可排除选项C.故选B. 8.已知函数f(x)=ln(1+x 2)-11+|x |,若实数a 满足f(log 3a)+f(lo g 13a)≤2f(1),则a 的取值范围是( D ) A.[1,3] B.(0,13)C.(0,3]D.[13,3]解析:函数f(x)=ln(1+x 2)-11+|x |,故函数f(x)在(0,+∞)上单调递增,且f(x)为偶函数,若实数a 满足f(log 3a)+f(lo g 13a)≤2f(1),即f(log 3a)+f(-log 3a)≤2f(1),f(log 3a)≤f(1),所以|log 3a|≤1,即-1≤log 3a ≤1,故13≤a ≤3.故选D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知f(x)={log 3x ,x >0,2x ,x ≤0,角α的终边经过点(1,2√2),则下列结论正确的是( AC )A.f(cos α)=-1B.f(sin α)=1C.f(f(cos α))=12D.f(f(sin α))=2解析:因为角α的终边经过点(1,2√2), 所以sin α=2√23,cos α=13, 所以f(cos α)=f(13)=log 313=-1, f(sin α)=f(2√23)=log 32√23<0, 所以f(f(cos α))=f(-1)=2-1=12, f(f(sin α))=2log 32√23.故选AC.10.下列命题正确的是( ABD ) A.函数f(x)=x+1x (x>0)的最小值为2B.函数y=2-x-4x(x>0)的最大值为-2C.函数f(x)=2x+1x的最小值为2√2D.函数f(x)=2√x 2+1的最小值为3解析:因为x>0,所以f(x)=x+1x≥2√1=2,当且仅当x=1x,即x=1时,取等号,所以函数的最小值为2,所以A 正确;因为x>0,所以f(x)=x+4x≥2√4=4,当且仅当x=4x,即x=2时,取等号,所以函数f(x)的最小值为4,所以函数y 的最大值为-2,所以B 正确;当x=-1时,f(-1)=-3,所以C 错误; 设√x 2+1=t(t ≥1),则x 2=t 2-1,则f(t)=2t 2+1t=2t+1t,在[1,+∞)上任取t 1,t 2.令t 1<t 2,则f(t 1)-f(t 2)=2(t 1-t 2)+(1t 1-1t 2)=(t 1-t 2)·(2-1t 1t 2).因为1≤t 1<t 2,所以t 1-t 2<0,2-1t 1t 2>0,所以f(t 1)<f(t 2).则f(t)=2t+1t在[1,+∞)上为增函数,所以当t=1时,f(t)的最小值为f(1)=3, 所以D 正确.故选ABD.11.已知直线x=π8是函数f(x)=sin(2x+ϕ)(0<ϕ<π)的一条对称轴,则( ACD ) A.f(x+π8)是偶函数B.x=3π8是f(x)的一条对称轴C.f(x)在[π8,π2]上单调递减D.y=f(x)与g(x)=sin(2x-π4)的图象关于直线x=π4对称解析:直线x=π8是函数f(x)=sin(2x+ϕ)(0<ϕ<π)的一条对称轴,所以2×π8+ϕ=k π+π2,k ∈Z ,所以ϕ=π4,所以f(x+π8)=sin(2x+π2)=cos 2x ,是偶函数,故A 正确;由2x+π4=k π+π2(k ∈Z),解得x=kπ2+π8(k ∈Z),所以f(x)的对称轴方程为x=kπ2+π8(k ∈Z),而x=3π8不能满足上式,故B 错误;当x ∈[π8,π2],2x+π4∈[π2,5π4],此时函数f(x)单调递减,故C 正确;显然,f(x)=sin(2x+π4)与g(x)=sin(2x-π4)的图象关于直线x=π4对称,故D 正确.故选ACD.12.高斯是德国著名的数学家,用其名字命名的“高斯函数”为设 x ∈R ,用[x]表示不超过x 的最大整数,则y=[x]称为高斯函数,例如:[-1.5]=-2,[2.1]=2.已知函数f(x)=2x -11+2x,则关于函数g(x)=[f(x)]的叙述正确的是( BCD ) A.g(x)是奇函数 B.f(x)是奇函数 C.f(x)在R 上是增函数 D.g(x)的值域是{-1,0}解析:因为函数g(x)=[f(x)],且f(x)=2x -11+2x ,所以g(1)=[f(1)]=0, g(-1)=[f(-1)]=-1, 所以g(-1)≠-g(1),则g(x)不是奇函数,故选项A 错误; 因为f(x)=2x -11+2x,则f(-x)=2-x -11+2-x =1-2x2x +1=-f(x),所以f(x)为奇函数,故选项B 正确; 因为f(x)=2x -11+2x=1+-22x +1,又y=2x +1在R 上为单调递增函数, 则y=-22x +1在R 上为单调递增函数,所以f(x)在R 上为单调递增函数,故选项C 正确; 因为2x >0,则-1<1+-22x +1<1,所以-1<f(x)<1,当-1<f(x)<0时,则g(x)=[f(x)]=-1;当0≤f(x)<1时,则g(x)=[f(x)]=0,所以g(x)∈{-1,0},则g(x)的值域为{-1,0},故选项D正确.故选BCD.三、填空题:本题共4小题,每小题5分,共20分.13.已知函数f(x)=(m2+m-1)x m+1是幂函数,且该函数在第一象限是增函数,则m的值是.解析:由函数f(x)=(m2+m-1)x m+1是幂函数,则m2+m-1=1,解得m=-2或m=1;当m=-2时,f(x)=x-1在第一象限内不是增函数,不符合题意;当m=1时,f(x)=x2在第一象限内是增函数,满足题意.所以m的值是1.答案:114.已知函数y=2x,当x>0时,函数值的取值范围构成集合A,函数y=x k,在x∈A时,函数值的取值范围构成集合B,则A∩B=∅的充要条件是.解析:已知函数y=2x,当x>0时,函数值的取值范围构成集合A=(1,+∞),当x∈(1,+∞)时,函数y=x k∈(0,+∞),由于A∩B=∅,故x k≤1=x0,故k≤0.故A ∩B= 的充要条件是k ≤0. 答案:k ≤015.已知函数y=f(x)满足f(2)>5,且以(1,1)点为对称中心,写出一个符合条件的函数y= . 解析:因为函数的对称中心为(1,1), 所以不妨设为分式函数f(x)=a x -1+1,因为f(2)>5,所以f(2)=a+1>5,解得a>4, 不妨取a=5,即y=5x -1+1.答案:y=5x -1+1(答案不唯一)16.已知f(x)=2sin(2x+π3),若∃x 1,x 2,x 3∈[0,3π2],且x 1<x 2<x 3,使得f(x 1)=f(x 2)=f(x 3),则x 1+x 2+x 3的最小值为 ,最大值为 .解析:作出f(x)图象如图所示,当f(x)图象与y=√3图象相交时,前三个交点横坐标依次为x 1,x 2,x 3,此时x 1+x 2+x 3最小;x 1+x 2=π12×2=π6,f(π)=2sin(2π+π3)=√3,x 3=π,所以最小值为π6+π=7π6;当f(x)图象与y=-√3图象相交时,交点横坐标依次为x 1,x 2,x 3,此时x 1+x 2+x 3最大,x 1+x 2=7π12×2=7π6,f(3π2)=2sin(3π+π3)=-√3,x 3=3π2,最大值为7π6+3π2=8π3.答案:7π68π3四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)若函数y=lg(√3-2sin x)+√1-x 2的定义域为A. (1)求集合A;(2)当x ∈A 时,求函数y=cos 2x+sin x 的最大值. 解:(1)由题意可得{√3-2sinx >0,1-x 2≥0, 解得-1≤x ≤1, 即集合A=[-1,1].(2)y=cos 2x+sin x=-sin 2x+sin x+1,x ∈[-1,1], 令t=sin x ∈[-sin 1,sin 1], 则y=-t 2+t+1=-(t -12)2+54,故当t=12时,函数取得最大值为54.18.(本小题满分12分)某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形OAD 挖去扇形OBC 后构成的).已知OA=10,OB= x(0<x<10),线段BA ,CD 与BC ⏜,AD ⏜的长度之和为30,圆心角为θ弧度.(1)求θ关于x 的函数表达式;(2)记铭牌的截面面积为y ,试问:x 取何值时,y 的值最大?并求出最 大值.解:根据题意,可得BC ⏜=x ·θ,AD ⏜=10θ. 又BA+CD+BC⏜+AD ⏜=30, 所以10-x+10-x+x ·θ+10θ=30, 所以θ=2x+10x+10(0<x<10).(2)y=S 扇形OAD -S 扇形OBC =12θ×102-12θx 2=12θ×(102-x 2)=12θ×(10+x) (10-x),化简得y=-x 2+5x+50=-(x -52)2+2254.于是,当x=52(满足条件0<x<10)时,y max =2254.所以当x=52时,铭牌的截面面积最大,且最大面积为2254.19.(本小题满分12分) 已知函数f(x)=log 3(3x+1)-12x.若不等式f(x)-12x-a ≥0对x ∈(-∞,0]恒成立,求实数a 的取值范围.解:因为不等式f(x)-12x-a ≥0在区间(-∞,0]上恒成立,即a ≤log 3(3x +1)-x 在区间(-∞,0]上恒成立, 令g(x)=log 3(3x +1)-x=log 3(1+13x ),因为x ∈(-∞,0],所以1+13x ≥2,所以g(x)=log 3(1+13x )≥log 32,所以a ≤log 32,所以a 的取值范围是(-∞,log 32]. 20.(本小题满分12分)已知α∈(0,π2),β∈(π2,π),cos β=-13,sin(α+β)=79.(1)求tan β2的值;(2)求sin α的值.解:(1)因为cos β=cos 2β2-sin 2β2=cos 2β2-sin 2β2cos 2β2+sin 2β2=1-tan 2β21+tan 2β2,且cos β=-13,所以1-tan 2β21+tan 2β2=-13,解得tan 2β2=2,因为β∈(π2,π),所以β2∈(π4,π2),所以tan β2>0,所以tan β2=√2.(2)因为β∈(π2,π),cos β=-13,所以sin β=√1-cos 2β=√1-(-13) 2=2√23, 又α∈(0,π2), 故α+β∈(π2,3π2),又sin(α+β)=79,所以cos(α+β)=-√1-sin 2(α+β)=-√1-(79)2=-4√29.所以sin α=sin[(α+β)-β] =sin(α+β)cos β-cos(α+β)sin β =79×(-13)-(-4√29)×2√23=13.21.(本小题满分12分)在①f(x)的图象关于直线x=5π6对称,②f(x)的图象关于点(5π18,0)对称,③f(x)在[-π4,π4]上单调递增,这三个条件中任选一个,补充在下面的问题中,若问题中的正实数a 存在,求出a 的值;若a 不存在,说明理由.已知函数f(x)=4sin(ωx+π6)+a(ω∈N *)的最小正周期不小于π3,且 ,是否存在正实数a ,使得函数f(x)在[0,π12]上有最大值3?解:由于函数f(x)的最小正周期不小于π3,所以2πω≥π3,所以1≤ω≤6,ω∈N *,若选择①,即f(x)的图象关于直线x=5π6对称,有5π6ω+π6=k π+π2(k ∈Z),解得ω=65k+25(k ∈Z),由于1≤ω≤6,ω∈N *,k ∈Z ,所以k=3,ω=4, 此时,f(x)=4sin(4x+π6)+a ,由x ∈[0,π12],得4x+π6∈[π6,π2],因此当4x+π6=π2,即x=π12时,f(x)取得最大值4+a ,令4+a=3,解得a=-1<0,不符合题意.故不存在正实数a ,使得函数f(x)在[0,π12]上有最大值3.若选择②,即f(x)的图象关于点(5π18,0)对称,则有5π18ω+π6=k π(k ∈Z),解得ω=185k-35(k ∈Z),由于1≤ω≤6,ω∈N *,k ∈Z ,所以k=1,ω=3. 此时,f(x)=4sin(3x+π6)+a.由x ∈[0,π12],得3x+π6∈[π6,5π12],因此当3x+π6=5π12,即x=π12时,f(x)取得最大值4sin 5π12+a=√6+√2+a ,令√6+√2+a=3,解得a=3-√6-√2<0,不符合题意. 故不存在正实数a ,使得函数f(x)在[0,π12]上有最大值3.若选择③,即f(x)在[-π4,π4]上单调递增,则有{-ωπ4+π6≥2kπ-π2,ωπ4+π6≤2kπ+π2(k ∈Z),解得{ω≤-8k +83,ω≤8k +43(k ∈Z), 由于1≤ω≤6,ω∈N *,k ∈Z ,所以k=0,ω=1. 此时,f(x)=4sin(x+π6)+a.由x ∈[0,π12],得x+π6∈[π6,π4],因此,当x+π6=π4,即x=π12时,f(x)取得最大值2√2+a ,令2√2+a=3,解得a=3-2√2,符合题意.故存在正实数a=3-2√2,使得函数f(x)在[0,π12]上有最大值3.22.(本小题满分12分)设函数f(x)=ka x -a -x (a>0,且a ≠1)是定义域为R 上的奇函数. (1)求k 的值;(2)若f(1)>0,试求不等式f(x 2+2x)+f(x-4)>0的解集;(3)若f(1)=32,且g(x)=a 2x +a -2x -2mf(x)在[1,+∞)上的最小值为-2,求m 的值.解:(1)因为f(x)是定义域为R 上的奇函数,所以f(0)=0,所以k-1=0,所以k=1,经检验k=1符合题意. (2)因为f(1)>0,所以a-1a >0,又a>0,且a ≠1,所以a>1, 易知f(x)在R 上单调递增, 原不等式化为f(x 2+2x)>f(4-x), 所以x 2+2x>4-x ,即x 2+3x-4>0, 所以x>1或x<-4,所以不等式的解集为{x|x>1或x<-4}. (3)因为f(1)=32,所以a-1a =32,即2a 2-3a-2=0,解得a=2或a=-12(舍去),所以g(x)=22x +2-2x -2m(2x -2-x )=(2x -2-x )2-2m(2x -2-x )+2.令t=f(x)=2x -2-x ,因为x ≥1,所以t ≥f(1)=32,所以g(t)=t 2-2mt+2=(t-m)2+2-m 2, 当m ≥32时,当t=m 时,g(t)min =2-m 2=-2,所以m=2,符合题意; 当m<32时,当t=32时,g(t)min =174-3m=-2,解得m=2512>32,舍去.综上可知,m=2.。
新课标高一数学综合检测题(必修一)说明:本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷60分,第Ⅱ卷60分,共120分,答题时间90分钟.第Ⅰ卷(选择题,共60分)一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 函数2134y x x =++-的定义域为( )A )43,21(- B ]43,21[- C ),43[]21,(+∞⋃-∞ D ),0()0,21(+∞⋃- 2. 二次函数2y ax bx c =++中,0a c ⋅<,则函数的零点个数是( ) A 0个 B 1个 C 2个 D 无法确定 3. 若函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( )A 3-≤aB 3-≥aC 5≤aD 5≥a4. 设()833-+=x x f x,用二分法求方程()2,10833∈=-+x x x在内近似解的过中得()()(),025.1,05.1,01<><f f f 则方程的根落在区间( ) A.(1,1.25) B.(1.25,1.5) C.(1.5,2) D.不能确定 5. 方程05log 2=-+x x 在下列哪个区间必有实数解( ) A (1,2) B (2,3) C (3,4) D (4,5) 6. 设a >1,则xa y -=图像大致为( )y y y yA B C Dx x x7.角α的终边过点P (4,-3),则αcos 的值为( ) A .4B .-3C .54D .53-8.向量(,2),(2,2)a k b ==-且//a b ,则k 的值为( )A .2B .2C .-2D .-29.oooosin71cos26-sin19sin26的值为( )A .12B .1C .-22D .2210.若函数()b ax x x f --=2的两个零点是2和3,则函数()12--=ax bx x g 的零点是()A .1- 和2-B .1 和2C .21和31 D .21-和31- 11.下述函数中,在]0,(-∞内为增函数的是( )A y =x 2-2B y =x3 C y =12x - D 2)2(+-=x y 12.下面四个结论:①偶函数的图象一定与y 轴相交;②奇函数的图象一定通过原点;③偶函数的图象关于y 轴对称;④既是奇函数又是偶函数的函数一定是()f x =0(x ∈R ),其中正确命题的个数是( )A 4B 3C 2D 1第Ⅱ卷(非选择题,共60分)二、填空题(本大题共4小题,每小题4分,共16分)13.函数()53lo g 221+-=ax x y 在[)+∞-,1上是减函数,则实数a 的取值范围是____________________.14.幂函数()x f y =的图象经过点()81,2--,则满足()27=x f 的x 的值为15. 已知集合}023|{2=+-=x ax x A .若A 中至多有一个元素,则a 的取值范围是 16. 函数21)(++=x ax x f 在区间),2(+∞-上为增函数,则a 的取值范围是______________。
最新人教A版高中数学必修第一册综合测试题及答案模块综合测评(满分:150分,时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=()A.{x|-2<x<-1}B.{x|-2<x<3}C.{x|-1<x<1} D.{x|1<x<3}A[在数轴上表示出集合A,B,如图所示.由图知A∩B={x|-2<x<-1}.]2.已知命题p:x为自然数,命题q:x为整数,则p是q的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件A[若x为自然数,则它必为整数,即p⇒q.但x为整数不一定是自然数,如x=-2,即q p.故p是q的充分不必要条件.]3.若cos α=-1010,sin 2α>0,则tan(π-α)等于()A.-3B.3 C.-34 D.34A[∵sin 2α=2sin αcos α>0,cos α=-10 10,∴sin α=-31010,∴tan α=sin αcos α=3,∴tan(π-α)=-tan α=-3,故选A.]4.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1B.3 C.4D.8C[根据题意,满足条件的集合B可以为{3},{1,3},{2,3},{1,2,3}中的任意一个.] 5.若a<b<0,则下列不等式不能成立的是()A.1a-b>1a B.1a>1bC .|a |>|b |D .a 2>b 2 A [取a =-2,b =-1,则1a -b>1a 不成立.] 6.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是( ) A .(0,4) B .[0,4) C .(0,4]D .[0,4]D [当a =0时,满足条件;当a ≠0时,由题意知a >0且Δ=a 2-4a ≤0,得0<a ≤4,所以0≤a ≤4.]7.已知x >0,y >0,且x +2y =2,则xy ( ) A .有最大值为1 B .有最小值为1 C .有最大值为12D .有最小值为12C [因为x >0,y >0,x +2y =2,所以x +2y ≥2x ·2y ,即2≥22xy ,xy ≤12, 当且仅当x =2y ,即x =1,y =12时,等号成立. 所以xy 有最大值,且最大值为12.] 8.函数f (x )=x 12-⎝ ⎛⎭⎪⎫12x的零点个数是( )A .0B .1C .2D .3B [函数f (x )=x 12-⎝ ⎛⎭⎪⎫12x的零点个数是方程x 12-⎝ ⎛⎭⎪⎫12x =0的解的个数,即方程x 12=⎝ ⎛⎭⎪⎫12x的解的个数,也就是函数y =x 12与y =⎝ ⎛⎭⎪⎫12x 的图象的交点个数,在同一坐标系中作出两个函数的图象如图所示,可得交点个数为1.]9.若函数y =a +sin bx (b >0且b ≠1)的图象如图所示,则函数y =log b (x -a )的图象可能是( )C [由题图可得a >1,且y =a +sin bx 的最小正周期T =2πb <π,所以b >2,则y =log b (x -a )是增函数,排除A 和B ;当x =2时,y =log b (2-a )<0,排除D ,故选C.]10.已知a =log 29-log 23,b =1+log 27,c =12+log 213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >a >bD .c >b >aB [a =log 29-log 23=log 233,b =1+log 27=log 227,c =12+log 213=log 226, 因为函数y =log 2x 在(0,+∞)上是增函数, 且27>33>26,所以b >a >c .]11.已知函数①y =sin x +cos x ,②y =22sin x cos x ,则下列结论正确的是( ) A .两个函数的图象均关于点⎝ ⎛⎭⎪⎫-π4,0成中心对称图形B .两个函数的图象均关于直线x =-π4成轴对称图形 C .两个函数在区间⎝ ⎛⎭⎪⎫-π4,π4上都是单调递增函数D .两个函数的最小正周期相同C [①y =2sin ⎝ ⎛⎭⎪⎫x +π4,图象的对称中心为⎝ ⎛⎭⎪⎫-π4+k π,0,k ∈Z ,对称轴为x =π4+k π,k ∈Z ,单调递增区间为⎣⎢⎡⎦⎥⎤-3π4+2k π,π4+2k π,k ∈Z ,最小正周期为2π;②y =2sin 2x 图象的对称中心为⎝ ⎛⎭⎪⎫12k π,0,k ∈Z ,对称轴为x =π4+12k π,k ∈Z ,单调递增区间为⎣⎢⎡⎦⎥⎤-π4+k π,π4+k π,k ∈Z ,最小正周期为π.故选C.]12.函数y =sin x 与y =tan x 的图象在[-2π,2π]上的交点个数为( ) A .3 B .5 C .7 D .9 B [由⎩⎨⎧y =sin x ,y =tan x ,得sin x =tan x ,即sin x ⎝ ⎛⎭⎪⎫1-1cos x =0.∴sin x =0或1-1cos x =0, 即x =k π(k ∈Z ),又-2π≤x ≤2π,∴x =-2π,-π,0,π,2π, 从而图象的交点个数为5.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.命题p :“∀x ∈{x |x 是三角形},x 的内角和是180°”的﹁p 是________. ∃x 0∈{x |x 是三角形},x 0的内角和不是180° [因为p 是全称量词命题,则﹁p 为存在量词命题.]14.已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},∁U B ∩A ={9},则A =________.{3,9} [由题意画出Venn 图,如图所示.由图可知,A ={3,9}.]15.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt (其中k 为常数,t 表示时间,单位:小时,y 表示病毒个数),则经过5小时,1个病毒能繁殖为________个.1 024 [当t =0.5时,y =2,所以2=e k 2, 所以k =2ln 2,所以y =e 2t ln 2, 当t =5时,y =e 10ln 2=210=1 024.] 16.已知函数f (x )=⎩⎪⎨⎪⎧kx +3,x ≥0,⎝ ⎛⎭⎪⎫12x,x <0,若方程f (f (x ))-2=0恰有三个实数根,则实数k的取值范围是________.⎝ ⎛⎦⎥⎤-1,-13 [∵f (f (x ))-2=0,∴f (f (x ))=2, ∴f (x )=-1或f (x )=-1k (k ≠0).① ② ③(1)当k =0时,作出函数f (x )的图象如图①所示, 由图象可知f (x )=-1无解,∴k =0不符合题意; (2)当k >0时,作出函数f (x )的图象如图②所示, 由图象可知f (x )=-1无解且f (x )=-1k 无解, 即f (f (x ))-2=0无解,不符合题意;(3)当k <0时,作出函数f (x )的图象如图③所示, 由图象可知f (x )=-1有1个实根, ∵f ((x ))-2=0有3个实根, ∴f (x )=-1k 有2个实根, ∴1<-1k ≤3,解得-1<k ≤-13. 综上,k 的取值范围是⎝ ⎛⎦⎥⎤-1,-13.]三、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知函数f (x )=x +mx ,且f (1)=3. (1)求m 的值;(2)判断函数f (x )的奇偶性.[解] (1)∵f (1)=3,即1+m =3,∴m =2.(2)由(1)知,f (x )=x +2x ,其定义域是{x |x ≠0},关于坐标原点对称,又f (-x )=-x +2-x =-⎝ ⎛⎭⎪⎫x +2x =-f (x ),∴函数f (x )是奇函数.18.(本小题满分12分)已知p :A ={x |x 2-2x -3≤0,x ∈R },q :B ={x |x 2-2mx +m 2-9≤0,x ∈R ,m ∈R }.(1)若A ∩B =[1,3],求实数m 的值;(2)若﹁q 是p 的必要条件,求实数m 的取值范围. [解] (1)A ={x |-1≤x ≤3,x ∈R }, B ={x |m -3≤x ≤m +3,x ∈R ,m ∈R }, ∵A ∩B =[1,3],∴m =4. (2)∵﹁q 是p 的必要条件 ∴p 是﹁q 的充分条件, ∴A ⊆∁R B ,∴m >6或m <-4.19.(本小题满分12分)设α,β是锐角,sin α=437,cos(α+β)=-1114,求证:β=π3. [证明] 由0<α<π2,0<β<π2,知0<α+β<π,又cos(α+β)=-1114, 故sin(α+β)=1-cos 2(α+β) =1-⎝ ⎛⎭⎪⎫-11142=5314. 由sin α=437,可知 cos α=1-sin 2α=1-⎝⎛⎭⎪⎫4372=17, ∴sin β=sin [(α+β)-α]=sin(α+β)cos α-cos(α+β)sin α =5314×17-⎝ ⎛⎭⎪⎫-1114×437=32,∴β=π3.20.(本小题满分12分)已知函数f (x )=ax 2+2x +c (a ∈N *,c ∈N *)满足: ①f (1)=5;②6<f (2)<11. (1)求函数f (x )的解析式;(2)若对任意x ∈[1,2],都有f (x )≥2mx +1成立,求实数m 的取值范围. [解] (1)∵f (1)=5,∴5=a +c +2,∴c =3-a .又6<f (2)<11,∴6<4a +c +4<11,∴-13<a <43. 又a ∈N *,∴a =1,c =2,∴f (x )=x 2+2x +2.(2)设g (x )=f (x )-2mx -1=x 2-2(m -1)x +1,x ∈[1,2],则由已知得 当m -1≤1,即m ≤2时,g (x )min =g (1)=4-2m ≥0,此时m ≤2.当1<m -1<2,即2<m <3时,g (x )min =g (m -1)=1-(m -1)2≥0,此时无解. 当m -1≥2,即m ≥3时,g (x )min =g (2)=9-4m ≥0,此时无解. 综上所述,实数m 的取值范围是(-∞,2].21.(本小题满分12分)已知函数f (x )=cos(πx +φ)⎝ ⎛⎭⎪⎫0<φ<π2的部分图象如图所示.(1)求φ及图中x 0的值;(2)设g (x )=f (x )+f ⎝ ⎛⎭⎪⎫x +13,求函数g (x )在区间⎣⎢⎡⎦⎥⎤-12,13上的最大值和最小值.[解] (1)由题图得f (0)=32,所以cos φ=32, 因为0<φ<π2,故φ=π6. 由于f (x )的最小正周期等于2, 所以由题图可知1<x 0<2, 故7π6<πx 0+π6<13π6.由f (x 0)=32,得cos ⎝ ⎛⎭⎪⎫πx 0+π6=32,所以πx 0+π6=11π6,x 0=53.(2)因为f ⎝ ⎛⎭⎪⎫x +13=cos ⎣⎢⎡⎦⎥⎤π⎝⎛⎭⎪⎫x +13+π6=cosπx +π2=-sin πx , 所以g (x )=f (x )+f ⎝ ⎛⎭⎪⎫x +13=cos ⎝ ⎛⎭⎪⎫πx +π6-sin πx =cos πx cos π6-sin πx sin π6-sin πx=32cos πx -32sin πx =3sin ⎝ ⎛⎭⎪⎫π6-πx .当x ∈⎣⎢⎡⎦⎥⎤-12,13时,-π6≤π6-πx ≤2π3.所以-12≤sin ⎝ ⎛⎭⎪⎫π6-πx ≤1,故π6-πx =π2,即x =-13时,g (x )取得最大值3; 当π6-πx =-π6,即x =13时,g (x )取得最小值-3222.(本小题满分12分)已知f (x )=log 4(4x +1)+kx (k ∈R )为偶函数. (1)求k 的值;(2)若方程f (x )=log 4(a ·2x -a )有且只有一个根,求实数a 的取值范围. [解] (1)∵f (x )是偶函数,∴f (-x )=f (x ), 即log 4(4-x +1)-kx =log 4(4x +1)+kx ,化简得log 44-x +14x +1=2kx ,log 44-x =-x =2kx ,则有(2k +1)x =0.对任意的x ∈R 恒成立,于是有2k +1=0,k =-12.(2)∵f (x )=log 4(4x +1)-12x ,f (x )=log 4(a ·2x -a )有且只有一个根, ∴log 4(4x +1)-12x =log 4(a ·2x -a ), 即(1-a )(2x )2+a ·2x +1=0有唯一实根.令t =2x ,则关于t 的方程(1-a )t 2+at +1=0有唯一的正根.①当1-a =0即a =1时,方程(1-a )t 2+at +1=0,则t +1=0,即t =-1,不符合题意.②当1-a ≠0即a ≠1时,Δ=a 2-4(1-a )=a 2+4a -4=(a +2)2-8. 若Δ=0,则a =-2±22, 此时,t =a2(a -1).当a =-2+22时,则有t =a2(a -1)<0,方程(1-a )t 2+at +1=0无正根,不符合题意;当a =-2-22时,则有t =a 2(a -1)>0,且a ·2x-a =a (t -1)=a ·⎣⎢⎡⎦⎥⎤a 2(a -1)-1=a (2-a )2(a -1)>0,方程(1-a )t 2+at +1=0有两个相等的正根,符合题意.若Δ>0,则方程(1-a )t 2+at +1=0有两个不相等的实根,则只需其中有一正根即可满足题意.于是有⎩⎪⎨⎪⎧Δ>0,11-a <0,由此解得a >1.综上所述,a >1或a =-2-2 2.。
人教A版高中高一数学必修一综合测试卷姓名:班级:学号:时间:120分钟满分:150分一、单选题(每小题5分,共60分)1.(5分)已知集合A={y|y=﹣1},B={x|2x≤4},则A∩B=()A.[0,2]B.[﹣1,2]C.[﹣1,+∞)D.(﹣∞,2] 2.(5分)下列函数为奇函数的是()A.y=sin|x|B.y=|sin x|C.y=cos x D.y=e x﹣e﹣x 3.(5分)已知集合A={x|x2﹣x﹣2=0},B={x|x2=1},则A∩B=()A.{﹣1}B.{﹣1,1}C.{﹣1,2}D.{2}4.(5分)已知集合A={x|x﹣1<0},B={x|x2﹣5x﹣6<0},则A∪B=()A.(﹣∞,1)B.(﹣6,1)C.(﹣1,1)D.(﹣∞,6)5.(5分)若0<a<b<1,则a b,b a,log b a,的大小关系为()A.B.C.D.6.(5分)函数f(x)=sinωx+cosωx﹣1(ω>0)的最小正周期是π,则函数f(x)在区间[0,100]上的零点个数为()A.31B.32C.63D.647.(5分)已知偶函数f(x)满足f(4+x)=f(4﹣x),且当x∈(0,4]时,f(x)=,关于x的不等式f2(x)﹣af(x)>0在[﹣40,40]上有且只有60个整数解,则实数a的取值范围是()A.[,ln2)B.(,ln2)C.[,)D.(,)8.(5分)已知函数f(x)=,若函数g(x)=f(f(x))恰有8个零点,则a的值不可能为()A.8B.9C.10D.129.(5分)已知函数若函数y=f(x)﹣a至多有2个零点,则a的取值范围是()A.B.C.(﹣1,1﹣)D.[1,1+e]10.(5分)已知函数f(x)=x+(其中0<a≤1),g(x)=x﹣lnx,若对任意x1,x2∈[l,e],f(x1)≥g(x2)恒成立,则实数a的取值范围为()A.(0,1)B.(1﹣,1]C.(0,e﹣2]D.[e﹣2,1] 11.(5分)已知函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=1﹣|x|,又,则函数F(x)=g(x)﹣f(x)在区间[﹣2017,2017]上零点的个数为()A.2015B.2016C.2017D.201812.(5分)对任意x∈R,不等式2|sin x|+|sin x﹣a|≥a2恒成立,则实数a的取值范围是()A.0≤a≤1B.﹣1≤a≤1C.﹣1≤a≤2D.﹣2≤a≤2二、填空题(每小题5分,共20分)13.(5分)已知定义在R上的函数f(x)满足f(1+x)=﹣f(3﹣x),且f(x)的图象与g (x)=lg的图象有四个交点,则这四个交点的横纵坐标之和等于.14.(5分)2020年年初,新冠肺炎疫情袭击全国.口罩成为重要的抗疫物资,为了确保口罩供应,某工厂口罩生产线高速运转,工人加班加点生产,设该工厂连续5天生产的口罩数依次为x1,x2,x3,x4,x5(单位:十万只),若这组数据x1,x2,x3,x4,x5的方差为1.44,且x12,x22,x32,x42,x52的平均数为4,则该工厂这5天平均每天生产口罩十万只.15.(5分)已知正实数x,y,z,则A=max的最小值为;B =max{x,}+max{y,}+max{z,}的最小值为.16.(5分)已知函数,且对于任意的x1,,x1≠x2,|f(x1)﹣f(x2)|<λ|x1﹣x2|恒成立,则λ的取值范围是.三、解答题(每小题14分,共70分)17.(14分)已知函数f(x)是定义在R上的奇函数,当x>0时,.(1)求函数f(x)在R上的解析式;(2)用单调性定义证明函数f(x)在区间上是增函数.18.(14分)已知函数f(x)=|2x﹣1|+|x+1|.(1)解不等式f(x)≥2;(2)记函数f(x)的最小值为m,若a,b为正实数,且3a+2b=2m,求的最小值.19.(14分)已知函数f(x)=+lg.(1)判断并证明函数f(x)的单调性;(2)解关于x的不等式f(x(3﹣x))﹣1﹣lg3>0.20.(14分)已知函数f(x)=3x﹣a•3﹣x,其中a为实常数;(1)若f(0)=7,解关于x的方程f(x)=5;(2)判断函数f(x)的奇偶性,并说明理由.21.(14分)已知函数f(x)=﹣x2+2|x﹣a|.(1)若a=,求函数y=f(x)的单调增区间;(2)当a>0时,解不等式f(x)>﹣ax;(3)当a>0时,若对任意的x∈[0,+∞),不等式f(x﹣1)≥2f(x)恒成立,求实数a 的取值范围.参考答案一、单选题1.B2.D3.A4.D5.B6.C7.C8.A9.B 10.D 11.C 12.B二、填空题13.814.1.6.15.(2,+∞).三、解答题17.解:(1)设x<0,则﹣x>0,由x>0时,可知,,又f(x)为奇函数,故,∴函数f(x)在R上的解析式为;(2)证明:设,则=,∵,∴,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),∴函数f(x)在区间上是增函数,得证.18.解:(1),∴f(x)≥2等价于或或,∴x≤﹣1或﹣1<x≤0或,∴不等式的解集为;(2)由可知,∴3a+2b=3,∵a>0,b>0,∴,∴当且仅当时取得最小值为8.19.解:(1)f(x)的定义域为(0,4),f(x)在(0,4)上单调递减,证明如下:设0<x1<x2<4,则:=,∵0<x1<x2<4,∴x2﹣x1>0,x1x2>0,4﹣x1>4﹣x2>0,,∴,,,∴f(x1)>f(x2),∴f(x)在(0,4)上单调递减;(2)∵f(1)=1+lg3,由得,,∵f(x)在(0,4)上单调递减,∴,解得0<x<1或2<x<3,∴原不等式的解集为(0,1)∪(2,3).20.解:(1)由f(0)=7,即1﹣a=7,可得a=﹣6,那么3x+6•3﹣x=5,∴(3x﹣2)(3x﹣3)=0,解得x=1或x=log32.(2)由f(﹣x)=﹣a•3x+3﹣x,当a=﹣1时,可得f(﹣x)=f(x)此时f(x)是偶函数,当a=1时,f(﹣x)=﹣f(x)此时f(x)是奇函数,当a≠±1时,f(x)是非奇非偶函数.21.解:(1)若a=,则f(x)=﹣x2+2|x﹣|=,当x<时,y=﹣(x+1)2+2,可得增区间为(﹣∞,﹣1);当x≥时,y=﹣(x﹣1)2,可得增区间为(,1),综上可得,函数f(x)的增区间为(﹣∞,﹣1)和(,1);(2)不等式f(x)>﹣ax即为2|x﹣a|>x2﹣ax(a>0),可得2x﹣2a>x2﹣ax或2x﹣2a<ax﹣x2,即为(x﹣2)(x﹣a)<0或(x+2)(x﹣a)<0,当a>2时,﹣2<x<a;当0<a<2时,﹣2<x<a或a<x<2;当a=2时,﹣2<x<2,综上可得,当a≥2时,不等式的解集为(﹣2,a];当0<a<2时,不等式的解集为(﹣2,a)∪(a,2);(3)f(x﹣1)≥2f(x)⇒﹣(x﹣1)2+2|x﹣1﹣a|≥﹣2x2+4|x﹣a|⇒4|x﹣a|﹣2|x﹣(a+1)|≤x2+2x﹣1对x≥0恒成立,由a>0,可分如下几种情况讨论:①0≤x≤a时,﹣4(x﹣a)+2[x﹣(a+1)]≤x2+2x﹣1即x2+4x+1﹣2a≥0对x∈[0,a]恒成立,由g(x)=x2+4x+1﹣2a在[0,a]上递增,则g(0)取得最小值,所以只需g(0)≥0,可得a≤,又a>0,则0<a≤;②a<x≤a+1时,4(x﹣a)+2[x﹣(a+1]≤x2+2x﹣1,可得x2﹣4x+1+6a≥0对x∈[a,a+1]恒成立,由①可得h(x)=x2﹣4x=1+6a在[a,a+1]递减,所以只需h(a+1)≥0即a2+4a﹣2≥0,可得a≥﹣2或a≤﹣2﹣,由﹣2<,由①可得﹣2≤a≤;③x>a+1时,4(x﹣a)﹣2[x﹣(a+1)]≤x2+2x﹣1即x2+2a﹣3≥0对x∈(a+1,+∞)恒成立,由函数k(x)=x2+2a﹣3在(a+1,+∞)递增,所以只需k(a+1)≥0,即a2+4a﹣2≥0,解得a≥﹣2+或a≤﹣2﹣,由②可得﹣2≤a≤;综上可得,a的范围是[﹣2,].。
人教A版高中数学必修一综合检测试卷(含解析)综合检测时间:120分钟满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设全集I={x|-3<x<3,x∈Z},A={1,2},B={-2,-1,2},则A∪∁IB等于( ) A.{1}B.{1,2} C.{2} D.{0,1,2} 解析:∵x∈Z,∴I={-2,-1,0,1,2} ∴∁IB={0,1} ∴A∪∁IB={0,1,2}.答案:D 2.函数y=1x+log2(x +3)的定义域是( ) A.R B.(-3,+∞) C.(-∞,-3) D.(-3,0)∪(0,+∞) 解析:函数定义域x≠0x+3>0∴-3<x<0或x>0. 答案:D 3.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A.y=1x B.y=e-x C.y=-x2+1 D.y=lg |x| 解析:偶函数的有C、D两项,当x>0时,y=lg |x|单调递增,故选C. 答案:C 4.设x0是方程ln x+x=4的解,则x0属于区间( ) A.(0,1) B.(1,2) C.(2,3) D.(3,4) 解析:设f(x)=ln x+x-4,则有f(1)=ln 1+1-4=-3<0.f(2)=ln 2+2-4= ln 2-2<1-2=-1<0,f(3)=ln 3+3-4=ln 3-1>1-1=0. ∴x0∈(2,3).答案:C 5.3log34-27 -lg 0.01+ln e3=( ) A.14 B.0 C.1 D.6 解析:原式=4-3272-lg 0.01+3=7--lg 10-2=9-9=0. 答案:B 6.若y=log3x的反函数是y=g(x),则g(-1)=( ) A.3 B.-3 C.13 D.-13 解析:由题设可知g(x)=3x,∴g(-1)=3-1=13. 答案:C 7.若实数x,y满足|x|-ln1y=0,则y关于x的函数的图象大致是( ) 解析:由|x|=ln1y,则y=1ex,x≥0ex,x<0. 答案:B 8.已知f(x)=log x,g(x)=2x-1,则函数y=f(x)-g(x)的零点个数为( ) A.0 B.1 C.2 D.不确定解析:在同一坐标系中作函数f(x),g(x)的图象(图略),从而判断两函数交点个数.答案:B 9.函数f(x)=--的零点的个数为( ) A.0 B.1 C.2 D.3 解析:函数的定义域为{x|x≠1},当x>1时f(x)<0,当x<1时f(x)>0,所以函数没有零点,故选A. 答案:A 10.某新品牌电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售700台,则下列函数模型中能较好地反映销量y与投放市场月数x之间的关系的是( ) A.y=100x B.y=50x2-50x+100 C.y=50×2x D.y=100log2x+100 解析:代入验证即可.答案:B 11.若f(x)=ax3+ax+2(a≠0)在[-6,6]上满足f(-6)>1,f(6)<1,则方程f(x)=1在[-6,6]内的解的个数为( ) A.1 B.2 C.3 D.4 解析:设g(x)=f(x)-1,则由f(-6)>1,f(6)<1得[f(-6)-1][f(6)-1]<0,即g(-6)g(6)<0. 因此g(x)=f(x)-1在(-6,6)有一个零点.由于g(x)=ax3+ax+1(a≠0),易知当a>0时g(x)单调递增;当a<0时,g(x)单调递减,即函数g(x)为单调函数,故g(x)仅有一个零点.因此方程f(x)=1仅有一个根.故选A. 答案:A 12.某公司在甲、乙两地销售一种品牌车,利润(单价:万元)分别为L1=5.06x -0.15x2和L2=2x,其中x为销售量(单位:辆),若该公司在两地共销售15辆车,则能获得的最大利润为( ) A.45.666万元 B.45.6万元 C.45.56万元 D.45.51万元解析:设在甲地销售x辆,在乙地则销售(15-x)辆,∴总利润S=5.06x-0.15x2+2(15-x) =-0.15x2+3.06x+30(0≤x≤15) ∴当x=10时,S有最大值45.6万元.答案:B 二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上) 13.已知f(x)是定义在R上的偶函数,且当x>0时,f(x)=2x-3,则f(-2)=________. 解析:∵f(x)为定义在R上的偶函数,∴f(-x)=f(x),∴f(-2)=f(2)=22-3=1. 答案:1 14.已知集合A={x|ax2-3x+2=0}至多有一个元素,则a的取值范围为________.解析:集合A有为∅和A中只有一个元素两种情况, a=0时,A={23}满足题意,a≠0时,则由Δ=9-8a≤0得a≥98. 答案:a≥98或a=0 15.用二分法求方程ln x=1x在[1,2]上的近似解时,取中点c=1.5,则下一个有根区间为________.解析:令f(x)=ln x-1x,则f(1)=-1<0,f(2)=ln 2-12=ln 2-ln e12>0, f(1.5)=f(32)=ln32-23=ln32-ln e23 e23=3e2>32,∴ln e23>ln32,即f(1.5)<0. ∴下一个有根区间为(1.5,2).答案:(1.5,2) 16. 给出下列四个命题:①a>0且a≠1时函数y=logaax与函数y=alogax表示同一个函数.②奇函数的图象一定通过直角坐标系的原点.③函数y=3(x-1)2的图象可由y=3x2的图象向右平移1个单位得到.④若函数f(x)的定义域为[0,2],则函数f(2x)定义域为[0,4].其中正确命题的序号是________(填上所有正确命题的序号) 解析:①两函数定义域不同,y =logaax定义域为R,y=alogax定义域(0,+∞).②如果函数在x=0处没有定义,图象就不过原点,如y=1x. ③正确.④f(x)定义域[0,2]∴f(2x)定义域0≤2x≤2即0≤x≤1,∴f(2x)定义域为[0,1].答案:③ 三、解答题(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知A={x|x2+2x-8=0}, B={x|log2(x2-5x+8)=1}, C={x|x2-ax+a2-19=0}.若A∩C=∅,B∩C≠∅,求a的值.解析:A={2,-4},B={2,3},由A∩C=∅知2∉C,-4∉C,又由B∩C≠∅知3∈C,∴32-3a+a2-19=0解得a=-2或a=5,当a=-2时,C={3,-5},满足A∩C=∅,当a=5时,C={3,2},A∩C={2}≠∅,(舍去),∴a=-2. 18.(本小题满分12分)已知函数f(x)=ax2+bx+1(a,b为实数,a≠0,x∈R) (1)当函数f(x)的图象过点(-1,0),且方程f(x)=0有且只有一个根,求f(x)的表达式. (2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围.解析:(1)因为f(-1)=0,所以a-b+1=0 因为方程f(x)=0有且只有一个根,∴Δ=b2-4a=0,∴b2-4(b-1)=0,即b=2,a=1,∴f(x)=(x+1)2. (2)∵g(x)=f(x)-kx=x2+2x+1-kx =x2-(k-2)x+1 =(x-k-22)2+1--当k-22≥2或k-22≤-2时即k≥6或k≤-2时,g(x)是单调函数. 19.(本小题满分12分)已知f(x)是定义在(0,+∞)上的增函数,且对任意x,y∈(0,+∞),都有f(xy)=f(x)-f(y). (1)求f(1)的值; (2)若f(6)=1,解不等式f(x+3)+f1x≤2. 解析:(1)∵f(x)是(0,+∞)上的增函数,且对任意x,y∈(0,+∞),都有f xy=f(x)-f(y),∴f(1)=f(11)=f(1)-f(1)=0. (2)若f(6)=1,则f(x+3)+f 1x≤2=1+1=f(6)+f(6),∴f(x+3)-f(6)≤f (6)-f 1x,即f x+36≤f(6x),∴0<x+36≤6x,解得x≥335. ∴原不等式的解集为{x|x≥335}. 20.(本小题满分12分)已知函数f(x)=mx+n1+x2是定义在(-1,1)上的奇函数,且f(12)=25. (1)求实数m,n的值; (2)用定义证明f(x)在(-1,1)上为增函数; (3)解关于t的不等式f(t-1)+f(t)<0. 解析:(1)∵f(x)为奇函数,∴f(-x)=-f(x),即-+n1+-=-mx+n1+x2. ∴n=0. 又∵f12=12m1+122=25,∴m=1.(2)由(1)得,f(x)=x1+x2. 设-1<x1<x2<1,则f(x1)-f(x2) =x11+x21-x21+x22=+-+++=--++-1<x1<x2<1,∴x1-x2<0,1-x1x2>0,1+x21>0,1+x22>0,∴f(x1)-f(x2)<0. ∴f(x)在(-1,1)上为增函数.(3)∵f(x)是定义在(-1,1)上的奇函数,由f(t-1)+f(t)<0,得f(t)<-f(t-1)=f(1-t).又∵f(x)在(-1,1)上为增函数,∴-1<t<1,-1<1-t<1,t<1-t,解得0<t<12. 21.(本小题满分13分)某医疗研究所开发了一种新药,如果成人按规定的剂量服用,则服药后每毫升血液中的含药量y与时间t之间近似满足如图所示的曲线. (1)写出服药后y 与t之间的函数关系式; (2)据测定,每毫升血液中含药量不少于4μg时治疗痢疾有效.假设某病人一天中第一次服药时间为上午7:00,问一天中怎样安排服药时间(共4次)效果更佳?解析:(1)依题意,得y=6t,0≤t≤1,-23t+203,1<t≤10. (2)设第二次服药在第一次服药后t1小时,则-23t1+203=4. 解得t1=4,因而第二次服药应在11:00. 设第三次服药在第一次服药后t2小时,则此时血液中含药量应为前两次服药后的含药量的和,即-23t2+203-23(t2-4)+203=4. 解得t2=9小时,故第三次服药应在16:00. 设第四次服药在第一次服药后t3小时(t3>10),则此时第一次服进的药已吸收完,血液中含药量为第二、三次的和,即-23(t3-4)+203-23(t3-9)+203=4. 解得t3=13.5小时,故第四次服药应在20:30. 22.(本小题满分13分)已知函数f(x)定义域为[-1,1],若对于任意的x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0, (1)证明: f(x)为奇函数; (2)证明:f(x)在[-1,1]上是增加的. (3)设f(1)=1,若f(x)<m-2am+2,对所有x∈[-1,1],a∈[-1,1]恒成立,求实数m的取值范围.解析:(1)令x=y=0,∴f(0)=0 令y=-x,f(x)+f(-x)=0 ∴f(-x)=-f(x),∴f(x)为奇函数.(2)∵f(x)是定义在[-1,1]上的奇函数,令-1≤x1<x2≤1,则f(x2)-f(x1)=f(x2-x1)>0,∴f(x)在[-1,1]上是增加的. (3)f(x)在[-1,1]上是增加的,f(x)max=f(1)=1,使f(x)<m-2am+2对所有x∈[-1,1]恒成立,只要m-2am+2>1,即m-2am+1>0,令g(a)=m-2am+1=-2am+m+1,要使g(a)>0时,a∈[-1,1]恒成立,则-,,即1+3m>0,1-m>0,∴-13<m<1. ∴实数m的取值范围是(-13,1).。
高一数学必修一综合提高测试题
一、单项选择题(每小题5分,共10题,共50分)
1、设集合A={1,2}, B={1,2,3}, C={2,3,4},则=⋃⋂C B A )(( )
A.{1,2,3}
B.{1,2,4}
C.{2,3,4}
D.{1,2,3,4}
2、设函数⎩
⎨⎧<≥+=0,0,1)(2x x x x x f ,则[])2(-f f 的值为 ( ) A.1 B.2 C.3 D.4
3、已知()f x 是偶函数,它在[)0,+∞上是减函数,若()()lg 1f x f >,则x 的取值范围是( ) A.1,110⎛⎫ ⎪⎝⎭ B. ()10,1,10⎛⎫+∞ ⎪⎝⎭ C. 1,1010⎛⎫ ⎪⎝⎭ D. ()()0,110,+∞
4、函数()412
x x f x +=的图象( ) A. 关于原点对称 B. 关于直线y x =对称 C. 关于x 轴对称
D. 关于y 轴对称
5、已知集合M 满足{}1,2M ⊆{}1,2,3,4,51那么这样的集合M 有( )
A. 5个
B. 6个
C. 7个
D. 8个
6、若定义运算b
a b a b a a b <⎧⊕=⎨≥⎩,则函数()212
log log f x x x =⊕的值域是( ) A [)0,+∞ B (]0,1 C [)1,+∞ D R
7、若f(x)是偶函数,其定义域为(—∞,+∞),且在[0,+∞)上是减函数,则 ⎪⎭⎫ ⎝⎛-23f 与⎪⎭
⎫ ⎝⎛25f 的大小关系是( ) A.⎪⎭⎫ ⎝⎛>⎪⎭⎫ ⎝⎛-2523f f B.⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-2523f f C.⎪⎭
⎫ ⎝⎛<⎪⎭⎫ ⎝⎛-2523f f D.不能确定 8.方程2x =2-x 的根所在区间是( ).
A .(-1,0)
B .(2,3)
C .(1,2)
D .(0,1)
9.若()2log 1log 20a a a a +<<,则a 的取值范围是 ( )
A 、01a <<
B 、112a <<
C 、102
a << D 、1a > 10、如果定义在),0()0,(+∞-∞ 上的奇函数f(x),在(0,+∞)内是减函数,又有f(3)=0,则 0)(<⋅x f x 的解集为( )
A.{x|-3<x<0或x>3}
B. {x|x<-3或0<x<3}
C. {x|-3<x<0或0<x<3}
D. {x|x<-3或x>3}
二、填空题(每小题5分,共4题,共20分)
11、函数1
4)(-+=x x x f 的定义域为_____________ 12.若f (x )=(a -2)x 2+(a -1)x +3是偶函数,则函数f (x )的增区间是 .
13、设集合{}{}1212|,23|+≤≤-=≤≤-=k x k x B x x A 且B A ⊇,则实数k 的取值范围是
___________________
14若)10(15
3log ≠><a a a 且,则实数a 的取值范围是___________________ 三、 解答题(每题10分,共8题,共80分)
15、已知集合{|121}A x a x a =-<<+,{|01}B x x =<<,若A B =∅,求实数a 的取值范
围。
16、计算:(1)8log 932log 2log 2333+- (2)232
021)5.1()833()6.9()412(--+---
17、已知函数()212
log y x ax a =--在区间(),13-∞-内是增函数,求实数a 的取值范围.
18、已知函数()()2lg 21f x ax x =++. (1) 若函数()f x 的定义域为R ,求实数a 的取值范围;
(2)若函数()f x 的值域为R ,求实数a 的取值范围
19、已知函数f (x )=2|x +1|+ax (x ∈R ).
(1)证明:当 a >2时,f (x )在 R 上是增函数. (2)若函数f (x )存在两个零点,求a 的取值范围.
20、已知1
222)(+-+⋅=x x a a x f )(R x ∈,若)(x f 满足)()(x f x f -=-, (1)求实数a 的值; (2)判断函数的单调性,并加以证明。
21、若)(x f 满足任意)0,(,≠y x y x 都有)()(y f x f y x f -=⎪⎪⎭
⎫ ⎝⎛ (1)求)1(f 的值 (2))(x f 是定义在),0(+∞上的增函数,求不等式f(x-1)<0 (3))(x f 是定义在R 上的函数,判断)(x f 的奇偶性
22、已知函数()24(0)2(0)12(0)x x f x x x x ⎧->⎪==⎨⎪-<⎩,(1)画出函数()f x 图像; (2)求()()()
21(),3f a a R f f +∈的值;(3)当43x -≤<时,求()f x 取值的集合.。