推荐学习K12河北省衡水市武邑县七年级数学上册 第二章 2.1 整式课时练 (新版)新人教版
- 格式:doc
- 大小:250.00 KB
- 文档页数:5
人教版七年级上册数学《2.1整式》课时练(含答案)一、选择题1.单项式﹣3x3y的次数为()A.﹣3B.1C.3D.42.下列说法中正确的是()A.5不是单项式B.是单项式C.x2y的系数是0D.是整式3.多项式:2x2+5x2y﹣y2﹣3的次数和常数项分别是()A.2和﹣3B.3和﹣3C.4和3D.3和3 4.单项式:的系数和次数分别是()A.2和5B.和6C.和5D.和6 5.下列结论中正确的是()A.的系数是,次数是4B.单项式m的次数为1,没有系数C.单项式﹣xy2z的系数为﹣1,次数为4D.多项式2x2+xy﹣3是四次三项式6.下面对单项式﹣m2描述正确的是()A.﹣m的平方B.m的平方的相反数C.m与2的积的相反数D.m的相反数的平方7.下列说法错误的是()A.0是单项式B.单项式﹣n的系数是﹣1C.单项式﹣的次数是9D.+2是三次二项式8.关于多项式x2+y2﹣1的项数及次数,下列说法正确的是()A.项数是2,次数是2B.项数是2,次数是4C.项数是3,次数是2D.项数是3,次数是49.在代数式﹣中,单项式有()A.6个B.5个C.4个D.3个10.式子﹣7,x,m2+,x2y+5,,﹣5ab3c2,中,整式的个数是()A.7个B.6个C.5个D.4个二、填空题11.多项式中的一次项系数是.12.多项式﹣2x2y+x3y2﹣1+xy3按字母x的降幂排列是.13.关于x的多项式(a﹣4)x3﹣x b﹣x﹣b是二次三项式,则a=,b=.14.在①1﹣a;②;③;④﹣;⑤;⑥(x+1)(x+2)=0中,是整式.(填写序号)15.当k=时,代数式x2+|3k|xy﹣4y2﹣xy﹣8中不含xy项.三、解答题16.已知多项式﹣5x2a+1y2﹣x3y3+x4y.(1)求多项式中各项的系数和次数;(2)若多项式是7次多项式,求a的值.17.已知﹣5x3y|a|﹣(a﹣4)x﹣6是关于x、y的七次三项式,求a2﹣2a+1的值.18.写出下列各单项式的系数和次数:30a﹣x3y ab2c3πr2系数次数19.(1)把下列各整式填入相应的圈里:ab+c,2m,ax2+c,﹣ab2c,a,0,﹣,y+2.(2)把能用一副三角尺直接画出(或利用其角的加减可画出)的角的度数从左边框内挑出写入右边框内.参考答案一、选择题1.D2.D3.B4.B5.C6.B7.C8.C9.D10.C 二.填空题(共5小题)11.﹣12.x3y2﹣2x2y+xy3﹣1.13.4;2.14.①②④.15.±.三.解答题(共4小题)16.解:(1)﹣5x2a+1y2的系数是﹣5,次数是2a+3;﹣x3y3的系数是:,次数是6;x4y的系数是:,次数是5;(2)由多项式的次数是7,可知﹣5x2a+1y2的次数是7,即2a+3=7,解得:a=2.17.解:∵﹣5x3y|a|﹣(a﹣4)x﹣6是关于x、y的七次三项式,∴3+|a|=7,a﹣4≠0,解得:a=﹣4,故a2﹣2a+1=(a﹣1)2=25.18.解:30a的系数是30,次数是a的指数1;﹣x3的系数是﹣1,次数是x的指数3;y的系数是1,次数是y的指数1;ab2c3的系数是1,次数是1+2+3=6;﹣的系数是﹣,次数是a的指数3+1=4;πr2的系数是π,次数是r的指数2;故答案是:30a﹣x3y ab2c3πr2系数30﹣111﹣π次数131642 19.解:(1)在整式中不含有加减的为单向式,含有加减的为多项式.则单项式:2m,﹣ab2c,a,0,﹣;多项式:ab+c,ax2+c,y+2;。
2.1整式 第二课时测试题一、 选择题1. 如果12221--n b a 是五次单项式,则n 的值为( )A. 1B. 2C. 3D. 42. 多项式41232--+y xy x 是( )A. 三次三项式B. 二次四项式C. 三次四项式D. 二次三项式3. 多项式23332--xy y x 的次数和项数分别为( )A. 5,3B. 5,2C. 2,3D. 3,34. 对于单项式22r π-的系数、次数分别为( )A. -2,2B. -2,3C. 2,2π-D. 3,2π-5. 下列说法中正确的是( )A. 3223x x x -+-是六次三项式B. 211x x x --是二次三项式 C. 5222+-x x 是五次三项式 D. 125245-+-y x x 是六次三项式6. 下列式子中不是整式的是( )A. x 23-B.aba 2- C. y x 512+ D. 0 7. 下列说法中正确的是( )A. -5,a 不是单项式B. 2abc-的系数是-2 C. 322y x -的系数是31-,次数是4 D. y x 2的系数为0,次数为28. 下列用语言叙述式子“3--a ”所表示的数量关系,错误的是( )A. a -与-3的和B. -a 与3的差C. -a 与3的和的相反数D. -3与a 的差9. 若甲数为x ,甲数是乙数的3倍,则乙数为( ) A. 3xB. x +3C.13x D. x -310. .小亮从一列火车的第m 节车厢数起,一直数到第n 节车厢(n>m ),他数过的车厢节数是( )A. m+nB. n-mC. n-m-1D. n-m+1 二、 填空题11. 下列各式 -41,3xy ,a 2-b 2,53yx -,2x >1,-x ,0.5+x 中,是整式的是 ,是单项式的是 ,是多项式的 。
12. a 3b 2c 的系数是 ,次数是 。
13. 如果222z y x m -的次数与单项式345.3b a 的次数相同,则=m 。
人教版七年级上册数学第二章 2.1整式课时精练(附答案)一、单选题1.下列说法错误的是()A. 的系数是,次数是B. 数字是单项式C. 是二次单项式D. 的系数是,次数是2.下列说法正确的是()A. 若,则B. 若,则C. 式子是七次三项式D. 是单项式3.单项式的系数和次数分别是()A. B. C. D.4.下列说法正确的个数有()①﹣0.5x2y3与5y2x3是同类项;②2π与﹣4不是同类项;③两个单项式的和一定是多项式;④单项式mn3的系数与次数之和为4.A. 0个B. 1个C. 2个D. 3个5.下列说法中,正确的是()A. 与的最简公分母是12x2B. 是单项式C. 任何数的0次幂都等于1D. 是最简分式6.若m>-1,则多项式m3-m2-m+1的值为()A. 正数B. 负数C. 非负数D. 非正数二、填空题7.多项式3x2y﹣2xy+1的二次项系数为________.8.单项式a2x的系数是________,多项式xy﹣pqx2+ p3+9的次数是________.9.若与都是三次多项式,是五次多项式,有下列说法:① 可能是六次多项式;② 一定是次数不高于三次的整式;③ 一定五次多项式;④ 一定是五次整式;⑤可能是常数.其中正确的是________.10.若多项式a2 +2kab-6与-6ab的和中不含ab项,则k=________.11.单项式与的次数相同,则的值为________.三、解答题12.按字母x的升幂排列:x2-2y2+3xy .13.小兵喜欢研究数学问题,在计算整式的加减(﹣4x2﹣7+5x)+(2x﹣3+3x2)的时候,想到了小学的列竖式加减法,令A=﹣4x2﹣7+5x,B=2x﹣3+3x2,然后将两个整式关于x进行降幂排列,A=﹣4x2+5x﹣7,B=3x2+2x﹣3,最后只要写出其各项系数对齐同类项进行竖式计算如下:所以,(﹣4x2﹣7+5x)+(2x﹣3+3x2)=﹣x2+7x﹣10若A=﹣4x2y2+2x3y﹣5xy3+2x4,B=3x3y+2x2y2﹣y4﹣4xy3,请你按照小兵的方法,先对整式A,B关于某个字母进行降幂排列,再写出其各项系数进行竖式计算A﹣B,并写出A﹣B值.14.已知多项式﹣26x2y m+1﹣3xy+ xy3﹣9是六次四项式,单项式2x2n y2的次数与这个多项式的次数相同,求3m+2n的值.15.已知有理数a和b满足多项式A,且A=(a﹣1)x5+x|b+2|﹣2x2+bx+b(b≠﹣2)是关于x的二次三项式,求(a﹣b)2的值.16.一个含有字母x ,y的五次单项式,x的指数为3,且当x=2,y=-1时,这个单项式的值是32,求这个单项式.答案一、单选题1. D2. B3. D4. A5. A6. C二、填空题7. -2 8. ;4 9. ②④ 10. 3 11. 4三、解答题12. -2y2+3xy+x2.解答:原式=x2-2y2+3xy,按字母x升幂排列为:-2y2+3xy+x213. 解:,,的各项系数为:,的各项系数为:,列竖式计算如下:,∴.14. 解:∵多项式﹣26x2y m+1﹣3xy+ xy3﹣9是六次四项式,单项式2x2n y2的次数与这个多项式的次数相同,∴6+2+m+1=6,2n+2=6,解得:m=﹣3,n=2,∴3m+2n=﹣515. 解:∵有理数a和b满足多项式A.A=(a﹣1)x5+x|b+2|﹣2x2+bx+b是关于x的二次三项式,∴a﹣1=0,解得:a=1.(1 )当|b+2|=2时,解得:b=0或b=4.①当b=0时,此时A不是二次三项式;②当b=﹣4时,此时A是关于x的二次三项式.(2 )当|b+2|=1时,解得:b=﹣1(舍)或b=﹣3.(3 )当|b+2|=0时,解得:b=﹣2(舍)∴a=1,b=﹣4或a=1,b=﹣3.当a=1,b=﹣4时,(a﹣b)2=25;当a=1,b=﹣3时,(a﹣b)2=1616. 4x3y2.解答:∵这一个含有字母x,y的五次单项式,x的指数为3,∴ y的指数为2,∴设这个单项式为:ax3y2,∵当x=2,y=-1时,这个单项式的值是32,∴ 8a=32 解得:a=4.故这个单项式为:4x3y2.。
七年级上册数学《第二章2.1 整式 》课后练习一、单选题1.在代数式2141,,42,,3235x y a mn b ---+中,多项式的个数是( ) A .4 B .3 C .2 D .12.单项式4223ab c -的系数与次数分别是( ) A .2,5- B .2,5 C .2,63- D .2,73- 3.多项式2213x -的常数项是( ) A .1B .1-C .13D .13- 4.下列代数式:20,,,,,2273a x x y m x x y +-++,其中单项式有m 个,多项式有n 个,整式有t 个,则m +n +t 等于( ) A .12B .13C .14D .15 5.多项式2435a b ab -+-的项为( )A .24,3a b ab -,5B .2435a b ab -+-C .24,3a b ab -,5-D .24,3a b ab ,56.将多项式232332a b b ab a +--按b 的降幂排列正确的是( )A .322223b ab a b a -+-B .322332a a b ab b +-+C .322332a a b ab b --+-D .322332a a b ab b -+-+7.在下列说法中,正确的是( ) A .单项式234a b -的系数是3-,次数是2 B .单项式m π的系数是1,次数是2 C .单项式822ab c 的系数是2,次数是12D .单项式225x y -的系数是25-,次数是3 8.下列说法中正确的有( ).(1)单项式a 既没有系数,也没有次数;(2)单项式8210xy ⨯的系数是2;(3)单项式m -的系数与次数都是1;(4)单项式2r π的系数是2π.A .1个B .2个C .3个D .4个 9.已知一组按规律排列的式子:4628,,,,357a a a a L ,则第2018个式子是( ) A .20182017a B .20184034a C .40364035a D .40344033a二、填空题10.已知单项式532y x a b +与2244x y a b --的和仍是单项式,则x y +=____.11.已知关于x 的多项式4323(5)(1)53x m x n x x -++--+不含3x 项和2x 项,则m =__________,n =__________.12.写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为_____.(写出一个即可)13.若多项式7223343m x y x y x y +-+是按字母x 降幂排列的,则m 的值是______. 14.单项式237a b π的系数是________,次数是________.15.有a 名男生和b 名女生在社区做义工,他们为建花坛搬砖.男生每人搬了40块,女生每人搬了30块,这a 名男生和b 名女生一共搬了____块砖(用含a 、b 的代数式表示) 16.下图是用棋子摆成的“小屋”,按照这样的方式摆下去,第6个这样的“小屋”需要______枚棋子.三、解答题17.若2312x y a b 与463a b 是同类项,求33333442y x y y x y --+的值.18.已知多项式2134331m x y x y x +-+--是五次四项式,且单项式233n m x y -与该多项式的次数相同.(1)求m ,n 的值; (2)把这个多项式按x 的降幂排列.19.把多项式321110.25 1.584m m m m x ax x b x -+--++(m 为大于3的正整数)按x 的降幂排列.20.把下列各多项式先按x 的降幂排列,再按x 的升幂排列.(1)243327x x x --+;(2)4423182x y xy x y -+-.21.(1)已知多项式x 2y m+1+xy 2-2x 3+8是六次四项式,单项式-x 3a y 5-m 的次数与多项式的次数相同,求m ,a 的值;(2)已知多项式mx 4+(m -2)x 3+(2n +1)x 2-3x +n 不含x 2和x 3的项,试写出这个多项式,再求当x =-1时多项式的值.22.阅读下列材料,并完成填空.你能比较20172018和20182017的大小吗?为了解决这个问题,先把问题一般化,比较n n +1和(n +1)n (n >0,且n 为整数)的大小.然后从分析n =1,n =2,n =3,…的简单情形入手,从中发现规律,经过归纳、猜想得出结论.(1)通过计算(可用计算器)比较下列①~⑦组两数的大小:(在横线上填上“>”“=”或“<”)①1221;②2332;③3443;④4554;⑤5665;⑥6776;⑦7887;(2)归纳第(1)问的结果,可以猜想出n n+1和(n+1)n的大小关系;(3)根据以上结论,可以得出20172018和20182017的大小关系.23.如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36…(1)表中第8行的最后一个数是_________,第8行共有_________个数;(2)用含n的代数式表示:第n行的第一个数是_________,最后一个数是________,第n 行共有_________个数.答案1.B2.D3.D4.A5.C6.A7.D8.A9.C10.1 11.-5 112.答案不唯一,如251x x -++ 13.4或3或214.7π 5 15.4030a b +16.35 17.40-.18.解(1)∵多项式2134331m x y x y x +-+--是五次四项式,∴2+m+1=5,∴m=2,又∵单项式233n m x y -与该多项式的次数相同,∴2n+3-m=5,∴n=2;(2)该多项式为:2334331x y x y x -+--,按x 的降幂排列为4323331x x y x y -+--.19.解∵m 为大于3的正整数,∴m+2>m>m-1>m-3,∴把多项式321110.25 1.584m m m m x ax x b x -+--++(m 为大于3的正整数)按x 的降幂排列为213111.50.2548m m m m ax x x b x +---+++. 20.解(1)按x 的降幂排列:432273x x x -++-,按x 的升幂排列:234372x x x -++-;(2)按x 的降幂排列:4324182x x y xy y -+-, 按x 的升幂排列:4234182y xy x y x -+-+. 21.解(1)由题意得:2+m +1=6,3a +5-m =6,解得:m =3,a =;(2)∵多项式m +(m -2)+(2n +1)-3x +n 不含x 2和x 3的项,∴m -2=0,2n +1=0,解得:m=2,n=-,即多项式为2-3x-,当x=-1时,原式=2+3-=4.22.解(1)①∵12=1,21=2,∴12<21;②∵23=8,32=9, ∴23<32;③∵34=81,43=64, ∴34>43;④∵45=1024,54=625, ∴45>54;∴⑤56>65;⑥67>76;⑦78>87;(2)当n=1或2时,n n+1<(n+1)n;当n>2时,n n+1>(n+1)n;(3) ∵2017>2,∴20172018>2018201723.解(1)∵第2行的最后一个数的4=22,第3行的最后一个数的9=32,第4行的最后一个数的16=42,第5行的最后一个数的25=52,…,依此类推,第8行的最后一个数的82=64,共有数的个数为:82﹣72=64﹣49=15,故答案为:64,15;(2)第(n﹣1)行的最后一个数是(n﹣1)2,所以,第n行的第一个数是(n﹣1)2+1,最后一个数是n2,第n行共有n2﹣(n﹣1)2=2n﹣1个数,故答案为:(n﹣1)2+1,n2,2n﹣1.。
新人教七年级上册第二章整式同步练习知识要点1.单项式:只含有数和字母的乘积的代数式叫做单项式.•单独的一个数或一个字母也是单项式.它的本质特征在于:(1)不含加减运算;(2)可以含乘、除、乘方运算,但分母中不能含有字母.2.单项式的次数、系数:一个单项式中,•所有字母的指数和叫做这个单项式的次数.单项式中的数字因数叫做这个单项式的系数.3.多项式:几个单项式的和叫做多项式.多项式中,•每个单项式叫做多项式的项,其中不含字母的项叫常数项.一个多项式中,次数最高的项的次数,叫做这个多项式的次数. 4.整式:单项和多项式统称整式.典型例题例.填空:(1)单项式-a2b2c3的系数是________,次数是___________.(2)单项式-245x yπ的系数是__________,次数是__________.(3)多项式5a3b2c-12abc2+4ab3-6ab-9•的次数是_______,•常数项是_______,•它是_____次______项式.分析:单项式的系数是指其数字因数,次数是其所含的所有字母的指数和;•多项式的次数是其中次数最高的项的次数.解:(1)-1,7;(2)-45π,3;(3)6,-9,6,5练习题一、选择题1.下列式子中不是整式的是()A.-23x B.a-2b=3 C.12x+5y D.02.下列式子:-abc2,3x+y,c,0,2a2+3b+1,x-x,2ab,6xy-.其中单项式有()A.3个 B.4个 C.5个 D.6个3.已知2x b-2是关于x的3次单项式,则b的值为()A.5 B.4 C.6 D.74.如果一个多项式的次数是5,那么这个多项式的任何一项的次数()A.都小于5 B.都等于5 C.都不小于5 D.都不大于5二、填空题5.单项式的次数是指__________,系数是指_________与____________统称为整式.6.已知m是关于x的六次多项式,n是关于x的四次多项式,则2m-n是x的_______次多项式.7.已知多项式3x m+(n-5)x-2是关于x•的二次三项式,•则m•、•n•应满足的条件是_________.8.观察下列算式:1×3+1=4=22,2×4+1=9=33,3×5+1=16=42,4×6+1=25=52,•……将你观察到的规律用等式表示出来是___________.三、解答题9.指出下列各单项式的系数和次数.(1)-12 xy2(2)-22a2bc (3)-32x2y3z10.写出系数是-2,只含有字母a、b的所有4次单项式.四、探究题11.有一串单项式:x,-2x2,3x3,-4x4,……,-10x10,……(1)请你写出第100个单项式;(2)请你写出第n个单项式.答案:1.B 2.B 3.A 4.D5.所有字母的指数和;单项式中的数字因数;单项式;多项式6.六 7.m=2,n≠5 8.n(n+2)+1=(n+1)2 9.①-12 ,3;②-4,4;③-32,6 10.略11.①-100x100;②(-1)n+1∩x n。
一、选择题1.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C 解析:C【分析】 分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.2.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a + A 解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元.故选A .【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键. 3.下列各对单项式中,属于同类项的是( )A .ab -与4abcB .213x y 与212xyC .0与3-D .3与a C解析:C【分析】根据同类项的定义逐个判断即可.【详解】A .﹣ab 与4abc 所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项;D .3与a 不是同类项.故选C .【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键.4.﹣(a ﹣b +c )变形后的结果是( ) A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B 解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.5.式子5x x-是( ). A .一次二项式B .二次二项式C .代数式D .都不是C 解析:C【分析】根据代数式以及整式的定义即可作出判断.【详解】 式子5x x-分母中含有未知数,因而不是整式,故A 、B 错误,是代数式,故C 正确. 故选:C .【点睛】 本题考查了代数式的定义,就是利用运算符号把数或字母连接而成的式子,单独的数或字母都是代数式.6.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差B .2倍的x 与1的差除以3的商C .x 与1的差的2倍除以3的商D .x 与1的差除以3的2倍B解析:B【分析】代数式表示分子与分母的商,分子是2倍的x 与1的差,据此即可判断.【详解】 代数式213x -的含义是2倍的x 与1的差除以3的商. 故选:B .【点睛】 本题考查了代数式,正确理解代数式表示的意义是关键.7.若252A x x =-+,256B x x =--,则A 与B 的大小关系是( )A .AB >B .A B =C .A B <D .无法确定A解析:A【分析】作差进行比较即可.【详解】解:因为A -B =(x 2-5x +2)-( x 2-5x -6)=x 2-5x +2- x 2+5x +6=8>0,所以A >B .故选A .【点睛】本题考查了整式的加减和作差比较法,若A -B >0,则A >B ,若A -B <0,则A <B ,若A -B =0,则A =B .8.多项式3336284a a x y x --+中,最高次项的系数和常数项分别为( )A .2和8B .4和8-C .6和8D .2-和8- D 解析:D【分析】根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,以及单项式系数、常数项的定义来解答.【详解】多项式6a-2a 3x 3y-8+4x 5中,最高次项的系数和常数项分别为-2,-8.故选D .【点睛】本题考查了同学们对多项式的项和次数定义的掌握情况.在处理此类题目时,经常用到以下知识:(1)单项式中的数字因数叫做这个单项式的系数;(2)多项式中不含字母的项叫常数项;(3)多项式里次数最高项的次数,叫做这个多项式的次数.9.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+31C 解析:C【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n (n+1)和12(n+1)(n+2),所以由正方形数可以推得n 的值,然后求得三角形数的值.【详解】∵A 中13不是“正方形数”;选项B 、D 中等式右侧并不是两个相邻“三角形数”之和. 故选:C .【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.10.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( )A .mB .nC .m n +D .m ,n 中较大者D 解析:D【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m ,n 均为自然数,而2m n +是常数项,据此即可确定选择项.【详解】因为2m n +是常数项,所以多项式2m n m n x x +-+的次数应该是,m n x x 中指数大的,即m ,n 中较大的,故答案选D.【点睛】本题考查的是多项式的次数,解题关键是确定2m n +是常数项.11.小明通常上学时走上坡路,通常的速度为m 千米时,放学回家时,原路返回,通常的速度为n 千米时,则小明上学和放学路上的平均速度为( )千米/时A .2m n +B .mn m n +C .2mn m n +D .m nn m + C 解析:C【分析】平均速度=总路程÷总时间,题中没有单程,可设从家到学校的单程为1,那么总路程为2.【详解】 解:依题意得:1122()2m n mn m n mn m n+÷+=÷=+. 故选:C .【点睛】本题考查了列代数式;解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1.12.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( )A .2B .﹣2C .3D .﹣3D 解析:D【分析】先将多项式合并同类型,由不含x 的二次项可列【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,∴6+2m=0,解得m =﹣3,故选:D .【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值.13.下面去括号正确的是( )A .2()2y x y y x y +--=+-B .2(35)610a a a a --=-+C .()y x y y x y ---=+-D .222()2x x y x x y +-+=-+ B 解析:B【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A. 2()2y x y y x y +--=--,故错误;B. 2(35)610a a a a --=-+,故正确;C. ()y x y y x y ---=++,故错误;D. 222()22x x y x x y +-+=-+,故错误;故选:B【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘;括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“一”,去括号后,括号里的各项都改变符号.14.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1A 解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5,故选:A .【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 15.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( )A .3B .﹣3C .1D .﹣1D 解析:D【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值.【详解】 解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩ ∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.16.如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A —B —C 为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为 ( )A .5次B .6次C .7次D .8次C解析:C【分析】 首先观察图形,得出一个完整的动作过后电子跳骚升高2个格,根据起始点为-5,终点为9,即可得出它需要跳的次数.【详解】解:由图形可得,一个完整的动作过后电子跳骚升高2个格,如果电子跳骚落到9的位置,则需要跳9(5)72--=次. 故选C .此题考查数字的规律变化,关键是仔细观察图形,得出一个完整的动作过后电子跳骚升高2个格,难度一般.17.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( ) A .2018B .2018-C .1009-D .1009C 解析:C【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于-12(n-1),n 是偶数时,结果等于-2n ,然后把n 的值代入进行计算即可得解. 【详解】解: 123450|01|1|12|1|13|2|24|2a a a a a ==-+=-=--+=-=--+=-=--+=-678|25|3|36|3|37|4a a a =--+=-=-+=-=--+=-⋯⋯∴201920181009a a ==-,故选择C【点睛】本题考查了数字变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.18.设a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式﹣x 3y 的系数和次数,则a ,b ,c ,d 四个数的和是( )A .1B .2C .3D .4D解析:D【分析】 根据题意求得a ,b ,c ,d 的值,代入求值即可.【详解】∵a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式-x 3y 的系数和次数, ∴a=0,b=1,c=-1,d=4,∴a ,b ,c ,d 四个数的和是4,故选:D .【点睛】本题考查了有理数、整式的加减以及单项式的系数和次数,,认真掌握有理数的分类是本题的关键;注意整数、0、正数之间的区别,0既不是正数也不是负数,但是整数. 19.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b c A .1,6,15a b c === B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c === B 解析:B【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可.【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=.故选:B .【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键. 20.下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( ) A .2个B .3个C .4个D .5个A解析:A几个单项式的和叫做多项式,结合各式进行判断即可.【详解】22a b ,3,2ab ,4,m -都是单项式; 2x yz x+分母含有字母,不是整式,不是多项式; 根据多项式的定义,232ab c xy y π--,是多项式,共有2个.故选:A .【点睛】本题考查了多项式,解答本题的关键是理解多项式的定义.注意:几个单项式的和叫做多项式.21.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-4B解析:B【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项, ∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩ 则()()5711n m +-=14- 故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.22.下列去括号正确的是( )A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ D 解析:D根据整式混合运算法则和去括号的法则计算各项即可.【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确;故答案为:D .【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键. 23.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 24.已知322x y 和m 2x y -是同类项,则式子4m 24-的值是( )A .21-B .12-C .36D .12B解析:B【分析】根据同类项定义得出m 3=,代入求解即可.【详解】解:∵322x y 和m 2x y -是同类项, ∴m 3=,∴4m 24432412-=⨯-=-,故选B .【点睛】本题考查了对同类项定义的应用,注意:所含字母相同,并且相同字母的指数也分别相等的项,叫同类项,常数也是同类项.25.已知5a b +=,4ab =,则代数式()()35834ab a b a ab +++-的值为( ) A .36B .40C .44D .46A解析:A【分析】原式去括号整理后,将已知等式代入计算即可求出值.【详解】∵a+b=5,ab=4,∴原式=3ab+5a+8b+3a−4ab=8(a+b)−ab=40−4=36,故选A.【点睛】本题考查的是代数式的求值,熟练掌握先化简再求值是解题的关键. 26.下列对代数式1a b-的描述,正确的是( ) A .a 与b 的相反数的差B .a 与b 的差的倒数C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数C解析:C【分析】根据代数式的意义逐项判断即可.【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误;B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b --,该选项错误. 故选:C .【点睛】此题主要考查列代数式,注意掌握代数式的意义.27.把有理数a 代入|a +4|﹣10得到a 1,称为第一次操作,再将a 1作为a 的值代入得到a 2,称为第二次操作,…,若a =23,经过第2020次操作后得到的是( ) A .﹣7B .﹣1C .5D .11A解析:A【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;第7次操作,a 7=|-7+4|-10=-7;…第2020次操作,a 2020=|-7+4|-10=-7.故选:A .【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.28.若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.29.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x -- C解析:C【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案.【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意;B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意;C 选项、333541x x x x -++-+-=3724x x -++,符合题意;D 选项、337322724x x x x x -+---=-+-,不符合题意.故选:C .【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题. 30.下列变形中,正确的是( )A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y = B 解析:B【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可.【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;故选:B.【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.。
第一章整式的加减2.1 整式第2课时单项式1.下列说法正确的是().A.a的系数是0 B.1y是一次单项式C.-5x的系数是5 D.0是单项式2.下列单项式书写不正确的有().①312a2b;②2x1y2;③-32x2;④-1a2b.A.1个B.2个C.3个D.4个3.“比a的32大1的数”用式子表示是().A.32a+1 B.23a+1 C.52a D.32a-14.下列式子表示不正确的是().A.m与5的积的平方记为5m2 B.a、b的平方差是a2-b2C.比m除以n的商小5的数是mn-5D.加上a等于b的数是b-a5.目前,财政部将证券交易印花税税率由原来的1‰(千分之一)•提高到3‰.如果税率提高后的某一天的交易额为a亿元,则该天的证券交易印花税(•交易印花税=印花税率×交易额)比按原税率计算增加了()亿元.A.a‰ B.2a‰C.3a‰ D.4a‰6.为了做一个试管架,在长为a(cm)(a>6)的木板上钻3个小孔(如图),每个小孔的直径为2cm,则x等于().A.3366...4444a a a acm B cm C cm D-+-+cm7.填写下表单项式-5 -ab 0.6x2y -57x45πa3b52m2n2系数次数8.若x2y n-1是五次单项式,则n=_______.9.针对药品市场价格不规范的现象,药监部门对部分药品的价格进行了调整,已知某药品原价为a元,经过调整后,药价降低了60%,则该药品调整后的价格为_______元.10.某班a名同学参加植树活动,其中男生b名(b<a),若只由男生完成,•每人需植树15株;若只由女生完成,则每人需植树________棵.11.小明在银行存a元钱,银行的月利率为0.25%,利息税为20%,6个月后小明可得利息________元.12.某音像公司对外出租光盘的收费方法是:每张光盘出租后的前2•天每天收费0.8元,以后每天收费0.5元,那么一张光盘在出租后第n天(n>•2,•且为整数)•应收费_______元.13.写出所有的含字母a、b、c且系数和次数都是5的单项式.14.列式表示:(1)某数x的平方的3倍与y的商;(2)比m的14多20%的数.15.某种商品进价m元/件.在销售旺季,该商品售价较进价高30%;销售旺季过后,又以7折(70%)的价格开展促销活动,这时一件商品的售价是多少元?16.观察图的点阵图形和与之相对应的等式,探究其中的规律:(1)请你在④和⑤后面的横线上分别写出相对应的等式;(2)通过猜想,写出与第n 个图形相对应的等式.参考答案:1.D 2.C 3.A 4.A 5.B 6.C7.-5,0;-1,2;0.6,3;-75,1;45π,4;52,4 8.4 9.0.4a 10.15b a b - 11.0.012a 12.1.6+0.5(n-2) 13.5abc 3,5ab 2c 2,5ab 3c ,5a 2bc 2,•5a 2b 2c ,5a 3bc •14.(1)23x y(2)0.3m 15.m×(1+30%)×70%=0.91m (元) 16.(1)4×3+1=4•×4-3,4×4+1=4×5-3 (2)4(n -1)+1=4n -3.通过练习可以检测同学们对知识的理解、掌握情况,提高应试能力。
一、解答题1.奇奇同学发现按下面的步骤进行运算,所得结果一定能被9整除.请你用我们学过的整式的知识解释这一现象.解析:见解析.【分析】设原来的两位数十位数字为a,个位数字为b,表示出原来两位数与新的两位数,相减得到结果,即可得出结果.【详解】解:设原来的两位数十位数字为a,个位数字为b,则原来两位数为10a+b,交换后的新两位数为10b+a,(10a+b)-(10b+a)=10a+b-10b-a=9a-9b=9(a-b),则这个结果一定是被9整除.【点睛】此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.==,等腰直角三角形BED的边2.如图,已知等腰直角三角形ACB的边AC BC a<,点C、B、E放置在一条直线上,联结AD.==,且a bBE DE b(1)求三角形ABD的面积;(2)如果点P是线段CE的中点,联结AP、DP得到三角形APD,求三角形APD的面积;(3)第(2)小题中的三角形APD与三角形ABD面积哪个较大?大多少?(结果都可用a、b代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】 (1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简. 3.生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为26cm ,宽为cm x ,分别回答下列问题:(1)为了保证能折成图④的形状(即纸条两端均超出点P ),试求P 的取值范围.(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P 的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M 与点P 的距离(用P 表示) 解析:(1) x <5.2(2) 13-1.5x【详解】分析:(1)按图中方式折叠后可得到除去两端,纸条使用的长度为5x ,那么纸条使用的长度应大于0,小于纸条总长度.(2)是轴对称图形,那么AM=AP+x .解答:解:(1)由折纸过程可知0<5x <26,∴0<x <5.2.(2)∵图④为轴对称图形,∴AM=2652x -+x=13-1.5x , 即点M 与点A 的距离是(13-1.5x )cm . 点评:本题考查学生的动手操作能力,难点是得到纸条除去两端使用的纸条的长度. 4.计算:(1)()223537a ab a ab -+-++;(2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭. 解析:(1)62ab --;(2)2321a a --+【分析】先去括号,然后合并同类项即可.【详解】解:(1)()223537a ab a ab -+-++ 223537a ab a ab =-+---2ab =-6-;(2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭ 2222261a a a a =+--+2321a a =--+.【点睛】本题考查了整式的加减运算,熟记去括号法则和合并同类项的法则是解决此题的关键. 5.有这样一道题,计算()()4322433222422x x y x y x x y y x y -----+的值,其中0.25x =,1y =-;甲同学把“0.25x =”,错抄成“0.25x =-”,但他的计算结果也是正确的,你说这是为什么?解析:化简后为32y ,与x 无关. 【分析】原式去括号合并得到最简结果中不含x ,可得出x 的取值对结果没有影响.【详解】解:()()4322433222422x x y x y x x y y x y -----+=43224332224242x x y x y x x y y x y ---+++=32y ,原式化简后为32y ,跟x 的取值没有关系.因此不会影响计算结果.【点睛】本题考查了整式的加减——化简求值,正确的将原式去括号合并同类项是解决此题的关键.6.日历上的规律:下图是2020年元月的日历,图中的阴影区域是在日历中选取的一块九宫格.(1)九宫格中,四个角上的四个数之和与九宫格中央这个数有什么关系?(2)请你自选一块九宫格进行计算,观察四个角上的四个数之和与九宫格中央那个数是否还有这种关系.(3)试说明原理.解析:(1)四个角上的四个数之和等于九宫格中央这个数的4倍;(2)四个角上的四个数之和等于九宫格中央这个数的4倍,选取九宫格见解析;(3)见解析.【分析】(1)求出四个角上的四个数之和与九宫格中央这个数,从而验证它们的关系. (2)选择如下图的九宫格,验证他们的关系即可.(3)设九宫格中央这个数为a ,列等式进行验证即可.【详解】(1)四个角上的四个数之和等于九宫格中央这个数的4倍.理由如下:6228202828414+++=+=⨯.(2)如图,9112325174+++=⨯,所以四个角上的四个数之和等于九宫格中央这个数的4倍.(选取的九宫格不唯一).(3)设九宫格中央这个数为a ,那么左上角的数为71a --,右上角的数为71a -+,左下角的数为71a +-,右下角的数为71a ++,四个数的和为(71)(71)(71)(71)4a a a a a --+-+++-+++=.即四个角上的四个数之和等于九宫格中央这个数的4倍.【点睛】本题考查了整式的加减应用,掌握整式的加减运算法则是解题的关键.7.化简:(1)()()22224232a b ab ab a b ---;(2)2237(43)2x x x x ⎡⎤----⎣⎦.解析:(1)22105a b ab -;(2)2533x x --【分析】(1)先去括号,再合并同类项即可得到答案;(2)先去括号,再合并同类项即可得到答案.【详解】(1)()()22224232a b ab ab a b ---22224236a b ab ab a b =--+22105a b ab =-.(2)2237(43)2x x x x ⎡⎤----⎣⎦2237(43)2x x x x =-+-+2237432x x x x =-+-+2533x x =--.【点睛】本题主要考查了整式的加减,整式加减的实质就是去括号,合并同类项,一般步骤是:先去括号,然后再合并同类项.8.如图,观察下列图形,可得它们是按一定规律排列的,依照此规律,解决下列问题.(1)第5个图形有_______颗五角星,第6个图形有_______颗五角星;(2)第2020个图形有_______颗五角星,第n 个图形有_______颗五角星.解析:(1)16,19;(2)6061,31n +.【分析】(1)将每一个图案分成两部分,最下面位置处的一个不变,其它的分三条线,每一条线上后一个图形比前一个图形多一个,根据此规律找出第5、6个图形中★的个数; (2)利用(1)中所得规律可得.【详解】解:(1)观察发现,第1个图形★的颗数是134+=,第2个图形★的颗数是1327+⨯=,第3个图形★的颗数是13310+⨯=,第4个图形★的颗数是13413+⨯=,所以第5个图形★的颗数是13516+⨯=,第6个图形★的颗数是13619+⨯=.故答案为:16,19.(2)由(1)知,第2020个图形★的颗数是1320206061+⨯=,第n 个图形★的颗数是31n +.故答案为:6061,31n +.【点睛】本题考查了图形变化规律的问题,把★分成两部分进行考虑,并找出第n 个图形★的个数的表达式是解题的关键.9.已知一个多项式加上223x y xy -得222x y xy -,求这个多项式.佳佳的解题过程如下:解:222223x y xy x y xy ---①224x y xy =-②请问佳佳的解题过程是从哪一步开始出错的?并写出正确的解题过程.解析:是从第①步开始出错的,见解析【分析】根据多项式的加减运算法则进行运算即可求解.【详解】解:佳佳是从第①步开始出错的,正确的解题过程如下:根据题意,得:()()222223x y xy x y xy ---222223x y xy x y xy =--+222x y xy =+,∴这个多项式为222x y xy +.故答案为222x y xy +.【点睛】本题考查了多项式的加减混合运算,注意:只有同类项才能进行加减运算.10.用代数式表示:某厂的产量每年增长15%,如果第一年的产量是a ,那么第二年的产量是多少?解析:15a【分析】设第一年的产量为a ,以15%的速度增长,表示在m 的基础上增长a 的15%.【详解】解:根据题意,得设第一年的产量为a ,以15%的速度增长,∴第二年的产量为a (1+15%)=1.15a .【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找到所求的量的等量关系. 11.试写出一个含a 的代数式,使a 不论取何值,这个代数式的值不大于1. 解析:所写代数式为:﹣a 2+1【分析】从平方数非负数的角度考虑解答.【详解】解:所写代数式可以为:- a 2+1.(答案不唯一)【点睛】本题考查了代数式,平方数非负数,考虑利用非负数是解题的关键.12.用代数式表示:(1)比x 的平方的5倍少2的数;(2)x 的相反数与y 的倒数的和;(3)x 与y 的差的平方;(4)某商品的原价是a 元,提价15%后的价格;(5)有一个三位数,个位数字比十位数字少4,百位数字是个位数字的2倍,设x 表示十位上的数字,用代数式表示这个三位数.解析:(1)5x 2-2;(2)-x +1y;(3)(x -y )2;(4)(1+15%)a ;(5)200(x -4)+10x +(x -4). 【分析】(1)明确是x 的平方的5倍与2的差;(2)先求出x 的相反数与y 的倒数,然后相加即可;(3)注意是先做差后平方;(4)注意是提价后的价格而非所提的价格;(5)注意正确表示百位,十位,个位上的数.【详解】(1)5x 2-2;(2)-x +1y; (3)(x -y )2;(4)(1+15%)a ;(5)200(x -4)+10x +(x -4) .【点睛】 本题考查了列代数式,能够根据运算顺序正确书写,同时注意数位的意义,注意“多,少,积,差”等关键字的把握.13.数学老师给出这样一个题: 2-⨯2 2x x =-+. (1)若“”与“”相等,求“ ”(用含x 的代数式表示); (2)若“”为2326x x -+,当1x =时,请你求出“”的值. 解析:(1)22x x --;(2)2223x x -+,3【分析】(1)用替换,得到-22x x =-+,进而得到答案; (2)把“”用2326x x -+替换,求出2223x x =-+,再把1x =代入求解即可得到答案;【详解】解:()1由题意得: 2-⨯22x x =-+∴-22x x =-+ ∴22x x =--()2把“”用2326x x -+替换,得到: 2326x x -+2-⨯2 2x x =-+ 即:2()223262x x x x =-+--+22362x x x x =-++-2446x x =-+ ∴222 3.x x =-+当1x =时,原式221213=⨯-⨯+223=-+3=.【点睛】 本题主要考查了新定义下的二元一次方程的应用,能把作相应的替换是解题的关键.14.化简与求值:(1)若1a =-,则式子21a -的值为______;(2)若1a b +=,则式子12a b ++的值为______; (3)若534a b +=-,请你仿照以上求式子值的方法求出()()2422a b a b +++-的值. 解析:(1)0;(2)32;(3)-10. 【分析】(1)把a 的值代入计算即可;(2)把a+b 的值代入计算即可;(3)原式去括号转化为含有(5a+3b)的式子,然后代入5a+3b 的值计算即可.【详解】解:(1)()221110a -=--=;(2)1311222a b ++=+=; (3)()()()()24221062253224210a b a b a b a b +++-=+-=+-=⨯--=-.【点睛】本题考查的是整式的化简求值和整体代换的思想.只要原式化简出含有已知的式子,再代入求值即可.15.通过计算和观察,可以发现:1=12,1+3=4=22,1+3+5=9=32,请你计算: (1)1+3+5+7=____________=____________,1+3+5+7+9=____________=____________,1+3+5+7+9+…+97+99=____________=____________(2)用字母表示1+3+5+7+9+…+(2n -1)的结果;(3)用一句话概括你发现的规律.解析:(1)16,42,25,52,2500,502;(2)n 2;(3)前n 个连续正奇数的和为n 2【分析】(1)观察给出的等式得到:从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…,即可求出答案;(2)根据规律即可猜想从1开始的连续n 个奇数的和;(3)根据上述的规律,即可得到答案.【详解】解:(1)根据题意,则1+3+5+7=16=42;1+3+5+7+9=25=52;1+3+5+7+9+…+97+99=2500=502;故答案为:16,42,25,52,2500,502;(2)根据题意:1+3+5+7+9+…+(2n -1)=n 2;(3)根据上述的结论,则得到:前n 个连续正奇数的和为n 2.【点睛】此题主要考查学生对规律型题的掌握,关键是要对给出的等式进行仔细观察分析,发现规律,根据规律解题.16.定义:若2m n +=,则称m 与n 是关于1的平衡数.(1)3与______是关于1的平衡数,5x -与______(用含x 的整式表示)是关于1的平衡数;(2)若()22234a x x x =-++,()22342b x x x x ⎡⎤=--+-⎣⎦,判断a 与b 是否是关于1的平衡数,并说明理由.解析:(1)1-,3x -;(2)不是,理由见解析【分析】(1)由平衡数的定义求解即可达到答案;(2)计算a+b 是否等于1即可;【详解】解:(1)1-,3x -;(2)a 与b 不是关于1的平衡数.理由如下:因为()22234a x x x =-++,()22342b x x x x ⎡⎤=--+-⎣⎦,所以()()2222342342a b x x x x x x x ⎡⎤+=-+++--+-⎣⎦, 22223342342x x x x x x x =--++-+++,62=≠,所以a 与b 不是关于1的平衡数.【点睛】本题主要考查了整式的加减,准确分析计算是解题的关键.17.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a 2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)解析:乙旅行社收费比甲旅行社贵0.2a 元.【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.【详解】根据题意得:(a+a+a )×90%-(a+a+12a ) =2.7a-2.5a=0.2a (元),则乙旅行社收费比甲旅行社贵0.2a 元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.18.已知a+b =2,ab =2,求32231122a b a b ab ++的值. 解析:4【分析】 根据因式分解,首先将整式提取公因式12ab ,在采用完全平方公式合,在代入计算即可. 【详解】 解:原式=12a 3b +a 2b 2+12ab 3 =12ab (a 2+2ab +b 2) =12ab (a +b )2, ∵a +b =2,ab =2,∴原式=12×2×4=4. 【点睛】本题主要考查因式分解的代数计算,关键在于整式的因式分解. 19.已知多项式-13x 2y m +1+12xy 2-3x 3+6是六次四项式,单项式3x 2n y 2的次数与这个多项式的次数相同,求m 2+n 2的值.解析:13【解析】 试题分析:根据多项式次数的定义,可得2+m+1=6,从而可求出m 的值,根据单项式的次数的定义结合题意可得2n+2=6,求解即可得到n的值,把m,n的值代入到m2+n2中,计算即可得到求解.试题根据题意得2+m+1=6,2n+2=6解得:m=3, n=2,所以m2+n2=13.点睛:此题考查多项式,解题的关键是弄清多项式的次数是多项式中次数最高的项的次数,还要弄清有几项.20.已知多项式﹣3x2+mx+nx2﹣x+3的值与x无关,求(2m﹣n)2017的值.解析:-1【分析】先把多项式进行合并同类项得(n-3)x2+(m-1)x+3,由于关于字母x的二次多项式-3x2+mx+nx2-x+3的值与x无关,即不含x的项,所以n-3=0,m-1=0,然后解出m、n,代入计算(2m-n)2017的值即可.【详解】合并同类项得(n﹣3)x2+(m﹣1)x+3,根据题意得n﹣3=0,m﹣1=0,解得m=1,n=3,所以(2m﹣n)2017=(﹣1)2017=﹣1.【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.21.若1+2+3+…+n=m,求(ab n)•(a2b n﹣1)…(a n﹣1b2)•(a n b)的值.解析:a m b m【解析】试题分析:根据单项式的乘法法则,同底数幂相乘,底数不变,指数相加的性质,(ab n)•(a2b n﹣1)…(a n﹣1b2)•(a n b)=a1+2+…n b n+n﹣1+…+1=a m b m.解:∵1+2+3+…+n=m,∴(ab n)•(a2b n﹣1)…(a n﹣1b2)•(a n b),=a1+2+...n b n+n﹣1+ (1)=a m b m考点:单项式乘单项式;同底数幂的乘法.点评:本题考查单项式的乘法法则和同底数幂的乘法的性质.22.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(______ )2= ______ .根据以上规律填空:(1)13+23+33+…+n 3=(______ )2=[ ______ ]2.(2)猜想:113+123+133+143+153= ______ .解析:1+2+3+4+5;225;1+2+…+n ;()n n 12+;11375 【解析】分析:观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空;(1)、根据上述规律填空,然后把1+2+…+n 变为2n 个(n+1)相乘,即可化简;(2)、对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.详解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)、∵1+2+…+n=(1+n )+[2+(n-1)]+…+[n 2+(n-n 2+1)]=()n n 12+, ∴13+23+33+…+n 3=(1+2+…+n )2=[()n n 12+]2; (2)、113+123+133+143+153=13+23+33+...+153-(13+23+33+ (103)=(1+2+…+15)2-(1+2+…+10)2 =1202-552=11375.点睛:此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.23.计算:7ab-3a 2b 2+7+8ab 2+3a 2b 2-3-7ab .解析:8ab 2+4.【分析】原式合并同类项即可得到结果.【详解】原式=(7﹣7)ab +(﹣3+3)a 2b 2+8ab 2+(7﹣3)=8ab 2+4.【点睛】本题考查了合并同类项得法则.即系数相加作为系数,字母和字母的指数不变. 24.将正整数1,2,3,4,5,……排列成如图所示的数阵:(1)十字框中五个数的和与框正中心的数11有什么关系?(2)若将十字框上下、左右平移,可框住另外五个数,这五个数的和与框正中心的数还有这种规律吗?请说明理由;(3)十字框中五个数的和能等于180吗?若能,请写出这五个数;若不能,请说明理由; (4)十字框中五个数的和能等于2020吗?若能,请写出这五个数;若不能,请说明理由.解析:(1)十字框中五个数的和是正中心数的5倍;(2)十字框中五个数的和是正中心数的5倍,理由见解析;(3)不能,理由见解析;(4)这五个数是404,403,405,397,411.【分析】(1)把框住的数相加即可求解;(2)设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +,相加即可得到规律;(3)由(2)得五个数的和为5a ,令5a=180,根据解得情况即可求解;(4)由(2)得五个数的和为5a ,令5a=2020,根据解得情况即可求解;【详解】解:(1)十字框中五个数的和是正中心数的5倍.∵十字框中五个数的和41011121855511=++++==⨯,∴十字框中五个数的和是正中心数的5倍.(2)五个数的和与框正中心的数还有这种规律.设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +.11775a a a a a a +-+++-++=,∴十字框中五个数的和是正中心数的5倍.(3)十字框中五个数的和不能等于180.∵当5180a =时,解得36a =,36751÷=,36在数阵中位于第6排的第1个数,其前面无数字,∴十字框中五个数的和不能等于180.(4)十字框中五个数的和能等于2020.∵当52020a =时,解得404a =,4047575÷=,404在数阵中位于第58排的第5个数,∴十字框中五个数的和能等于2020,这五个数是404,403,405,397,411.【点睛】此题主要考查一元一次方程的应用,解题的关键是设中心的数为a ,求出十字框中五个数的和为5a.25.小马虎在计算一个多项式减去225a a +-的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减去后面两项没有变号,结果得到的差是231a a +-.()1求这个多项式;()2算出此题的正确的结果.解析:(1)2324a a ++;(2)2 9a a ++.【分析】(1)根据题意可以求得相应的多项式;(2)根据(1)中的结果可以求得正确的结果.【详解】解:(1)由题意可得:这个多项式是:a 2+3a ﹣1+2a 2﹣a +5=3a 2+2a +4,即这个多项式是3a 2+2a +4;(2)由(1)可得:3a 2+2a +4﹣(2a 2+a ﹣5)=3a 2+2a +4﹣2a 2﹣a +5=a 2+a +9即此题的正确的结果是a 2+a +9.【点睛】本题考查了整式的加减,解答本题的关键是明确整式的加减的计算方法,求出相应的多项式.26.一个三位数M ,百位数字为a ,十位数字为b ,个位数字是c .(1)请用含,,a b c 的式子表示这个数M ;(2)现在交换百位数字和个位数字,得到一个新的三位数N ,请用含,,a b c 的式子表示N ;(3)请用含,,a b c 的式子表示N M -,并回答N M -能被11整除吗?解析:(1)10010M c b a =++;(2) 10010N c b a =++;(3) N-M ()99c a =-,能被11整除【分析】(1)根据百位数字为a ,十位数字为b ,个位数字是c 表示出M 即可;(2)根据百位数字为c ,十位数字为b ,个位数字是a 表示出N 即可;(3)列出整式相加减的式子,再合并同类项即可.【详解】解:()1 ∵百位数字为a ,十位数字为b ,个位数字是c ,∴10010M c b a =++;()2百位数字为c ,十位数字为b ,个位数字是a ,∴10010N c b a =++;()3()()1001010010N M c b a a b c -=++-++9999c a =-()99c a =-.99是11的9倍,,c a为整数,N M∴-能被11整除.【点睛】本题考查的是整式加减的实际应用题,数字问题,掌握数字的表示方法及整式的加减法法则是解答此题的关键.27.已知:A=2x2+ax﹣5y+b,B=bx2﹣32x﹣52y﹣3.(1)求3A﹣(4A﹣2B)的值;(2)当x取任意数值,A﹣2B的值是一个定值时,求(a+314A)﹣(2b+37B)的值.解析:(1)(2b﹣2)x2﹣(a+3)x﹣(b+6);(2)﹣312.【分析】(1)先化简原式,再分别代入A和B的表达式,去括号并合并类项即可;(2)先代入A和B的表达式并去括号并合并类项,由题意可令x和x2项的系数为零,求解出a和b的数值,再化简原式后代入相关数值即可求解.【详解】解:(1)∵A=2x2+ax﹣5y+b,B=bx2﹣32x﹣52y﹣3,∴原式=3A﹣4A+2B=﹣A+2B=﹣2x2﹣ax+5y﹣b+2bx2﹣3x﹣5y﹣6=(2b﹣2)x2﹣(a+3)x﹣(b+6);(2)∵A=2x2+ax﹣5y+b,B=bx2﹣32x﹣52y﹣3,∴A﹣2B=2x2+ax﹣5y+b﹣2bx2+3x+5y+6=(2﹣2b)x2+(a+3)x+(b+6),由x取任意数值时,A﹣2B的值是一个定值,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则原式=a﹣2b+314(A﹣2B)=﹣3﹣2+32=﹣312.【点睛】理解本题中x取任意数值时A﹣2B的值均是一个定值的意思是整式化简后的x和x2项的系数均为零是解题关键.28.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x﹣1)=x2﹣5x+1.(1)求所挡的二次三项式;(2)若x=﹣2,求所挡的二次三项式的值.解析:(1)x2﹣8x+4;(2)24【分析】(1)根据“已知两个加数的和与其中的一个加数,求另一个加数用减法”,列出代数式并合并即可;(2)把x=-2代入(1)的结果,计算即可.【详解】(1)x 2﹣5x +1﹣3(x ﹣1)=x 2﹣5x +1﹣3x +3=x 2﹣8x +4;∴所挡的二次三项式为x 2﹣8x +4.(2)当x =﹣2时,x 2﹣8x +4=(﹣2)2﹣8×(﹣2)+4=4+16+4=24.【点睛】本题考查了整式的加减.根据加数与和的关系,列出求挡住的二次三项式的式子是解决本题的关键.29.先化简,再求值(1)()223421332a a a a -+-+-,其中23a =- (2)()()22352542m mn mn m -+--+,其中22m mn -=解析:(1)原式=23362a a --+;256;(2)原式()2111m mn =-+;23. 【分析】(1)根据整式的运算法则,先将整式进行化简,再将字母的值代入计算求值即可.(2)根据整式的运算法则,去括号合并同类项,将整式化成最简,然后将字母的值代入计算即可.【详解】解(1)原式=22333-4233222a a a a ⨯-⨯++-=22363332a a a a --++-=23362a a --+ 将23a =-代入得:222336332⎛⎫⎛⎫-⨯--⨯-+ ⎪ ⎪⎝⎭⎝⎭=256; (2)原式=()()2222352542351084m mn mn m m mn mn m -+--+=+-+-- ()2111m mn =-+将22m mn -=代入得:11×2+1=23【点睛】本题考查了整式的化简求值,解决本题的挂件是正确理解题意,熟练掌握整式的运算法则,将整式正确进行化简.30.观察下列单项式-2x ,4x 2,-8x 3,16x 4,-32x 5,64x 6,…(1)分别指出单项式的系数和指数是怎样变化的?(2)写出第10个单项式;(3)写出第n个单项式.解析:(1)见解析;(2)(-2)10x10=1024x10;(3)(-2)n x n.【分析】(1)根据单项式的次数与系数定义得出即可;(2)根据单项式系数与次数的变化得出一般性规律得出第10个单项式;(3)根据单项式系数与次数的变化得出一般性规律,进而得出第n个单项式.【详解】(1)通过观察,系数为:-2,4=(-2)2,-8=(-2)3,16=(-2)4,-32=(-2)5指数分别是:1,2,3,4,5,6(2)第10个单项式为:(-2)10x10=1024x10;(3)第n个单项式为:(-2)n x n.【点睛】本题考查了单项式的系数、次数以及数字变化规律,根据已知得出数字变化规律是解题关键.。
第二章2.1 整式学校:姓名:班考号:1. 式子ab,3xy,a 1,3ax y,1-y,x xy y中,单项式共有()A. 3个B. 4个C. 5个 D. 6个2. 按次数把多项式分类,4x4-4和a3b-2ab2-1属于同一类,则下列多项式属于此类的是()A. -x5y4B. 2x2-3C. 3abcd-1 D. a3 3a2b 3ab2b23. 下列说法中正确的是()A. 4π是一次单项式B. x 3是二次三项式C. -的系数是-2D. -m的系数是-14. 多项式-x2y m+1+xy2-3x2-6是六次四项式,单项式3x2n y5-m与该多项式的次数相同,那么m,n的值分别是()A. 5,3B. 3,2C.2,1 D. 0,5. 某品牌电脑原售价为n元,降低m元后,又降价20%,那么该电脑的现售价为()A. n+mB. n-mC. n-m D. n-m6. 下列说法中正确的是()A. 单项式的系数是-2,次数是3B. -a是单项式,表示负数C. -6x2y 4x-1是二次三项式 D. 单项式-的次数是2,系数是-7. 如果多项式4y2-2y 5的值为7,那么多项式2y2-y 1的值为()A. -2B. 4C.3 D. 28. 某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()A. (1-10%)(1+15%)x万元B. (1-10%+15%)x万元C. (x-10%)(x+15%)万元D. (1+10%-15%)x万元9. 购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为()A. (a+b)元B. 3(a+b)元C.(3a+b)元 D. (a+3b)元10. 一个两位数,十位数字是x,个位数字比十位数字的2倍少3,这个两位数是( )A. x(2x-3)B. x(2x+3)C.12x+3 D. 12x-311. 多项式1-2xy xy3的次数是( )A. 1B. 2C.3 D. 412. 如果单项式-x a 1y3与y b x2是同类项,那么a,b的值分别为( )A. a=2,b=3B. a=1,b=2C.a=1,b=3 D. a=2,b=213. 已知式子:(1)2x 3;(2)x3;(3)0;(4);(5)-;(6),其中是单项式的共有( )A. 2个B. 3个C. 4D. 5个二、填空题14. 若ββ=1,则2β2 2β 2 010= .15. 若4x n-(m 2)x2-3是关于x的四次二项式,则m,n满足的条件是.16. 32xy2的系数是,次数是.17. 一种商品每件成本m元,按成本增加25%定价.现因出现库存积压降价,按定价的90%出售,每件还能盈利元.18. 若多项式x n 2-2x2-n 2是一个三次多项式,则n的值为.19. 4x2y 6x-2-x3y2是次项式,其中最高次项的系数是,常数项是.20. 据报道,某种电脑液晶显示器比常规彩色显示器节能60%,若使用常规彩色显示器消耗的能量为x,则使该种液晶显示器消耗的能量为.21. 如图,阴影部分的面积为.22. 下列图形是按一定规律排列的,依照此规律,第8个图形中共有个★.23. 若单项式-3x4a y与x6y b 4是同类项,则a=,b=.24. 如果-mx n y是一个关于x,y的单项式,且系数为3,次数为5,则m=n=.三、解答题25. 某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案一购买,需付款元(用含x的式子表示);若该客户按方案二购买,需付款元(用含x的式子表示).(2)若x=30,通过计算说明此时按哪种方案购买较为合算.26. 某百货商场经销一种儿童服装,每件售价50元,每天可以销售80件,为了迎接“六一”国际儿童节,商场决定采取降价措施以扩大销售量,经市场调查发现:每件童装每降价1元,平均每天就可多销售10件.(1)当每件童装降价x(x<10)元时,每天该童装的营业额是多少元?(2)当x=5时,每天该童装的营业额是多少元?27.已知多项式x2 2x 5的值是7,求多项式3x2 6x 3的值.28. 计算下列各式的值:(1)-0.4xy3,x=-2,y=3;(2)m2-2mn n2,m=2,n=.29. 梯形的上底为a,下底是上底的2倍,高是下底的倍,用式子表示梯形的面积.30. 列式表示下列语句:(1)比a,b的和的一半小1的数;(2)与m的和是1的数.31. 某商场有一批货,进货款为a元.如果这批货月初出售,可获利1000元,然后将这批货的进货款和已获利的1000元进行投资,到月末该投资可获利3%.如果这批货月初出售,请用含a 的式子表示该商场到月末时所获利润.32.计算图(1)(2)中阴影部分的面积:(用字母表示)参考答案1. 【答案】A【解析】本题考查单项式的概念.本题中单项式有ab,3xy, 3ax2y2,共3个.故选A.2. 【答案】C【解析】本题考查多项式.由题意只有3abcd-1是四次多项式,故选C.3. 【答案】D【解析】本题考查单项式.A.4π是常数项,所以A错误.B. x 3不是多项式,所以B错误.C.-的系数是-,所以C错误.D.-m的系数是-1,所以D正确.故选D.4. 【答案】B【解析】本题考查多项式与单项式的次数的意义,由题意得:2+(m+1)=6,得m=3,由2n+(5-m)=6,代入m=3,解得n=2,故选B.5. 【答案】B【解析】本题考查列代数式。
由题意得:现售价为(n-m)(1-20%)=n-m.故选B.6. 【答案】D【解析】本题考查单项式的系数和次数以及多项式的次数,结合相关定义判断,只有D符合,故选D.7. 【答案】D【解析】本题考查整式的求值,根据4y2-2y 5=7,可知2y2-7=1,所以2y2-y 1=2,故选D.8. 【答案】A【解析】本题考查列代数式.2月份的产值为x×(1-10%),3月份的产值为(1-10%)(1+15%)x.故选A.9. 【答案】D【解析】本题考查列代数式,难度较小.根据总价=单价×数量,得所需钱数为a+3b,故选D.10. 【答案】D【解析】两位数的表示方法:十位数字×10+个位数字,即10x+2x-3=12x-3,故选D.11. 【答案】D【解析】多项式的次数是多项式里次数最高项的次数,因为此多项式的次数最高项是xy3,所以这个多项式的次数是4.12. 【答案】C【解析】由同类项的定义,可得a 1=2,b=3,从而解得a=1,b=3,本题运用了方程思想.13. 【答案】B【解析】根据单项式的定义,由数或字母的积组成的代数式叫单项式. (1)(4)(6)都不能写成数或字母的积的形式,所以这三个式子不是单项式.(2)可以写成1和字母x3的积的形式;(3)可以写成0和字母x的积的形式;(5)可以写成和字母x y的积的形式.本题的易错点是对的判断失误,表示的是5与a的商,所以不是单项式.14. 【答案】2 01215. 【答案】m=-2,n=416. 【答案】9,317. 【答案】m或1.25 m×0.9-m或1.125m-m18. 【答案】1或-119. 【答案】五,四,-1,-220. 【答案】0.4x21. 【答案】x2 3x 6(答案形式不唯一)22. 【答案】1823. 【答案】,-324. 【答案】-3,4(1) 【答案】现某客户按方案①购买,需付款200×20+40(x-20)元;按方案②购买,需付款(200×20+40x)×90%元;(2) 【答案】若x=30,按方案①购买需付款200×20+40×(30-20)=4400元;按方案②购买需付款(200×20+40×30)×90%=4680元,则按方案①购买较为合算.(1) 【答案】当每件童装降价x元时,每天该童装的营业额是(50-x)(80+10x)元.(2) 【答案】当x=5时,每天该童装的营业额是(50-5)(80+10×5)=5850元.25. 【答案】由题意得:x2 2x 5=7,则x2 2x=2,3x2 6x 3=3(x2 2x) 3=3×2 3=9.(1) 【答案】原式=-0.4×(-2)×33=21.6;(2) 【答案】原式=22-2×2×=.26. 【答案】(a 2a)·a(若化简正确也可以).(1) 【答案】(a b)-1;(2) 【答案】1-m.27. 【答案】如果这批货月初出售,那么在月末时总收入为[(a+1000)+3%(a+1000)]元,到月末时所获利润为(a+1000)+3%(a+1000)-a=3%a+1030(元).28. 【答案】(1)阴影部分面积为大长方形面积减去小长方形面积,即为ab-bx;(2)中图形阴影部分的面积可以用正方形的面积减去四分之一圆形的面积,表示为R2-πR2.。