小学六年级数学 《成正比例的量》练习
- 格式:doc
- 大小:19.84 KB
- 文档页数:1
页 1【单元提高讲义】2019—2020学年北师大版六年级下册第四单元《正反比例》(提高版)模块一:正比例与反比例 1、成正比例的量①两种相关联的量;②一种量变化,另一种量也随着变化;③比值一定关系式:k yx=(一定) 2、成反比例的量①两种相关联的量;②一种量变化,另一种量也随着变化;③积一定 关系式:k xy =(一定)3、判断两种量成正比例还是成反比例的方法。
关键是看这两种相关联的量对应的两个数的商一定还是积一定,如果商一定就成正比例,如果积一定就成反比例。
4、正比例与反比例的区别模块二:用比例解决实际问题根据问题中的不变量找出两种相关联的量,并判断这种相关联的量成什么比例,根据正反比例关系式列出方程并求解。
一、正、反比例异同点相同点:都有两种相关联的量,一种量随着另一种量变化.不同点:正比例是变化方向相同,一种量扩大或缩小,另一种量也扩大或缩小.相对应的每两个数的比值(商)是一定的.反比例是变化方向相反,一种量扩大(缩小),另一种量反而缩小(扩大).相对应的每两个数的积是一定的.二、正比例和反比例的比较正比例反比例1.相同点(1)都有两种相关联的量(2)一种量随着另一种量变化2.不同点页2正比例:(1)变化方向相同,一种量扩大或缩小,另一种量也扩大或缩小(2)相对应的每两个数的比值(商)是一定的反比例:(1)变化方向相反,一种量扩大(缩小),另一种量反而缩小(扩大)(2)相对应的每两个数的积是一定的【试题检测】一.选择题(共8小题)1.一个直角三角形的两条直角边分别是3厘米和2厘米,按4:1的比例放大后,面积是()平方厘米.A.6B.24C.48D.962.把线段比例尺改写成数值比例尺是()A.1:8000B.1:80C.1:8000003.下列X和Y成反比例关系的是()A.x+y=10B.x=y C.y=(>0)4.下列各项中,两种量成反比例关系的是()A.工作效率一定,工作时间与工作总量B.人的年龄与其身高页3C.长方形的周长一定,它的长与宽D.三角形的面积一定,这个三角形的底和高5.在一幅地图上,4厘米表示实际距离16千米,这地图比例尺是()A.1:4B.1:4000C.1:400000D.1:4006.煤的总量一定,每天烧煤量和烧煤的天数()关系.A.成正比例B.成反比例C.不成比例D.无法判断7.A=,如果B一定,A和C这两种量成()关系.A.正比例B.反比例C.不成比例D.按比例分配8.8x=5y,x与y()A.成正比例B.成反比例C.不成比例D.无法判断二.填空题(共8小题)9.某学校平面图的比例尺是,改为数值比例尺是.在图中量得校园的长为3厘米,那么它的实际长度为米.10.一种微型零件长0.3毫米,将其画在纸上长9厘米,这张图纸的比例尺是.11.5x=3y,x:y=(:),x和y成比例.页412.一捆100m长的电线,用去的长度与剩下的长度成正比例.(判断对错)13.反比例关系可以用式子表示.14.如果x=3y(x和y都不为0),那么x和y成比例关系:如果xy=12.6(x和y都不为0),那么x和y成比例关系.15.在一张地图上画有一条线段比例尺,把它写成数值比例尺是,在这张地图上量得某两地之间的距离为3.5厘米,则它们的实际距离是千米.16.(1)一批零件2000个(填写下表)40100200400……每箱装的个数20……装的箱数100(2)一批零件一定,每箱装的个数和装的箱数成比例.三.判断题(共9小题)17.将图形缩小后得到的图形与原图形相比,大小不同,形状相同.(判断对错)页518.煤的数量一定,使用天数与每天的平均用煤量成正比例关系.(判断对错)19.两个正方形边长的比和面积的比能够组成比例.(判断对错)20.如果ab+5=12,则a与b成反比例..(判断对错)21.火车行驶1000km,行驶的速度和所需的时间成反比例..(判断对错)22.一辆汽车从甲地开到乙地所用的时间与速度成正比例..(判断对错)23.梯形的面积一定,它的高与上、下底的和成反比例.(判断对错)24.若以ab﹣8=12.5,则a与b成反比例.(判断对错)25.报纸的单价一定,总价与订阅的份数成反比例.(判断对错)四.计算题(共7小题)26.将线段比例尺化为数值比例尺:页627.画出图形A按2:1放大后的图形C;画出图形B按1:2缩小后的图形D.28.一个机器零件长5毫米,画在一张图纸上是20厘米.求这张机器零件图的比例尺.29.把图1图形按比例缩小后得到图2的图形,求未知数x.(单位:cm)30.在比例尺是1:300的地图上,量得一块直角三角形地的周长是24厘米.已知三条边的长度比是3:4:5,求三角形地三条边实际的长各是多少米?31.右图是由左图按比例放大得到的,右图的长是多少?(单位:分米)页732.在一幅比例尺是的图纸上,量得某校的篮球场长26厘米,宽15厘米,这个篮球场的实际面积是多少?五.应用题(共5小题)33.一张资料照片上显示一只恐龙的身长是5cm,这只恐龙的实际身长是8m,这张照片的比例尺是多少?34.“六一”那天,芳芳和小朋友们一起骑车去动物园玩.下面的图象表示的是她骑车的路程和时间的关系.(1)芳芳骑车行驶的路程和时间成正比例吗?为什么?(2)看图估计,行2.5千米大约用多少分钟?页835.甲地到乙地的实际距离是150km,在一幅地图上量得两地的图上距离是2.5cm.这幅地图的比例尺是多少?36.在比例尺是1:20000图纸上量得北京天安门广场南北长为4.4厘米,东西宽为2.5厘米.北京天安门广场的实际面积是多少平方米?37.右边的图象表示汽车在公路上行驶的路程与耗油量的关系.①请你用学过的数学知识描述这辆汽车行驶的路程和耗油量的关系,并讲明理由.②根据图象,这辆汽车行驶75km耗6升.计算这辆汽车行驶180km耗油多少升?页9六.操作题(共3小题)38.把图A缩小到原来的,把图B放大到原来的2倍.39.下面是胜利小学综合楼一层的布局,请你根据比例尺及实际距离确定下面四个地点的位置.A:图书室30米×10米B:会议室29米×7米C:实验室13米×7米D:科技室10米×6米页1040.长征造纸厂的生产情况如表.时间/天1234567…生产量/吨70140210280350420490…(1)写出几组这两种量中相对应的两个数的比,求出比值,并比较比值的大小.(2)说明这个比值所表示的意义.(3)表中的两种量成正比例关系吗?为什么?(4)在下面画出它的图象,并根据图象估计一下生产560吨纸大约要用几天时间.七.解答题(共4小题)41.如图,方格中的梯形是按1:1000的比例尺画出的学校的一块草地.请你给草地的正中央设计一个半径为10米的圆形花池,按比例画在图中.再量出有关数据(取整厘米数),标在图上,并求剩余草地的实际面积.(单位:厘米)页11页 1242.下面的图象表示实验小学食堂的用煤天数和用煤量的关系.(1)根据图象,你能判断用煤天数和用煤量成什么比例吗?(2)如果用y 表示用煤的数,x 表示用煤的天数,k 表示每天的用煤量,它们之间的关系可以表示为.(3)根据图象判断,5天要用煤多少吨?2.4吨煤可用多少天?43.王叔叔买了一辆汽车,下表是他在试车过程中记录下的数据.汽车所行路程/km015304560耗油量/L02468(1)汽车所行路程与耗油量有什么关系?(2)汽车行驶90km,耗油多少升?(3)当油箱还剩3L油时,汽车还能行驶多少千米?44.文具盒每个售价8元,购买2个,3个,…分别需要多少元?(1)填一填.数量/个01234567…应付金额/元0816243240…(2)判断应付金额与文具盒的数量是否成正比例,并说明理由.(3)把上表中数量和应付金额应付金额所对应的点描在方格纸上再顺次连接.(4)买9个文具盒要花元.页13(5)李老师买的文具盒个数是王老师的5倍,他花的钱是王老师的倍.页14【解析版】一.选择题(共8小题)1.一个直角三角形的两条直角边分别是3厘米和2厘米,按4:1的比例放大后,面积是()平方厘米.A.6B.24C.48D.96【解答】解:(3×4)×(2×4)÷2=12×8÷2=48(平方厘米)答:面积是48平方厘米.故选:C.2.把线段比例尺改写成数值比例尺是()A.1:8000B.1:80C.1:800000【解答】解:1厘米:8千米=1厘米:800000厘米=1:800000改写成数值比例尺是1:800000.页15故选:C.3.下列X和Y成反比例关系的是()A.x+y=10B.x=y C.y=(>0)【解答】解:A、x+y=10,是和一定,不成比例;B、x=y,即x:y=,是比值一定,则x和y成正比例;C、y=(>0),即xy=6,是乘积一定,则x和y成反比例.故选:C.4.下列各项中,两种量成反比例关系的是()A.工作效率一定,工作时间与工作总量B.人的年龄与其身高C.长方形的周长一定,它的长与宽D.三角形的面积一定,这个三角形的底和高【解答】解:A、作总量÷工作时间=工作效率(一定),是对应的“比值”一定,所以工作时间与工作总量成正比例;B、人的身高和年龄对应的“比值”和“乘积”都不一定,所以人的身高和年龄不成比例;页16C、长方形的长+宽=周长÷2(一定),是对应的“和”一定,所以长方形的长和宽不成比例;D、因为三角形的面积S=ah,所以三角形的面积一定,三角形的底和高成反比例.故选:D.5.在一幅地图上,4厘米表示实际距离16千米,这地图比例尺是()A.1:4B.1:4000C.1:400000D.1:400【解答】解:16千米=1600000厘米,4:1600000=1:400000;答:这幅地图的比例尺是1:400000.故选:C.6.煤的总量一定,每天烧煤量和烧煤的天数()关系.A.成正比例B.成反比例C.不成比例D.无法判断【解答】解:因为:每天烧煤量×烧煤天数=煤的总量(一定),是乘积一定,所以每天烧煤量和烧煤天数成反比例;故选:B.页177.A=,如果B一定,A和C这两种量成()关系.A.正比例B.反比例C.不成比例D.按比例分配【解答】解:A=,如果B一定,即AC=B(一定),是乘积一定,则A和C成反比例;故选:B.8.8x=5y,x与y()A.成正比例B.成反比例C.不成比例D.无法判断【解答】解:8x=5y,若x、y都不为0,则x:y=5:8=,是比值一定,则x和y成正比例;若x、y都为0,则不成比例.故选:D.二.填空题(共8小题)9.某学校平面图的比例尺是,改为数值比例尺是1:10000.在图中量得校园的长为3厘米,那么它的实际长度为300米.【解答】解:图上的1厘米表示实际距离100米,比例尺为:1厘米:10000厘米=1:10000页183×100=300(米)答:改为数值比例尺是1:10000.在图中量得校园的长为3厘米,那么它的实际长度为300米.故答案为:1:10000,300.10.一种微型零件长0.3毫米,将其画在纸上长9厘米,这张图纸的比例尺是300:1.【解答】解:因为0.3毫米=0.03厘米则9厘米:0.03厘米=300:1答:这张图纸的比例尺是300:1.故答案为:300:1.11.5x=3y,x:y=(3:5),x和y成正比例.【解答】解:因为5x=3y,所以x:y=3:5x:y=(一定),是比值一定,所以成正比例;故答案为:3,5,正.12.一捆100m长的电线,用去的长度与剩下的长度成正比例.×(判断对错)页19【解答】解:因为用的长度+剩下的长度=一捆电线的长度,所以用的长度与剩下的长度的比值和乘积都不一定,所以用的长度和剩下的长度不成比例,原题说法错误.故答案为:×.13.反比例关系可以用xy=k(一定)式子表示.【解答】解:如果用x和y表示两种相关联的量,用k表示它们的乘积(一定),正比例关系可以用式子表示为:xy=k(一定);故答案为:xy=k(一定)14.如果x=3y(x和y都不为0),那么x和y成正比例关系:如果xy=12.6(x和y都不为0),那么x和y成反比例关系.【解答】解:如果x=3y(x和y都不为0),即x:y=3,是比值一定,那么x和y成正比例关系;如果xy=12.6(x和y都不为0),是乘积一定,那么x和y成反比例关系;故答案为:正,反.页2015.在一张地图上画有一条线段比例尺,把它写成数值比例尺是1:4000000,在这张地图上量得某两地之间的距离为3.5厘米,则它们的实际距离是140千米.【解答】解:40千米=4000000厘米数值比例尺是1:400000040×3.5=140(千米)答:把它写成数值比例尺是1:4000000,在这张地图上量得某两地之间的距离为3.5厘米,则它们的实际距离是140千米.故答案为:1:4000000,140.16.(1)一批零件2000个(填写下表)40100200400……每箱装的个数20……装的箱数100(2)一批零件一定,每箱装的个数和装的箱数成反比例.【解答】解:(1)2000÷40=50(箱)页212000÷100=20(箱)2000÷200=10(箱)2000÷400=5(箱)40100200400……每箱装的个数205020105……装的箱数100(2)因为每箱装的个数×装的箱数=这批零件个数(一定);所以,一批零件一定,每箱装的个数和装的箱数成反比例.故答案为:反.三.判断题(共9小题)17.将图形缩小后得到的图形与原图形相比,大小不同,形状相同.√(判断对错)【解答】解:将图形缩小后得到的图形与原图形相比,大小不同,形状相同原题说法正确.故答案为:√.页2218.煤的数量一定,使用天数与每天的平均用煤量成正比例关系.×(判断对错)【解答】解:因为每天的平均用煤量×使用的天数=煤的数量(一定),也就是两种相关联的量的乘积一定,所以,煤的数量一定,使用的天数与每天的平均用煤量成反比例.这种说法是错误的.故答案为:×.19.两个正方形边长的比和面积的比能够组成比例.×(判断对错)【解答】解:设这两个正方形的边长分别是1与2;1×1=12×2=4边长之比的比值是:1:2=面积之比的比值是:1:4=≠所以,两个正方形边长的比和面积的比不能组成比例.故答案为:×.20.如果ab+5=12,则a与b成反比例.√.(判断对错)页23【解答】解:如果ab+5=12,ab=12﹣5=7(一定),是两个量的乘积一定,则a与b成反比例;原题说法正确.故答案为:√.21.火车行驶1000km,行驶的速度和所需的时间成反比例.√.(判断对错)【解答】解:火车的速度×所需的时间=火车行驶距离(一定),是乘积一定,所以行驶的速度和所需的时间成反比例.原题说法正确.故答案为:√.22.一辆汽车从甲地开到乙地所用的时间与速度成正比例.×.(判断对错)【解答】解:速度×时间=路程(一定),是乘积一定,所以速度和时间成反比例.原题说法错误.故答案为:×.23.梯形的面积一定,它的高与上、下底的和成反比例.√(判断对错)页24【解答】解:因为梯形的两底之和×高=梯形的面积×2(一定),是乘积一定,所以梯形的高与上、下底的和成反比例.故答案为:√.24.若以ab﹣8=12.5,则a与b成反比例.√(判断对错)【解答】解:若ab﹣8=12.5,即ab=20.5,是乘积一定,则a与b成反比例.原题说法正确.故答案为:√.25.报纸的单价一定,总价与订阅的份数成反比例.×(判断对错)【解答】解:订阅份数与总价是两种相关联的量,它们与报纸的单价有下面的关系:总价:订阅份数=报纸的单价(一定);已知报纸的单价一定,也就是总价与订阅份数的比值一定,所以订阅份数与总价成正比例.原题说法错误.故答案为:×.页25四.计算题(共7小题)26.将线段比例尺化为数值比例尺:【解答】解:2厘米:60千米=2厘米:6000000厘米=1:3000000;答:化为数值比例尺是1:3000000.27.画出图形A按2:1放大后的图形C;画出图形B按1:2缩小后的图形D.【解答】解:画出图形A按2:1放大后的图形C(下图红色部分);画出图形B按1:2缩小后的图形D(下图绿色部分):页2628.一个机器零件长5毫米,画在一张图纸上是20厘米.求这张机器零件图的比例尺.【解答】解:20厘米:5毫米=200毫米:5毫米=40:1答:这张机器零件图的比例尺是40:1.29.把图1图形按比例缩小后得到图2的图形,求未知数x.(单位:cm)【解答】解:由题意得:15:x=25:2025x=15×20页27x=12答:未知数x的值是12厘米.30.在比例尺是1:300的地图上,量得一块直角三角形地的周长是24厘米.已知三条边的长度比是3:4:5,求三角形地三条边实际的长各是多少米?【解答】解:24×=6(厘米)24×=8(厘米)24×=10(厘米)6÷=1800(厘米)1800厘米=18米8÷=2400(厘米)2400厘米=24米10÷=3000(厘米)3000厘米=30米答:三角形地三条边实际的长分别是18米、24米、30米.页2831.右图是由左图按比例放大得到的,右图的长是多少?(单位:分米)【解答】解:300÷60=5120×5=600(分米)答:右图的长是600分米.32.在一幅比例尺是的图纸上,量得某校的篮球场长26厘米,宽15厘米,这个篮球场的实际面积是多少?【解答】解:26÷=26×100=2600(厘米)=26(米)15÷=15×100页29=1500(厘米)=15(米)26×15=390(平方米)答:这个篮球场的实际面积是390平方米.五.应用题(共5小题)33.一张资料照片上显示一只恐龙的身长是5cm,这只恐龙的实际身长是8m,这张照片的比例尺是多少?【解答】解:5cm:8m=5cm:800cm=1:160答:这张照片的比例尺是1:160.34.“六一”那天,芳芳和小朋友们一起骑车去动物园玩.下面的图象表示的是她骑车的路程和时间的关系.(1)芳芳骑车行驶的路程和时间成正比例吗?为什么?页30(2)看图估计,行2.5千米大约用多少分钟?【解答】解:(1)芳芳骑车行驶的路程和时间成正比例,因为速度一定,路程与时间成正比例关系;(2)利用图象估计,芳芳行2.5千米时大约用了15分钟.35.甲地到乙地的实际距离是150km,在一幅地图上量得两地的图上距离是2.5cm.这幅地图的比例尺是多少?【解答】解:150千米=15000000厘米,2.5:15000000=1:6000000;答:这幅地图的比例尺是1:6000000.36.在比例尺是1:20000图纸上量得北京天安门广场南北长为4.4厘米,东西宽为2.5厘米.北京天安门广场的实际面积是多少平方米?【解答】解:4.4÷88000(厘米)88000厘米=880米页312.5÷=50000(厘米)50000厘米=500米880×500=440000(平方米)答:北京天安门广场的实际面积是440000平方米.37.右边的图象表示汽车在公路上行驶的路程与耗油量的关系.①请你用学过的数学知识描述这辆汽车行驶的路程和耗油量的关系,并讲明理由.②根据图象,这辆汽车行驶75km耗6升.计算这辆汽车行驶180km耗油多少升?【解答】解:①汽车行驶路程与耗油量是正比例关系;因为50:4=100:8=150:12=…=12.5(一定),汽车行驶路程与耗油量的比值一定,所以汽车行驶路程与耗油量是正比例关系.页32②设这辆汽车行驶180km耗油x升,=75x=6×180x=x=14.4.答:辆汽车行驶180km耗油14.4升.六.操作题(共3小题)38.把图A缩小到原来的,把图B放大到原来的2倍.【解答】解:把图A缩小到原来的(图中图形A′),把图B放大到原来的2倍(图中图形B′).39.下面是胜利小学综合楼一层的布局,请你根据比例尺及实际距离确定下面四个地点的位置.页33A:图书室30米×10米B:会议室29米×7米C:实验室13米×7米D:科技室10米×6米【解答】解:答案如下:比例尺:1:100040.长征造纸厂的生产情况如表.时间/天1234567…生产量/吨70140210280350420490…(1)写出几组这两种量中相对应的两个数的比,求出比值,并比较比值的大小.(2)说明这个比值所表示的意义.(3)表中的两种量成正比例关系吗?为什么?页34(4)在下面画出它的图象,并根据图象估计一下生产560吨纸大约要用几天时间.【解答】解:(1)70:1=70,140:2=70,210:3=70,280:4=70,350:5=70,它们的比值都是70;(2)这个比值是用工作量除以工作时间所得,所以这个比值表示工作效率;(3)因为表中相关联的两种量:工作量:工作时间=工作效率(一定)符合正比例的意义,所以表中相关联的两种量成正比例关系;(4)估计图象可得,生产560吨纸大约要用8天时间.七.解答题(共4小题)页3541.如图,方格中的梯形是按1:1000的比例尺画出的学校的一块草地.请你给草地的正中央设计一个半径为10米的圆形花池,按比例画在图中.再量出有关数据(取整厘米数),标在图上,并求剩余草地的实际面积.(单位:厘米)【解答】解:10米=1000厘米1000×=1(厘米)即圆形花池的半径图上为1厘米画图如下:页366÷=6000(厘米),6000厘米=60米8÷=8000(厘米),8000厘米=80米10÷=10000(厘米),10000厘米=100米(60+100)×80÷2﹣3.14×102=160×80÷2﹣3.14×100=6400﹣314=6086(平方米)答:剩余草地的实际面积是6086平方米.42.下面的图象表示实验小学食堂的用煤天数和用煤量的关系.页37(1)根据图象,你能判断用煤天数和用煤量成什么比例吗?(2)如果用y表示用煤的数,x表示用煤的天数,k表示每天的用煤量,它们之间的关系可以表示为=(一定).(3)根据图象判断,5天要用煤多少吨?2.4吨煤可用多少天?【解答】解:(1)用煤的吨数÷用煤的天数=每天的用煤量(一定)根据两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就是成正比例的量因此可判断用煤天数和用煤量成正比例关系.(2)如果用y表示用煤的数,x表示用煤的天数,k表示每天的用煤量,它们之间的关系可以表示为=(一定).(3)根据图象可判断:5天有煤1.5吨;2.4吨煤可以用8天.故答案为:=(一定).43.王叔叔买了一辆汽车,下表是他在试车过程中记录下的数据.页38汽车所行路程/km015304560耗油量/L02468(1)汽车所行路程与耗油量有什么关系?(2)汽车行驶90km,耗油多少升?(3)当油箱还剩3L油时,汽车还能行驶多少千米?【解答】解:(1)耗油量随着路程的变化而变化,因为15÷2=7.5、30÷4=7.5…即每升油所行路程不变,所以汽车所行路程和耗油量成正比例关系;(2)因为耗油量=路程÷每升油所行路程,90÷7.5=12(升)答:要耗油12升.(3)因为路程=每升油所行路程×耗油量,7.5×3=22.5(千米)答:汽车大约还能行驶22.5千米.44.文具盒每个售价8元,购买2个,3个,…分别需要多少元?(1)填一填.页39数量/个01234567…应付金额/元0816243240…(2)判断应付金额与文具盒的数量是否成正比例,并说明理由.(3)把上表中数量和应付金额应付金额所对应的点描在方格纸上再顺次连接.(4)买9个文具盒要花72元.(5)李老师买的文具盒个数是王老师的5倍,他花的钱是王老师的5倍.【解答】解:(1)8×6=48(元)8×7=56(元)表格如下:数量/个01234567…页40应付金额/元08162432404856…(2)因为:8÷1=8(元)16÷2=8(元)24÷3=8(元)……总价÷数量=单价(单价是一定的),所以应付金额与文具盒的数量成正比例.(3)画图如下:(4)8×9=72(元)答:买9个文具盒要花72元.(5)根据总价和数量的正比例关系可知:所以:李老师买的文具盒个数是王老师的5倍,他花的钱是王老师的5倍.故答案为:72,5.页41。
苏教版六年级下册《第3章比例》小学数学-有答案-同步练习卷(11)一、填空.1. 如果工作时间一定,那么工作总量与工作效率成________比例关系。
2. 如果工作总量一定,那么工作时间与工作效率成________比例关系。
3. 汽车的耗油量一定,油箱中汽油的数量与行驶的路程成________比例关系。
4. 出售小麦的单价一定,出售小麦总量与总钱数成________比例关系。
5. 体操比赛的总人数一定,每排人数与排数成________比例关系。
6. 一个长方形的长是5厘米,长方形的宽与面积之间的关系如图。
看图填空。
(1)长方形的宽与面积成________比例关系。
(2)当长方形的宽是3厘米时,面积是________平方厘米。
(3)当长方形的宽是7厘米时,面积是________平方厘米。
(4)当长方形的面积是30平方厘米时,宽是________厘米。
(5)估计宽是3.5厘米时,面积是________平方厘米。
(6)估计面积是32.5厘米时,宽是________厘米。
二、判断下面每题中的两种量是否成比例?成什么比例?说明理由甲、乙两地的路程一定,骑自行车从甲地到乙地的时间和速度。
________.工程队施工的效率一定,施工的时间和施工总量。
________.一辆汽车行驶的速度一定,这辆汽车的载重量和行驶的总路程。
________.圆柱的底面积一定,这个圆柱的高和体积。
________.机器零件的合格率一定,合格零件数量与残次品零件数量。
________.李红作100道口算题,每分种作题的数量和所用的时间。
________.三、选择符合要求的答案,把题号填在括号里.小红的年龄一定,那么小红的身高与体重()A.正比例关系B.成反比例关系C.不成比例关系一个三角形的面积一定,这个三角形的底与高()A.成正比例关系B.成反比例关系C.不成比例关系长方形的周长一定,它的长和宽()A.成正比例关系B.成反比例关系C.不成比例某一时刻,树影的长度与树的高度成()比列关系。
2021-2022学年六年级数学下册典型例题系列之第六单元正比例和反比例在图表中的应用专项练习(解析版)一、填空题。
1.(2021·河北邯郸·小升初真题)如图表示一辆汽车在公路上行驶的时间与路程的关系,这辆汽车行驶的时间与路程成()比例。
照这样计算,2.2小时行驶()千米。
【解析】(1)根据图可知:路程÷时间=速度(一定),商一定,所以路程和时间成正比例关系;(2)100÷1×2.2=100×2.2=220(千米)2.(2021·河北保定·小升初真题)观察关于购买衣服的统计表:购买衣服的数量和总价成( )比例。
【解析】70÷2=35105÷3=35140÷4=35175÷5=35210÷6=35总价÷数量=35(一定),商一定,所以购买衣服的数量和总价成正比例。
3.(2021·云南玉溪·六年级期末)如图表示一辆汽车在公路上行驶的时间与路程的关系,这辆汽车行驶的时间与路程成( )比例。
照这样计算,该汽车6.6时行驶( )km。
【解析】6.6×100=660(千米)这辆汽车行驶的时间与路程成正比例。
照这样计算,该汽车6.6时行驶660km。
4.(2021·陕西·延安市宝塔区蟠龙镇初级中学六年级期末)莎莎骑车到相距5千米的书店买书,买完书立刻返回家中。
如图是她离开家的距离与时间的统计图。
(1)莎莎去书店每小时行( )千米,用了( )分钟,这段时间内她骑车的路程和时间成( )比例。
(2)莎莎从书店返回家中的速度是每小时( )千米,用了( )分钟。
(3)莎莎返回时的速度比去时慢( )%。
【解析】(1)5÷0.5=10(千米),所以,莎莎去书店每小时行10千米,用了30分钟,这段时间内她骑车的路程和时间成正比例;(2)5÷1.25=4(千米),所以,莎莎从书店返回家中的速度是每小时4千米,用了75分钟;(3)(10-4)÷10=6÷10=60%所以,莎莎返回时的速度比去时慢60%。
正比例六年级练习题1. 小明骑自行车从家到学校的距离是5千米,花费的时间是20分钟。
如果小明骑自行车的速度保持不变,那么他骑自行车10千米要花费多长时间?解析:根据题意可知,小明骑自行车的速度是不变的,那么他骑自行车的速度可以用速度和时间的关系式 v = s / t 来表示。
假设他骑自行车10千米要花费的时间是 t1,那么根据题意可得: 5千米 / 20分钟 = 10千米 / t1。
求解上述比例式可以得到:t1 = (10千米 × 20分钟) / 5千米 = 40分钟。
答案:小明骑自行车10千米要花费40分钟。
2. 一箱苹果有24个,重4千克,那么重6千克的苹果需要多少个?解析:根据题意可知,苹果的重量和苹果的个数之间是成正比例的,苹果的重量可以用重量和个数的关系式 g = w / n 来表示。
假设重6千克的苹果需要的个数是 n1,那么根据题意可得: 4千克 / 24个 = 6千克 / n1。
求解上述比例式可以得到:n1 = (6千克 × 24个) / 4千克 = 36个。
答案:重6千克的苹果需要36个。
3. 甲用4根绳子拉一辆车,用了12分钟拉了100米;乙用6根绳子拉相同的车,需要多少时间才能拉行走200米?解析:根据题意可知,拉车的速度和所用的绳子的根数之间是成正比例的,速度可以用速度和时间的关系式 v = s / t 来表示。
假设乙用6根绳子拉相同的车需要的时间是 t2,那么根据题意可得: 4根绳子 / 12分钟 = 6根绳子 / t2。
求解上述比例式可以得到:t2 = (6根绳子 × 12分钟) / 4根绳子 = 18分钟。
答案:乙用6根绳子拉行走200米需要18分钟。
4. 甲种植一批小麦可以收获10千克,需要耕种10天;乙种植相同的一批小麦,需要多少天才能收获25千克?解析:根据题意可知,小麦的收获量和种植的天数之间是成正比例的,小麦的收获量可以用收获量和天数的关系式 y = x / t 来表示。
北师大版数学六年级下册章节复习知识点、达标训练附解析第四单元《正比例和反比例》知识点一:变化的量1.相互关联的变量在一定条件下的变化是有规律的。
2.列表与画图都可以表示变量之间的变化关系。
分析表格时,要弄清两个变量及相对应的数据;分析图时,要弄清图中横轴、纵轴表示的量的名称,以及图中每一个点所对应的两个量的多少。
3. 一般用含有字母的式子表示有规律的变量的变化规律,应先根据题中的条件写出等量关系式,再将等量关系式用字母表示出来。
知识点二:正比例1.成正比例的量的特征:一个量随着另一个量的变化而变化,在变化过程中这两个量的比值一定。
2.如果用x和y表示两个相关联的量,用k(一定)表示它们的比值,正比例关系可以表示为=k(一定)。
3.判断两个量是否成正比例的方法(1)首先,要确定这两个量是不是相关联的量(其中一个量是否随着另一个量的变化而变化);(2)其次,要根据两个变量之间的数值对应关系,计算出两个变量每一对数值的比值;(3)最后,根据比值是否一定来判断这两个变量是否成正比例。
知识点三:正比例图像1.成正比例的两个量表示的各点在同一条直线上,即正比例图象的特征是一条直线。
2.从正比例图象中可以得出任意一点所表示的意义。
3. 观察正比例图象时,要先明确横轴、纵轴表示的意义,从图象中可以直观地看出两个量的变化情况,不需要计算,由一个量的值可以直接找到与它对应的另一个量的值。
知识点四:反比例1.成反比例的量的特征:一个量随着另一个量的变化而变化,在变化过程中这两个量的积一定。
2.如果用字母x和y表示两个相关联的量,用k(一定)表示它们的乘积,反比例关系可以表示为xy=k(一定)。
3.判断两个量是否成反比例的方法(1)首先,要确定这两个量是不是相关联的量(其中一个量是否随着另一个量的变化而变化);(2)其次,要根据两个变量之间的数值对应关系,计算出两个变量每一对数值的积;(3)最后,根据积是否一定来判断这两个变量是否成反比例。
一.判断下面的两种量是否成正比例,并说明理由。
1.苹果的单价一定,购买苹果的数量和总价。
()( )○( )=单价( ) 。
因为()和()的()一定,所以()和()成正比例。
2. 轮船行驶的速度一定,行驶的路程和时间。
()( )○( )=速度( ) 。
因为()和()的()一定,所以()和()正比例。
3.每小时织布米数一定,织布的米数和时间。
()( )○( )=每小时织布米数( ) 。
因为()和()的()一定,所以()和()正比例。
4.幼儿园老师分给每个小朋友的饼干的块数一定,小朋友的人数和所需的饼干数。
()( )○( )=()( )。
因为()和()的()一定,所以()和()正比例。
5.订阅《中国小年报》的份数和钱数。
()。
( )○( )=()( 一定)。
因为()和()的()一定,所以()和()正比例。
6.小新跳高的高度和他的身高。
()因为()和()的()不一定,所以()和()()正比例。
7.长方形的宽一定,它的面积和长。
()( )○( )=()( )。
因为()和()的()一定,所以()和()()正比例。
8. 长方形的宽一定,它的周长和长。
()( )○( )=()( )。
因为()和()的比值(),所以()和()()正比例。
9.小麦的每公顷产量一定,小麦的公顷数和总产量。
()( )○( )=()( ) 。
因为()和()的比值(),所以()和()()正比例。
10.平行四边形的高一定,它的面积和底。
( )( )○( )=( ) 。
因为和的()一定,所以和()正比例。
11. 三角形的高一定,它的面积和底。
( )( )○( )=( ) 。
因为和的()一定,所以和()正比例。
12.圆的周长和半径。
()( )○( )=( )。
因为和的()一定,所以和()正比例。
13.圆的面积和半径。
()( )○( )=( )。
因为和的(),所以()和()()正比例。
14.甲地到乙地,已行的路程和剩下的路程。
()( )○( )=( )。
正比例和反比例的意义一、成正比例的量1.在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,例如:(1)班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。
(2)送来的牛奶包数多,牛奶的总质量也多;包数少,总质量也少。
(3)上学时,去的速度快了,时间用少了;速度慢了,时间用多了。
(4)排队时,每行人数少了,行数就多了;每行人数多了。
行数就少了。
生活中还有哪些成正比例的量如: A.长方形的宽一定,面积和长成正比例。
B.每袋牛奶质量一定,牛奶袋数和总质量成正比例。
C.衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。
D.地砖的面积一定,教室地板面积和地砖块数成正比例。
2. 例:1出示:一列火车1小时行驶90千米,2小时行驶180千米,3小时行驶270千米,4小时行驶360千米,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米……填表时间变化,路程也随着变化,我们就说时间和路程是两个相关联的量。
根据计算,你发现了什么相对应的两个数的比的比值一样或固定不变,在数学上叫做一定。
用式子表示他们的关系是:路程/时间=速度(一定)(2)小结:同学们通过填表,交流,知道时间和路程是.两种相关联的量,路程随着时间的变化而变化.时间扩大,路程随着扩大;时间缩小,路程也随着缩小。
即:路程/时间=速度(一定)2、例2:(1(2)观察图表,发现规律用式子表示它们的关系:总价/米数=单价(一定)3、正比例的意义(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。
(2)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来 x/y=k(一定)PS:三个要素:第一、两种相关联的量;第二、其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。
《成反比例的量》练习
一、下面各题中哪两种量成正比例?为什么?
1、笔记本单价一定,数量和总价.
2、汽车行驶速度一定,行驶的路程和时间.
3、工作效率一定,工作时间和工作总量.
4、一袋大米的重量一定,吃了的和剩下的.
5、每本练习本的张数一定,装订练习本纸的总张数和装订的本数.
6、每天播种的公顷数一定,播种的总公顷数与播种的天数.
7、工作总量一定,工作效率和工作时间.
二、说出每小时加工零件数、加工时间和加工零件总数三者间的数量关系.在什么条件下,其中两种量成正比例?
第1页共1页。