微电子器件第二章 PN结
- 格式:ppt
- 大小:1.71 MB
- 文档页数:80
PN结无论是本征半导体,还是单一杂质半导体是不能构成电子器件的。
只有将两种杂质半导体进行有机结合,才能制造出电子器件。
采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体基片上,在它们的交界面将形成PN结。
PN结具有单向导电性。
它是构成电子器件的最小结构。
在半导体器件和集成电路中具有重要的作用。
1.2 PN结及其单向导电性1.2.1 PN结的形成在一块本征半导体在两侧通过扩散不同的杂质,分别形成P型半导体和N型半导体。
P型半导体和N型半导体的交界面形成一个特殊的薄层,称为PN结。
NP+++---+++++++++++++-------------PN结(1)PN结形成的物理过程:交界面两侧载流子存在浓度差空穴和电子在交界面产生复合多子浓度骤然下降不移动带电离子形成空间电荷区耗尽层、PN 结多子的扩散运动N 区的电子(多子)向P 区扩散P 区的空穴(多子)→N 区空间电荷区(PN 结)PN耗尽层内电场+_PN 结内:N 区失去电子→显正电性P 区得到电子→显负电性在空间电荷区内形成了N 区→P 区的电场,称为内电场1.2 PN结及其单向导电性(2)PN结内存在两种载流子的运动:空间电荷区形成内电场促进少子漂移运动阻止多子扩散运动形成PN 结宽度相对稳定②少子的漂移运动:N 区的空穴→P 区P 区的电子→N 区空间电荷区变窄空间电荷区加宽①多子的扩散运动:N 区的电子→P 区P 区的空穴→N 区扩散和漂移达到动态平衡1.2 PN结及其单向导电性NP ++++++++++++++++----------------E 多子的扩散运动浓度差少子的漂移运动内电场越强,漂移运动越强,而漂移使空间电荷区变薄。
扩散的结果使空间电荷区变宽。
RUN P ++++++++++++++++----------------U φUi D++__1.2.2PN 结的单向导电性(1)PN结加正向电压(正偏):P 区接电源正极,N 区接负极外电场与内电场方向相反外电场削弱内电场耗尽层变窄破坏PN 结动态平衡扩散运动>漂移运动多子扩散形成较大的正向电流PN结呈现低阻导通状态1.2 PN结及其单向导电性RUU i RU φN P ++++++++++++++++----------------++__(2)PN结加反向电压(反偏):P 区接负电源,N 区接正外电场与内电场方向相同外电场加强内电场耗尽层变宽破坏PN 结动态平衡漂移运动>扩散运动少子漂移形成极小的电流PN结呈现高阻截止状态1.2 PN结及其单向导电性1.2 PN结及其单向导电性PN结加反向电压时,具有很小的反向漂移电流,呈现高电阻,PN结截止。
重点与难点第1章半导体器件基本方程一般来说要从原始形式的半导体器件基本方程出发来求解析解是极其困难的,通常需要先对方程在一定的具体条件下采用某些假设来加以简化,然后再来求其近似解。
随着半导体器件的尺寸不断缩小,建立新解析模型的工作也越来越困难,一些假设受到了更大的限制并变得更为复杂。
简化的原则是既要使计算变得容易,又要能保证达到足够的精确度。
如果把计算的容易度与精确度的乘积作为优值的话,那么从某种意义上来说,对半导体器件的分析问题,就是不断地寻找具有更高优值的简化方法。
要向学生反复解释,任何方法都是近似的,关键是看其精确程度和难易程度。
此外,有些近似方法在某些条件下能够采用,但在另外的条件下就不能采用,这会在后面的内容中具体体现出来。
第2章PN结第2.1节PN结的平衡状态本节的重点是PN结空间电荷区的形成、内建电势的推导与计算、耗尽区宽度的推导与计算。
本节的难点是对耗尽近似的理解。
要向学生强调多子浓度与少子浓度相差极其巨大,从而有助于理解耗尽近似的概念,即所谓耗尽,是指“耗尽区”中的载流子浓度与平衡多子浓度或掺杂浓度相比可以忽略。
第2.2节PN结的直流电流电压方程本节的重点是对PN结扩散电流的推导。
讲课时应该先作定性介绍,让学生先在大脑中建立起物理图象,然后再作定量的数学推导。
当PN结上无外加电压时,多子的扩散趋势正好被高度为qV bi的势垒所阻挡,电流为零。
外加正向电压时,降低了的势垒无法阻止载流子的扩散,于是构成了流过PN结的正向电流。
正向电流的电荷来源是P区空穴和N区电子,它们都是多子,所以正向电流很大。
外加反向电压时,由于势垒增高,多子的扩散变得更困难。
应当注意,“势垒增高”是对多子而言的,对各区的少子来说,情况恰好相反,它们遇到了更深的势阱,因此反而更容易被拉到对方区域去,从而构成流过PN结的反向电流。
反向电流的电荷来源是少子,所以反向电流很小。
本节的难点是对有外加电压时势垒区两旁载流子的运动方式的理解、以及电子(空穴电流向空穴(电子电流的转化。
第二章PN结填空题1、若某突变PN结的P型区的掺杂浓度为N A=×1016cm-3,则室温下该区的平衡多子浓度p与平衡少子浓度n p0分别为()和()。
p02、在PN结的空间电荷区中,P区一侧带()电荷,N区一侧带()电荷。
内建电场的方向是从()区指向()区。
3、当采用耗尽近似时,N型耗尽区中的泊松方程为()。
由此方程可以看出,掺杂浓度越高,则内建电场的斜率越()。
4、PN结的掺杂浓度越高,则势垒区的长度就越(),内建电场的最大值就越(),内建电势V bi就越(),反向饱和电流I0就越(),势垒电容C T就越(),雪崩击穿电压就越()。
5、硅突变结内建电势V bi可表为(),在室温下的典型值为()伏特。
6、当对PN结外加正向电压时,其势垒区宽度会(),势垒区的势垒高度会()。
7、当对PN结外加反向电压时,其势垒区宽度会(),势垒区的势垒高度会()。
8、在P型中性区与耗尽区的边界上,少子浓度n p与外加电压V之间的关系可表示为()。
若P型区的掺杂浓度N A=×1017cm-3,外加电压V= ,则P型区与耗尽区边界上的少子浓度n p为()。
9、当对PN结外加正向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度();当对PN结外加反向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度()。
10、PN结的正向电流由()电流、()电流和()电流三部分所组成。
11、PN结的正向电流很大,是因为正向电流的电荷来源是();PN结的反向电流很小,是因为反向电流的电荷来源是()。
12、当对PN结外加正向电压时,由N区注入P区的非平衡电子一边向前扩散,一边()。
每经过一个扩散长度的距离,非平衡电子浓度降到原来的()。
13、PN结扩散电流的表达式为()。
这个表达式在正向电压下可简化为(),在反向电压下可简化为()。
14、在PN结的正向电流中,当电压较低时,以()电流为主;当电压较高时,以()电流为主。
PN结原理: P-N 结的形成和能带电子科技大学微电子与固体电子学院谢孟贤教授博导p-n结基本概念是解决许多微电子和光电子器件的物理基础。
对于许多半导体器件问题的理解不够深透,归根到底还在于对于p-n结概念的认识尚有模糊之处的缘故。
因为p-n结的一个重要特点就是其中存在有电场很强的空间电荷区,故p-n结的形成机理,关键也就在于空间电荷区的形成问题;p-n结的能带也就反映了空间电荷区中电场的作用。
载流子的转移:p型半导体和n型半导体在此需要考虑的两个不同点即为(见图(a)):①功函数W不同;②主要(多数)载流子种类不同。
因此,当p型半导体和n型半导体紧密结合而成的一个体系——p-n结时,为了达到热平衡状态(即无能量转移的动态平衡状态),就会出现载流子的转移:电子从功函数小的半导体发射到功函数大的半导体去,或者载流子从浓度大的一边扩散到浓度小的一边去。
对于同质结而言,载流子的转移机理主要是浓度梯度所引起的扩散;对于异质结(例如Si-Ge 异质结,金属-半导体接触)而言,载流子的转移机理则主要是功函数不同所引起的热发射。
空间电荷和内建电场的产生:现在考虑同质p-n结的形成:在p型半导体与n型半导体的接触边缘附近处(即冶金学界面附近处),当有空穴从p型半导体扩散到n 型半导体一边去了之后,就在n型半导体中增加了正电荷,同时在p 型半导体中减少了正电荷,从而也就在p型半导体中留下了不能移动的电离受主中心——负离子中心;与此同时,当有电子从n型半导体扩散到p型半导体一边去了之后,就在p型半导体中增加了负电荷,同时在n型半导体中减少了负电荷,从而也就在n型半导体中留下了不能移动的电离施主中心——正离子中心。
这就意味着,在p型半导体一边多出了负电荷(由电离受主中心和电子所提供),在n型半导体一边多出了正电荷(由电离施主中心和空穴所提供),这些由电离杂质中心和载流子所提供的多余电荷即称为空间电荷,它们都局限于接触边缘附近处,以电偶极层的形式存在,如图(b)所示。