量子力学中的表象
- 格式:ppt
- 大小:124.00 KB
- 文档页数:10
第四章 表象理论4.1 态的表象变换和态的矩阵表示1.态的表象变换将F 表象中的态函数对力学量算符ˆQ 在F 表象中的本征函数组展开,则展开系数就是在Q 表象中的态函数。
这就是将F 表象中的态函数变换到Q 表象中的态函数的方法。
为了便于求出展开系数,通常要求ˆQ的本征函数组为幺正基组。
以从r 表象变换到Q 表象为例。
r 表象中的态函数为(,)r t ϕ [或()r ϕ]。
设ˆQ的本征值为分立谱Q n ,对应的本征函数为()n r φ 。
当各Q n 都无简并时,(,)r t ϕ 对()n r φ的展开式为:(,)()()n n nr t a t r ϕφ=∑(4.1-1) 若Q n 表示几个对易力学量算符本征值的集合,则上式中的n 应表示几个对应的量子数的集合。
当Q n 存在简并时,展开式为:(,)()()iiin n n r t a t r ϕφ=∑(4.1-2)其中i 为描写简并的角标。
下面只讨论无简并的情况。
在(4.1-1)式中,a n (t)是Q n 与t 的函数,a n (t)相当于a(Q n ,t)的简写。
当Q n 在整个展开系数中变动。
由于Q n 为分立谱,所以函数关系a n (t)-Q n 不是连续的。
a n (t)就是(,)r t ϕ 变换到Q表象中的态函数。
例如,将r表象中的某态函数(,,)r ϕθϕ对2ˆL 与ˆzL 的共同本征函数组(,)lm Y θφ展开: 0(,,)()(,)llm lm l m lr C r Y ϕθφθϕ∞==-=∑∑ (4.1-3)上式相当于(4.1-1)式中的n 表示两个量子数lm 的集合。
上式中的()lm C r 就是在2L 与z L 共同表象中的态函数。
2.本征态的排序本征态的排序可以化为对应的本征值的排序。
若本征值无简并,则参与排序的本征值没有相同者;若本征值有简并,则参与排序的本征值有相同者,其相同本征值的个数应与该本征值的简并度相同。
量子力学中的表象理论表象理论在量子力学中是一种根据物理定律做出的概念,它是大多数量子力学理论实践中最常用的抽象表达形式。
它可以用来更深入地理解量子力学中的相互作用和物理现象。
表象理论能够帮助发现量子力学中的一致性,从而构建出有效的模型来解释实验结果。
表象理论是一种抽象的概念,它有助于科学家在量子力学中描述具体的物理现象。
它以直观的方式解释了纳米世界的单体、分子、原子和其他微观物理系统的行为。
在该理论中,物理定律变得易于理解,可以运用于对实际系统的描述。
表象理论允许更具体地描述物质状态,以便科学家们能够准确地模仿实际系统的行为。
表象理论用威尔逊算符来表示系统的无量纲状态。
这种表示法是一种抽象的表示法,它可以解释由纳米等级的粒子所形成的复杂系统的行为。
这是基于Heisenberg不确定性原理的威尔逊算符已被用于研究纳米系统的行为,其中的粒子具有可能的处于不同的状态。
因此,威尔逊算符可以描述系统的可能性,使得研究者可以把这些状态当作独立的、相互关联的表象本质。
表象理论还能够解释量子力学中的相干效应。
一个引人注目的特性是,表象理论可以在纳米级别上界定每个粒子的干涉不变性,这一点可以帮助研究者们更好地控制纳米系统,从而了解系统中的相干效应,使得科学家们可以准确地描述这些粒子的行为。
另外,由于表象理论的有效性,它还被用于研究量子力学中的趨向性,包括量子能量跃迁等现象。
到目前为止,表象理论已经得到广泛的应用,它应用于描述量子力学中的行为与过程,从而帮助研究者们更好地掌握量子力学中的现象。
此外,它也被用于研究量子力学表象和实际物理系统之间的相互作用。
在今天,表象理论仍然是量子力学研究领域中广泛使用的抽象建模技术,用于更好地理解量子力学中的运动。
总的来说,表象理论是一种非常实用的量子力学理论,它可以帮助我们更具体地描述和理解量子力学中的物理系统。
由于它的多样性,表象理论也可以被用于研究复杂的纳米系统,从而实现准确的预测和模拟。
第五章 量子力学的表象与表示§5.1 幺正变换和反幺正变换1, 幺正算符定义对任意两个波函数)(r v ϕ、)(r vψ,定义内积r d r r vv v )()(),(ψϕψϕ∗∫=(5.1)按第一章中所说,(5.1)式的含义是:当微观粒子处在状态()r vψ时,找到粒子处在状态()r vϕ的几率幅。
依据内积概念,可以定义幺正算符如下:“对任意两个波函数ϕ、ψ,如果算符$U恒使下式成立 ),()ˆ,ˆ(ψϕψϕ=U U(5.2) 而且有逆算符1ˆ−U存在,使得I U U U U ==−−11ˆˆˆˆ1,称这个算符U ˆ为幺正算符。
”任一算符Aˆ的厄米算符+A ˆ定义为:+A ˆ在任意ϕ、ψ中的矩阵元恒由下式左边决定),ˆ()ˆ,(ψϕψϕ+=A A(5.3) 由此,幺正算符Uˆ有另一个等价的定义: “算符Uˆ为幺正算符的充要条件是 I U U U U==++ˆˆˆˆ (5.4a) 或者说1ˆˆ−+=U U 。
” (5.4b)证明:若),()ˆ,ˆ(ψϕψϕ=U U成立,则按+U ˆ定义, ),ˆˆ()ˆ,ˆ(),(ψϕψϕψϕU U U U+== 由于ϕ、ψ任意,所以I U U=+ˆˆ 又因为Uˆ有唯一的逆算符1ˆ−U 存在,假定取ψψϕϕ11ˆ,ˆ−−=′=′U U ,则有 ()),ˆ)ˆ((ˆ,ˆ),()ˆ,ˆ(),(1111ψϕψϕψϕψϕψϕ−+−−−==′′=′′=U U U U U U所以I U U=−+−11ˆ)ˆ( 由于11)ˆ()ˆ(−++−=U U,上式即 I U U=+ˆˆ 这就从第一种定义导出了第二种定义。
类似,也能从第二种定义导出第一种定义。
从而,幺正算符的这两种定义是等价的。
1这里强调了$U−1既是对$U右乘的逆又是对$U 左乘的逆。
和有限维空间情况不同,无限维空间情况下,任一算符$U有逆算符的三种情况:1)有一个左逆算符和无穷多个右逆算符;2)有一个右逆算符和无穷多个左逆算符;3)有一个左逆算符和一个右逆算符,并且它俩相等,唯有此时可简单地写为$U−1。
第三章表象理论本章提要:本章讨论态矢和算符的具体表示形式。
首先,重点讨论了本征矢和本征函数、态矢量和波函数之间的关系,指出了函数依赖于表象。
之后,引入投影算符,讨论了不同表象下的态矢展开,尤其是位置和动量表象,并顺带解决了观测值问题。
接着,用投影算符统一了态矢内积与函数内积。
最后,简单介绍了一些矩阵力学的内容。
1.表象:完备基的选择不唯一。
因此可以选用不同的完备基把态矢量展开。
除了态矢量,算符在不同表象下的具体表示也不同。
因此,我们把态矢量和算符的具体表示方式统称为表象 ①使用力学量表象:我们还知道每个力学量对应的(厄米)算符的本征矢都构成一组完备基。
若选用算符G 的(已经标准正交化(离散谱)或规格正交化(连续谱))的本征矢作为态空间的基,就称为使用G 表象的描述②波函数:把态矢展开式中各项的系数(“坐标”)定义为G 表象下的波函数③本征函数与本征矢的关系:设本征方程ψ=ψλQˆ又可写作()()G Q G Q ψψ=ˆ 则两边乘G 有()()ψ===ψ=ψ=ψQ G Q G Q G Q Q G QG ˆˆˆψψ 因此:本征函数()ψ=G G ψ就是Q ˆ的本征态ψ在表象G ˆ下的“坐标”(波函数) 如果离散谱:()ψ=i i G ψ就是Q ˆ的本征态ψ在表象G ˆ的iG 方向上的“坐标” ④结论:算符和态矢量的抽象符号表示不依赖于表象,具体形式依赖于表象选择但本征函数和波函数相当于“坐标”,依赖于态矢(向量)和表象(基)*注意:第二章在展开态矢量、写算符和本征函数时使用都是位置表象(也称坐标表象)2.投影算符:我们将使用这个算符统一函数与矢量的内积符号(1)投影算符:令()()连续谱离散谱dG G Gi i Pi⎰∑==ˆ,称为投影算符(2)算符约定:求和或积分遍历算符G 的标准(或规格)完备正交基矢量(3)本征方程:ψ=ψ=ψI Pˆˆ,表明投影算符就是单位算符 (4)单位算符代换公式:()()连续谱离散谱dQ G G i i I i⎰∑==ˆ3.不同表象下的态矢量展开和波函数:①离散谱:∑=ii iF Fψψ,ψψi i F =为Fˆ表象下的波函数 {}i ψ可表示为一列矩阵,第i 行元素就是ψψi i F =观测值恰为i Q 的概率:用Qˆ表象展开∑=ii i Q Q ψψ,22Pr ψψi i Q ob ==概率归一等价于波函数归一∑==ii 12ψψψ算符Qˆ的观测平均值:ψψψQ Q Q ii i ˆˆ2==∑②连续谱:⎰==dG G GIψψψˆ,ψψG =称为Gˆ表象下的波函数观测值落在dQ Q Q +~范围内的概率:用Qˆ表象展开⎰=dQ Q Qψψ,dQ Q dQ ob 22Pr ψψ==,满足概率归一⎰=12dQ ψ算符Qˆ的观测平均值:()()ψψψQ dQ Q Q Q ˆ,ˆ2==⎰③本征函数和态矢量的内积统一:设f f =,g Q g =,有()g f gdQ f dQ g Q f Q dQ g Q f g I f g f ,ˆ**=====⎰⎰⎰结论:量子态g f 在同一表象Q 下投影得波函数g f ,,则()g f g f ,=算符对本征函数作用:()()ϕψϕψϕψϕψϕψQ Q QQ Qˆˆˆ,ˆˆ,==== 示例:()ϕψϕψϕψϕψϕψϕψp dx pdx x p dx p x x p I pˆ,ˆˆˆˆˆˆ**=====⎰⎰⎰④位置表象与动量表象:4.力学量的测量值问题:①当待测系统处于算符本征态:此时ψ=ψQ Qˆ,对系统中所有粒子的测量结果都是本征态ψ对应的本征值i Q ,显然i Q 的统计平均值还是i Q ,iQ Q =ˆ。
.n n nc ψφ=∑第四章 态和力学量的表象量子力学中态和力学量的具体表示方式称为表象。
在前面,我们采用的表象是坐标表象,还可以用其它表象表示体系状态。
在选定了一定的表象后,力学量算符用矩阵表示,算符的运算归结为矩阵的运算。
因此,引入表象理论后的量子力学也称为矩阵力学。
本章首先给出态、算符和量子力学公式的表象表示,以及它们在不同表象间的变换关系,并证明量子力学在幺正变换下的不变性。
之后介绍文献中常见的狄拉克(Dirac )符号,最后在粒子数表象中重新讨论了线形谐振子问题。
§4.1态的表象表示由前两章讨论可知,任意波函数可按某力学量的本征函数做完全性展开例如,动量的本征函数表示组成完全系,任意波函数(,)x t ψ可以按 ()x p x ψ展开为(,)(,)()xx p x x t c p t x dp ψψ=⎰ ,展开系数(,)x c p t 由下式给出()(),(),x x p c p t x x t dx ψψ*=⎰. 设 (,)x t ψ已归一化,则容易证明(,)x c p t 也是归一化的,2(,)x t dx ψ代表体系处于(,)x t ψ所描写的态中,发现粒子位置在x x dx →+范围内的几率;2(,)x x c p t dp 代表在该态下发现粒子动量在 x x x p p dp →+范围内的几率。
(,)x c p t 和 (,)x t ψ描写同一状态。
我们称(,)x t ψ是这个状态在x -表象(坐标表象)中的波函数;(,)x c p t 是同一状态在p -表象(动量表象)中的波函数。
动量表象中的波函数(,)x c p t 以动量为自变量,它的获得是通过动量本征函数系的完全性展开取得展开系数得来的。
在量子力学中,选定一组本征函数系作为基失,就称为选定了一个表象。
这与三维空间中的坐标系类似。
表象中的基矢与坐标系中的单位矢量一样具有正交归一完全性。
所不同的是本征函数有多个,所以态矢量所在的空间是多维的函数空间。