冶金新技术
- 格式:pptx
- 大小:1.73 MB
- 文档页数:70
冶金工业炉窑耐火材料新技术新材料
冶金工业炉窑耐火材料的新技术和新材料涉及以下几个方面的进展:
1. 材料组分优化:通过研究和改进材料的化学成分,以获得更好的耐火性能。
例如,添加具有良好高温稳定性和耐腐蚀性的化合物,如氧化镁和碳化硅。
2. 材料结构设计:使用新的结构设计方法来提高耐火材料的性能。
比如,采用多孔结构来增加材料的热稳定性和抗侵蚀性。
3. 纳米技术应用:通过纳米技术改变材料的微观结构,提高其力学性能和耐火性能。
纳米材料具有更高的比表面积和优异的机械性能,可以增强材料的耐热性和抗侵蚀性。
4. 涂层技术:利用涂层技术在耐火材料表面形成保护层,提高其抗热腐蚀和抗侵蚀性能。
例如,采用化学气相沉积或物理气相沉积方法在材料表面形成稳定的氧化层。
5. 复合材料应用:利用不同性能的材料进行复合,以提高整体材料的性能。
例如,将高温强度高的碳化硅颗粒与耐火砖基体组合,形成复合材料。
6. 先进制备技术:采用先进的制备技术来提高耐火材料的性能。
例如,采用溶胶-凝胶法、电渣熔化法等制备方法,可以获得
具有良好微观结构和均匀性的耐火材料。
这些新技术和新材料的应用,可以大大提高冶金工业炉窑的热效率、耐火性和抗腐蚀性,有助于提高工业生产的效益和环境友好性。
湿法冶金新工艺新技术及设备选型应用手册一、湿法冶金简介湿法冶金是一种从含金属的废水、废渣或土壤中回收有价金属的重要方法。
它通过化学或电化学过程,将金属从复杂的多金属氧化物或硫化物中提取出来,并转化为可溶性的离子形态,然后从溶液中提取出来。
湿法冶金广泛应用于工业生产中,尤其在环保和资源回收方面具有重要意义。
二、新工艺新技术1. 微生物浸出技术:利用某些特殊类型的微生物,能够将固体矿石中的金属离子转化为可溶性离子,提高金属提取效率。
2.化学沉淀法:通过添加沉淀剂,将金属离子转化为氢氧化物、碳酸盐或其他类型的沉淀,从溶液中分离并回收金属。
3. 膜分离技术:利用半透膜将溶液中的金属离子与杂质、有机物等分离,具有高效、选择性高的优点。
4. 电化学处理法:通过电解作用,将金属离子从溶液中提取出来,适用于处理高浓度金属离子废水。
三、设备选型应用1. 搅拌器:用于液体混合、搅拌,促进化学反应的进行。
2. 浸出罐:用于微生物浸出、化学沉淀等工艺过程的浸出作业。
3.沉淀池:用于金属离子的沉淀过程,回收金属。
4. 膜分离设备:用于处理含金属离子废水,回收金属。
5. 电镀槽:用于电化学处理法,将金属从溶液中提取出来。
四、总结湿法冶金新工艺新技术及设备选型应用日益多样化,包括微生物浸出、化学沉淀、膜分离和电化学处理等新工艺,以及相应的设备如搅拌器、浸出罐、沉淀池和电镀槽等。
这些新工艺和设备的选择和应用,将有助于提高金属回收效率,降低环境污染,实现资源的可持续利用。
以上内容仅供参考,具体选择和应用还需要根据实际情况进行考虑。
钢铁冶金新工艺技术目录钢铁冶金是现代工业中应用最广泛的材料之一,其技术不断发展和创新,推动了钢铁行业的高效生产和质量提升。
下面是一份钢铁冶金新工艺技术目录。
一、高炉冶炼新技术1. 高效节能热风炉技术:采用高效燃烧器和余热回收装置,提高燃烧效率和热风温度,降低燃料消耗和排放。
2. 富氧预处理技术:通过对冶炼矿石进行富氧预处理,提高还原效率和高炉产能,减少煤耗和焦耗。
3. 燃料灰渣精煤技术:通过对燃料灰渣中的可燃物质进行精煤,提高燃烧效率和热量利用率,降低煤耗和废气排放。
二、转炉冶炼新技术1. 高效氧枪技术:采用高效氧枪和透氧技术,提高氧枪吹氧效率和转炉熔化过程中的氧气利用率,降低氧气消耗和炉渣中的氧化铁含量。
2. 喷吹粉煤技术:通过将粉煤喷吹到转炉中,在燃烧过程中释放高热值的挥发分,提高炉内温度和燃烧效率,减少焦耗和燃料消耗。
3. 渣液脱锰技术:通过添加适量的石灰和石膏等物质,控制转炉渣中的碱度和碳酸锰含量,降低转炉渣锰损失和锰冶炼成本。
三、连铸新技术1. 水模连铸技术:采用水模铸坯,提高结晶器冷却效果和铸坯的表面质量,降低铸坯变形和裂损率,提高铸坯质量和连铸效率。
2. 轧辊调整技术:通过轧辊调整系统自动化控制,实现辊型调整和轧件形状控制,提高轧件尺寸精度和表面质量,降低轧制能耗和加工成本。
3. 涂层技术:在连铸过程中,对铸坯和轧件表面进行涂层处理,减少表面氧化、脱碳和损伤,提高产品质量和附加值。
四、高温热处理新技术1. 连续退火技术:采用连续退火设备,对钢材进行高温退火处理,实现均匀结构和优良性能,提高钢材的塑性和韧性。
2. 淬火技术:采用先进的淬火设备和工艺,快速冷却钢材,形成细小、均匀的马氏体组织,提高钢材的硬度和耐磨性。
3. 氮化处理技术:通过将钢材置于含氮气氛中,在高温下进行氮化处理,提高钢材的表面硬度和耐腐蚀性。
五、环保技术1. 高效除尘技术:采用先进的除尘设备和技术,减少钢铁冶炼过程中的烟尘和废气排放,改善环境污染问题。
(冶金行业)粉末冶金新技术新工艺11粉末冶金新技术新工艺11.1概述粉末冶金是制取金属粉末或用金属粉末(或金属粉末和非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合材料以及各种类型制品的工艺技术。
粉末冶金工艺的第壹步是制取原料粉末,第二步是将原料粉末通过成形、烧结以及烧结后处理制得成品。
典型的粉末冶金产品生产工艺路线如图11-1所示。
粉末冶金的工艺发展已远远超过此范畴而日趋多样化,已成为解决新材料问题的钥匙,在新材料的发展中起着举足轻重的作用。
粉末冶金技术有如下特点:(1)能够直接制备出具有最终形状和尺寸的零件,是壹种无切削、少切削的新工艺,从而能够有效地降低零部件生产的资源和能源消耗;(2)能够容易地实现多种类型的复合,充分发挥各组元材料各自的特性,是壹种低成本生产高性能金属基和陶瓷基复合材料的工艺技术;(3)能够生产普通熔炼法无法生产的具有特殊结构和性能的材料和制品,如多孔含油轴承、过滤材料、生物材料、分离膜材料、难熔金属和合金、高性能陶瓷材料等;(4)能够最大限度地减少合金成分偏聚,消除粗大、不均匀的铸造组织,在制备高性能稀土永磁材料、稀土储氢材料、稀土发光材料、稀土催化剂、高温超导材料、新型金属材料(如Al-Li 合金、耐热Al合金、超合金、粉末耐蚀不锈钢、粉末高速钢、金属间化合物高温结构材料等)具有重要的作用;(5)能够制备非晶、微晶、准晶、纳米晶和过饱和固溶体等壹系列高性能非平衡材料,这些材料具有优异的电学、磁学、光学和力学性能;(6)能够充分利用矿石、尾矿、炼钢污泥、轧钢铁鳞、回收废旧金属作原料,是壹种可有效进行材料再生和综合利用的新技术。
近些年来,粉末冶金有了突破性进展,壹系列新技术、新工艺大量涌现,例如:快速冷凝雾化制粉技术、机械合金化制粉技术、超微粉或纳米粉制备技术、溶胶-凝胶技术、粉末注射成形、温压成形、粉末增塑挤压、热等静压、烧结/热等静压、场活化烧结、微波烧结、粉末轧制、流延成形、爆炸成形、粉末热锻、超塑性等温锻造、反应烧结、超固相线烧结、瞬时液相烧结、自蔓延高温合成、喷射沉积、计算机辅助激光快速成形技术等。
炼钢-连铸是钢铁制造的核心工序,是实现钢产品高品质、高效率、低消耗、低排放生产的关键。
在炼钢与连铸过程中,若干新技术被应用以提高效率和产品质量,以下是一些炼钢与连铸的若干新技术:高品质钢低碳转炉冶炼理论与关键技术:该技术通过研究转炉内物理化学过程与生产节奏的改变及钢水质量控制难度的提升等问题,实现转炉废钢比的显著提升,从源头降低钢铁行业CO₂排放量。
新一代钢包喷射冶金技术:此技术通过精确控制溶池液位和保护渣厚度,保证结晶器均匀浇铸拉坯,对生产高质量的钢坯具有重大意义。
紧凑型探测仪同步测定钢水液位和保护渣渣层:此技术通过测量溶池液位方式控制进入结晶器的钢水流动,正确且快速的测量对浇铸稳定性至关重要。
采用大转矩直驱电机,取得结晶器振动最佳效果:大转矩直驱电机可以替代传统的传动装置,提高结晶器振动装置的稳定性和可靠性,从而优化连铸过程。
此外,在炼钢-连铸过程中,还可以采用以下新技术:高效化冶炼:通过优化冶炼过程,降低能源消耗和减少环境污染。
连铸坯热装热送:通过提高连铸坯的温度和质量,减少再加热和轧制过程中的能源消耗和环境污染。
近终形化生产:通过采用先进的工艺和技术,生产更小断面的连铸坯,提高成材率和生产效率。
精确控制结晶器液面和保护渣厚度:通过精确控制结晶器液面和保护渣厚度,提高连铸坯的质量和稳定性。
电磁搅拌技术:通过采用电磁搅拌技术,改善连铸坯的凝固过程,提高产品质量和生产效率。
自动化的物流系统:通过采用先进的物流系统和技术,实现生产过程中物料的自动化运输和跟踪管理,提高生产效率和产品质量。
高效节能的轧制技术:通过采用高效节能的轧制技术,降低轧钢过程中的能源消耗和提高产品质量。
环保型轧制工艺:通过采用环保型轧制工艺和技术,减少轧钢过程中的环境污染和资源浪费。
集成化工艺控制技术:通过采用集成化工艺控制技术,将炼钢、连铸和轧制等工艺过程进行优化和控制,提高生产效率和产品质量。
这些新技术的应用可以显著提高炼钢-连铸生产的效率和产品质量,同时降低能源消耗和环境污染。
氯冶金新技术及应用氯冶金是一种利用氯化物作为原料进行冶金过程的技术。
它在提高资源利用率、降低能耗和环境污染等方面具有明显的优势,因此得到了广泛的应用。
下面将详细介绍氯冶金的新技术及应用。
首先,氯冶金的新技术之一是电解氯化铝法生产铝金属。
传统的铝冶炼方法主要是以氧化铝为原料进行电解制铝,但该方法存在能耗高、环境污染等问题。
而电解氯化铝法是将氯化铝作为原料,经过电解反应得到铝金属。
相比传统方法,电解氯化铝法不仅能够降低能耗,还能够减少环境污染,并且可以充分利用废弃物氯化铝的资源。
其次,氯冶金的另一项新技术是氯化钛法生产钛金属。
传统的钛冶炼方法主要是通过氟化物法或氯气法制备钛金属,但这些方法存在工艺复杂、设备投资大等问题。
而氯化钛法是将氯化钛矿石与金属钠或金属镁等进行反应,然后通过升华和提纯等过程得到钛金属。
相比传统方法,氯化钛法不仅能够节约能源,降低生产成本,还能够减少环境污染。
此外,氯冶金还有一项新技术是电解氯化镁法生产镁金属。
传统的镁冶炼方法主要是通过热还原法制备镁金属,但该方法存在能耗高和环境污染等问题。
而电解氯化镁法是将氯化镁溶液直接电解制备镁金属。
相比传统方法,电解氯化镁法的能耗约为传统方法的一半,同时能够减少废气、废水和固体废物排放。
此外,氯冶金技术还可以应用于废弃物处理和资源回收领域。
通过氯冶金技术,可以对废弃物中的金属进行有效分离和提取,实现废弃物的有效利用和资源回收。
例如,废旧锌碱电池中的氯化锌可以通过氯冶金技术回收,制备新的锌金属或其他锌化合物;废旧电子产品中的氯化铜、氯化铅等可以通过氯冶金技术进行回收和再利用。
总的来说,氯冶金作为一种新兴的冶金技术在提高资源利用率、降低能耗和环境污染等方面具有很大的潜力。
随着研究的深入和技术的不断创新,氯冶金技术将会得到更广泛的应用,并为工业生产和环境保护做出更大的贡献。