各种最小二乘算法总结
- 格式:pdf
- 大小:1.14 MB
- 文档页数:44
加权最小二乘定位算法-概述说明以及解释1.引言1.1 概述加权最小二乘定位算法是一种用于定位和测量的数学方法,通过对测量数据进行加权处理,可以更准确地计算出目标的位置信息。
这种定位算法在无线通信、室内定位、导航系统等领域有着广泛的应用,能够提高定位的精度和可靠性。
本文将介绍加权最小二乘定位算法的原理、应用和优势,同时对其发展前景进行展望,旨在帮助读者更深入地了解和应用这一定位算法。
1.1 概述部分的内容1.2 文章结构本文主要分为引言、正文和结论三部分。
引言部分将对加权最小二乘定位算法进行概述,并介绍文章的结构和目的。
正文部分将详细介绍加权最小二乘定位算法的原理、应用和优势。
结论部分将总结加权最小二乘定位算法的特点,并展望其未来的发展前景,为读者提供对该算法的全面了解和展望。
通过这样的结构,读者可以系统地学习和理解加权最小二乘定位算法的相关知识,并对其未来的发展方向有一个清晰的认识。
1.3 目的本篇文章旨在介绍加权最小二乘定位算法的原理、应用和优势。
通过对加权最小二乘定位算法的深入理解和分析,读者可以更好地了解该算法在定位领域的作用和意义。
同时,我们也将总结该算法的优势和未来发展前景,以及对其在实际应用中的展望。
通过本文的阐述,希望能够为相关领域的研究者和实践者提供有益的参考和启发。
法的展望": {}}}}请编写文章1.3 目的部分的内容2.正文2.1 加权最小二乘定位算法原理加权最小二乘定位算法原理加权最小二乘定位算法是一种基于数学模型的定位方法,其原理是通过对测量结果进行加权处理,利用加权最小二乘法来估计目标的位置。
这种算法可以有效地处理具有噪声和误差的测量数据,提高定位精度和稳定性。
该算法的原理主要包括以下几个步骤:1.数据预处理:首先对收集到的定位数据进行预处理,包括滤波、去除异常值等操作,以保证数据的准确性和可靠性。
2.数学建模:根据实际定位场景和信号传播特性,建立数学模型,描述目标与测量节点之间的空间关系和信号传播规律。
第一部分:程序设计思路、辨识结果分析和算法特点总结 (3)一:RLS遗忘因子法 (3)RLS遗忘因子法仿真思路和辨识结果 (3)遗忘因子法的特点: (4)二:RFF遗忘因子递推算法 (4)仿真思路和辨识结果 (4)遗忘因子递推算法的特点: (6)三:RFM限定记忆法 (6)仿真思路和辨识结果 (6)RFM限定记忆法的特点: (7)四:RCLS偏差补偿最小二乘法 (7)仿真思路和辨识结果 (7)RCLS偏差补偿最小二乘递推算法的特点: (9)五:增广最小二乘法 (9)仿真思路和辨识结果 (9)RELS增广最小二乘递推算法的特点: (11)六:RGLS广义最小二乘法 (11)仿真思路和辨识结果 (11)RGLS广义最小二乘法的特点: (13)七:RIV辅助变量法 (14)仿真思路和辨识结果 (14)RIV辅助变量法的特点: (15)八:Cor-ls相关最小二乘法(二步法) (15)仿真思路和辨识结果 (15)Cor—ls相关最小二乘法(二步法)特点: (17)九:MLS多级最小二乘法 (17)仿真思路和辨识结果 (17)MLS多级最小二乘法的特点: (21)十:yule_walker辨识算法 (21)仿真思路和辨识结果 (21)yule_walker辨识算法的特点: (22)第二部分:matlab程序 (23)一:RLS遗忘因子算法程序 (23)二:RFF遗忘因子递推算法 (24)三:RFM限定记忆法 (26)四:RCLS偏差补偿最小二乘递推算法 (29)五:RELS增广最小二乘的递推算法 (31)六;RGLS 广义最小二乘的递推算法 (33)七:Tally辅助变量最小二乘的递推算法 (37)八:Cor-ls相关最小二乘法(二步法) (39)九:MLS多级最小二乘法 (42)十yule_walker辨识算法 (46)第一部分:程序设计思路、辨识结果分析和算法特点总结一:RLS遗忘因子法RLS遗忘因子法仿真思路和辨识结果仿真对象如下:其中, v(k )为服从N(0,1)分布的白噪声。
算法学习笔记——最⼩⼆乘法的回归⽅程求解最⼩⼆乘法的回归⽅程求解最近短暂告别⼤数据,开始进⼊到了算法学习的领域,这时才真的意识到学海⽆涯啊,数学领域充满了⽆限的魅⼒和乐趣,可以说更甚于计算机带给本⼈的乐趣,由于最近正好看到线性代数,因此,今天我们就来好好整理⼀下机器学习领域中的⼀个⾮常重要的算法——最⼩⼆乘法,那么,废话不多说,我们直接开始吧 !1. 最⼩⼆乘法介绍1.1 举例现实⽣活中,我们经常会观察到这样⼀类现象,⽐如说某个男的,情商很⾼,⾝⾼180,家⾥很有钱,有房,有车,是个现充,结果就是他有好⼏个⼥朋友,那么从⼀个观测者的⾓度来看,该男性具备好多个特征(⽐如EQ值较⾼,⾝⾼较⾼,有钱对应的布尔值是True等等),输出结果就是⼥友的个数;这只是⼀条记录,那么,当我们将观测的样本数扩⼤到很多个时,每个个体作为输⼊,⽽输出就是每个个体的⼥朋友数量;于是在冥冥之中,我们就能感觉到⼀个男性拥有的⼥友数量应该和上述特征之间存在着某种必然的联系。
然后可以这样理解,决定⼀个男性可以交到⼥友数量的因素有很多,那么,在那么多的因素之中,肯定有⼏项因素⽐较重要,有⼏项相对不那么重要,我们暂时将每个因素的重要程度⽤⼀个数值来表⽰,可以近似理解为权重,然后将每个权重和因素的数值相乘相加,最后再加上⼀个常数项,那么这个式⼦就可以理解为⼀个回归⽅程。
1.2 SSE,SST和SSR有了上述的基础,我们就可以做这样⼀件事,预先设定好⼀个⽅程(先简单⼀点,假设该⽅程只有⼀个⾃变量):y = ax + b,a和b是我们要求出来的;那么,我们可不可以这样理解,每输⼊⼀个x,即能通过这个计算式输出⼀个结果y,如果输出的y和真实的y偏差是最⼩的,那么不就能说明这个⽅程拟合的是最佳的了吗?顺着这个思路,原问题就可以演变成⼀个求解当a和b各为多少时能使得这个偏差值最⼩的求最优化问题了,或者说我们的⽬标就是求使得SSE最⼩的a和b的值。
最小二乘法原理及极值点判定(2013-06-27 05:50:07)转载▼标签:最小二乘法极值分类:Tim赤子心最小二乘法的本质原理本文主要以最简单的二元线性函数为基础,阐述最小二乘法的原理,事实上,最小二乘法可以更广泛地应用于非线性方程中,但本文以介绍为主,希望能以最简单的形式,使读者能够掌握最小二乘法的意义。
在物理实验数据统计时,我们会记录一些数据,记做数据x和数据y。
但是,在记录数据后,我们依然不知道x和y 的具体关系。
例如,测算男人手掌面积和身高的关系,我们会得到两组数据,如图,图1数据点分布这并不是一条严格意义上的直线,但这些数据对于实验研究员来说,可以作为某种依据,从而判断出两种数据之间的关系。
根据两个量的许多组观测数据来确定它们的函数曲线,这就是实验数据处理中的曲线拟合问题。
事实上,我们更关注的是如何才能找到这么一条漂亮的曲线。
那么,找到这条曲线的方法称作“最小二乘法”。
曲线拟合中最基本和最常用的是直线拟合。
设x和y之间的函数关系由直线方程y=ax+b给出。
式中有两个待定参数,b代表截距,a代表斜率。
下面的问题在于,如何找到“最合适”的a和b使得尽可能多的数据落在或者更加靠近这条拟合出来的直线上。
即数据对这条直线的逼近程度最佳。
当然,当我们将直线拟合出来之后,就可以反过来进行预测了。
所以说最小二乘法是很有用的一种测算方法。
实际上,我们并不关心x和y到底是多少,因为x和y是给定的,当然x和y与其本质的内在关系之间肯定存在误差。
我们关心的是方程中的a和b,也就是说,在这个待定的方程中,a和b才是所求的变量,它们可以描述出x和y的关系。
所以我们接下来的任务就是找到一组最好的a和b。
我们对a和b的要求就是,使得所有x和y相对拟合直线的误差总和最小。
也就是说,我们要考虑的是,要使这些数据点距离拟合直线的和最小,距离最短,这样就可以使得尽可能多的数据成为有效点。
接下来我们的工作就是,最小化误差了。
最小二乘问题常用的那些优化方法题外话:从开始学习Slam十四讲第六章的时候就开始想写一个文档整理一下这些年遇到的优化算法,一周学一章,现在都学到第9章了,总算半整理半引用整理出来了...如果学一个东西是不断坑自己+自己去填坑的过程,下一次应该不会摔的那么疼了吧对于一个最小二乘问题的求解,根据目标函数可分为线性最小二乘和非线性最小二乘;对于非线性最小二乘问题,通常是进行泰勒展开将问题线性化,求解线性增量方程或是直接迭代找到最优值;对于线性最小二乘问题,通常是直接进行展开、求导等于零,构造\(A\vec{x}=\vec{b}\)的解方程问题,使用直接分解法或是迭代法求解;写完后发现文档较长,还是列一下有些什么东西吧:•梯度下降与其扩展算法(随机梯度下降、mini-batch梯度下降以及批梯度下降)•牛顿法与其优化算法(拟牛顿法、BFGS、LBFGS、高斯牛顿法以及列文伯格-马夸尔特法)•求解线性最小二乘问题的那些:1)直接分解(LU、LUP、Cholesky分解求解方阵线性方程组问题,QR分解解决欠定方程组问题以及超定方程组的最小二乘解);2)迭代法(雅各比迭代、高斯赛德尔迭代、SOR以及超级好用的共轭梯度)•一些自己觉得不错的博客介绍;非线性最小二乘问题对于非线性最小二乘问题,通常会将目标函数进行泰勒展开,并将问题转换为一个线性求解问题:设有一个最小二乘问题:\[\min_{\vec{x}}F(\vec{x})=\frac{1}{2}||f(\vec{x})||_2 ^2\tag{1} \]有\(\vec{x}\in {R^n}, f\)是非线性函数,求解这个问题的常规思路是:1.给定某个初始值\(\vec{x}_0\)2.对于第k次迭代,寻找一个增量\(\Delta\vec{x}_k\),使得\(||f(\vec{x}_k+\Delta\vec{x}_k)||_2^2\)3.\(\Delta\vec{x}_k\)足够小,则停止4.否则,令\(\vec{x}_{k+1}=\vec{x}_k +\Delta\vec{x}_k\),返回第2步将非线性最小二乘问题求解的目标:从寻找最优值转换为寻找最小的\(\Delta\vec{x}_k\),当函数下降到\(\Delta\vec{x}_k\)很小的时候,则等价为已找到最优值。
第3章 线性动态模型参数辨识-最小二乘法3.1 辨识方法分类根据不同的辨识原理,参数模型辨识方法可归纳成三类: ① 最小二乘类参数辨识方法,其基本思想是通过极小化如下准则函数来估计模型参数:min )()ˆ(ˆ==∑=θθLk k J 12ε 其中)(k ε代表模型输出与系统输出的偏差。
典型的方法有最小二乘法、增广最小二乘法、辅助变量法、广义最小二乘法等。
② 梯度校正参数辨识方法,其基本思想是沿着准则函数负梯度方向逐步修正模型参数,使准则函数达到最小,如随机逼近法。
③ 概率密度逼近参数辨识方法,其基本思想是使输出z 的条件概率密度)|(θz p 最大限度地逼近条件0θ下的概率密度)|(0θz p ,即)|()ˆ|(0m a x θθz p z p −−→−。
典型的方法是极大似然法。
3.2 最小二乘法的基本概念● 两种算法形式 ① 批处理算法:利用一批观测数据,一次计算或经反复迭代,以获得模型参数的估计值。
② 递推算法:在上次模型参数估计值)(ˆ1-k θ的基础上,根据当前获得的数据提出修正,进而获得本次模型参数估计值)(ˆk θ,广泛采用的递推算法形式为() ()()()~()θθk k k k d z k =-+-1K h其中)(ˆk θ表示k 时刻的模型参数估计值,K (k )为算法的增益,h (k -d ) 是由观测数据组成的输入数据向量,d 为整数,)(~k z 表示新息。
● 最小二乘原理定义:设一个随机序列)},,,(),({L k k z 21∈的均值是参数θ 的线性函数E{()}()T z k k θ=h其中h (k )是可测的数据向量,那么利用随机序列的一个实现,使准则函数21()[()()]LT k J z k k θθ==-∑h达到极小的参数估计值θˆ称作θ的最小二乘估计。
● 最小二乘原理表明,未知参数估计问题,就是求参数估计值θˆ,使序列的估计值尽可能地接近实际序列,两者的接近程度用实际序列与序列估计值之差的平方和来度量。
最小二乘估计随着空间技术的发展,人类的活动开始进入了太空,对航天器(包括人造地球卫星、宇宙飞船、空间站和空间探测器等)的观测手段和轨道确定提出了很高的精度要求。
在计算技术高速发展的推动下,各种估计理论也因此引入到轨道估计方法中。
大约在1795年高斯在他那著名的星体运动轨道预报研究工作中提出了最小二乘法。
最小二乘法就成了估计理论的奠基石。
最小二乘估计不涉及观测数据的分布特性,它的原理不复杂,数学模型和计算方法也比较简单,编制程序不难,所以它颇受人们的重视,应用相当广泛。
对于严格的正态分布数据,最小二乘估值具有最优一致无偏且方差最小的特性。
实践证明,在没有粗差的情况下,大部分测量数据基本上符合正态分布。
这是最小二乘估计至今仍作为估计理论核心的基础。
最早的轨道确定就是利用最小二乘法,用全部观测数据确定某一历元时刻的轨道状态的“最佳”估值,即所谓的批处理算法定轨。
长期以来,在整个天体力学领域之中,各种天体的定轨问题,几乎都是采用这一方法。
卫星精密定轨的基本原理为:利用含有误差的观测资料和不精确的数学模型,通过建立观测量与卫星状态之间的数学关系,参数估计得到卫星状态及有关参数的最佳估值。
参数估计的基本问题就是对一个微分方程并不精确知道的动力学过程,用不精确的初始状态X0和带有误差的观测资料,求解其在某种意义下得卫星运动状态的“最佳”估值X。
常用的参数估计方法有两种,最小二乘法和卡尔曼滤波方法。
最小二乘法是在得到所有的观测数据之后,利用这些数据来估计初始时刻状态量的值,由于用到的观测数据多、计算方法具有统计特性,因此该方法精度高。
卡尔曼滤波在观测数据更新后,利用新的观测数据对状态量进行改进得到这一观测时刻的状态量,卡尔曼滤波适用于实时处理。
卫星精密定轨输运高精度的事后数据处理,通常采用最小二乘法进行参数估计。
记观测量的权阵为P。
利用加权最小二乘法计算总的观测方程方程y二Hx0•;,得x =(H T PH)JH T py卫星的参考状态为X; = X0 x0在精密定轨的过程中,由于状态方程和观测方程在线性化过程中会产生误差,上式的解算需要通过不断的迭代。