定义1
由n个数 a1, a2,…, an 所组成的有序数组
= (a1, a2,…, an)
称为n维向量. 数 a1, a2,… an 称为向量 的分量 (坐标),aj 称为向量 的第 j 个分量(坐标). 一般地,我们用, , 表示向量,a, b, c 或 x, y, z 表示其分量.
线性相关.
定理3. 任意 n+1 个 n 维向量都是线性相关的.
推论3. 若1, 2,… m为 n 维向量.且 m > n
则此向量组 线性相关.
定义3. 设 T 是 n 维向量所组成的向量组.
如果 T 的部分组 1, 2,…,r 满足
(i) 1, 2,…, r 线性无关; (ii) T, 可由1, 2,…, r 线性表出, 即 , 1, 2,…,r 线性相关. 则称向量组1, 2,…, r为向量组T的一个极大线性无 关向量组,也称极大无关组.
0= 1 (1 + 2 )+ 2 (2+ 3 )+ 3(3 + 1 ) = (1+ 3)1 + (1 +2)2 + (2 +3 )3.
1+3 =0, 1+ 2 =0,
2+3 =0.
1+2+ 3=0, 1=2= 3=0. 故 1 , 2 , 3 线性无关. 证毕.
且 1, 2,…, r, 0, …, 0 不全为零,
即1, 2, …, r , r+1 ,…,m 线性相关.
推论1. 若1, 2,…, r 线性无关. 则其部分组 (由1, 2,…, r 中某些向量组成的向量组)
也线性无关.
推论2. 若向量组中含有零向量, 则 此向量组