当前位置:文档之家› 大学物理(电场)

大学物理(电场)

大学物理(电场)
大学物理(电场)

大 学 物 理(电 学)

一、选择题(共24分)

1(本题3分)如图所示,两个同心均匀带电球面,内球面半径为R 1、带有电荷Q 1,外球面

半径为R 2、带有电荷Q 2,则在外球面外面、距离球心为r 处的P 点的场强大小E 为:

(A)

202

14r Q Q επ+. (B)()()2

202210144R r Q R r Q -π+-πεε. (C) ()2

120214R R Q Q -π+ε. (D) 2

02

4r

Q επ. [ ] 2(本题3分)A 和B 为两个均匀带电球体,A 带电荷+q ,B 带电荷-q ,作一与A 同心的球面S 为高斯面,如图所示.则

(A) 通过S 面的电场强度通量为零,S 面上

各点的场强为零.

(B) 通过S 面的电场强度通量为q / ε0,S 面上场强的大小为2

0π4r q

E ε=

(C) 通过S 面的电场强度通量为(- q ) / ε0,S 面上场强的大小为2

0π4r

q

E ε=. (D) 通过S 面的电场强度通量为q / ε0,但S 面上各点的场强不能直接由高斯

定理求出. [ ]

3(本题3分)半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关系曲线为:[ ]

(C (A (B (D

4(本题3分)静电场中某点电势的数值等于 (A)试验电荷q 0置于该点时具有的电势能. (B)单位试验电荷置于该点时具有的电势能.

(C)单位正电荷置于该点时具有的电势能.

(D)把单位正电荷从该点移到电势零点外力所作的功. [ ]

5(本题3分)图示一均匀带电球体,总电荷为+Q ,其外部同心地罩

一内、外半径分别为r 1、r 2的金属球壳.设无穷远处为电势零点,则

在球壳内半径为r 的P 点处的场强和电势为:

(A) 2

04r Q E επ=,r

Q U 04επ=. (B) 0=E ,104r Q U επ=.

(C) 0=E ,r Q

U 04επ=.

(D) 0=E ,2

04r Q

U επ=. [ ]

6(本题3分) 两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则

(A) 空心球电容值大. (B) 实心球电容值大.

(C) 两球电容值相等. (D) 大小关系无法确定. [ ] 7(本题3分)一空气平行板电容器充电后与电源断开,然后在两极板间充满某种各向同性、均匀电介质,则电场强度的大小E 、电容C 、电压U 、电场能量W 四个量各自与充入介质前相比较,增大(↑)或减小(↓)的情形为

(A) E ↑,C ↑,U ↑,W ↑. (B) E ↓,C ↑,U ↓,W ↓. (C) E ↓,C ↑,U ↑,W ↓.

(D) E ↑,C ↓,U ↓,W ↑. [ ]

8(本题3分)真空中有“孤立的”均匀带电球体和一均匀带电球面,如果它们的半径和所带的电荷都相等.则它们的静电能之间的关系是 (A) 球体的静电能等于球面的静电能. (B) 球体的静电能大于球面的静电能. (C) 球体的静电能小于球面的静电能.

(D) 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能. [ ] 二、填空题(共28分)

9(本题5分)两块“无限大”的均匀带电平行平板,其电荷面密度分别为σ( σ>0)及-2 σ,如图所示.试写出各区域的电场强度E .

Ⅰ区E

的大小__________________,方向____________.

Ⅱ区E

的大小__________________,方向____________.

Ⅲ区E

的大小__________________,方向_____________.

10(本题3分)由一根绝缘细线围成的边长为l 的正方形线框,使它均匀带电,其电荷线 密度为λ,则在正方形中心处的电场强度的大小E =_____________.

11(本题5分)电荷均为+q 的两个点电荷分别位于x 轴上的+a

和-a 位置,如图所示.则y 轴上各点电场强度的表示式为

E

=______________________,场强最大值的位置在y =

__________________________.

σⅠⅡ

-2σ

+q +q -a

+a

O

x

y

12(本题3分)如图所示,在电荷为q 的点电荷的静电场中,将一电荷为q 0的试验电荷从a 点经任

意路径移动到b 点,外力所作的功A =______________.

13(本题3分) 图示为某静电场的等势面

在图中画出该电场的电场线.

14(本题3分)知立方导体中心O 处的电势为U 0____________.

15(本题3分)一孤立带电导体球,其表面处场强的方向____________表面;当把另一带电体放在这个导体球附近时,该导体球表面处场强的方向_________________表面.

16(本题3分)两个空气电容器1和2,并联后接在电压恒定的直流

电源上,如图所示.今有一块各向同性均匀电介质板缓慢地插入电容器

1中,则电容器组的总电荷将__________,电容器组储存的电能将

__________.(填增大,减小或不变)

三、计算题(共38分) 17(本题10分)真空中有一高h =20 cm 、底面半径R =10 cm

的圆锥体.在其顶点与底面中心连线的中点上置q =10 –6 C 的点

电荷,如图所示. 求通过该圆锥体侧面的电场强度通量.(真空

介电常量ε 0=8.85×10-12 C 2·N -1·m -2 )

18(本题5分)若电荷以相同的面密度σ 均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密

度σ 的值. (ε0=8.85×10-12C 2 / N ·m 2 )

19(本题5分)一环形薄片由细绳悬吊着,环的外半径为R ,内半

径为R /2,并有电荷Q 均匀分布在环面上.细绳长3R ,也有电荷Q 均

匀分布在绳上,如图所示,试求圆环中心O 处的电场强度(圆环中心在细绳延长线上).

20(本题10分)如图所示,一电荷面密度为σ的“无限大”平面,在距离平面a 处的一点的场强大小的一半是由平面上的一个半径为R 的圆面积范围内的电荷所产生的.试求该圆半径的大小.

21(本题8分)两金属球的半径之比为1∶4,带等量的同号电荷.当两者的距离远大于两球半径时,有一定的电势能.若将两球接触一下再移回原处,则电势能变为原来的多少倍?

四、错误改正题(共5分)

22(本题5分)有若干个电容器,将它们串联或并联时,如果其中有一个电容器的电容值增大,则:

(1) 串联时,总电容随之减小.

(2) 并联时,总电容随之增大.

上述说法是否正确, 如有错误请改正.

五、回答问题(共5分)

23(本题5分)为什么在无电荷的空间里电场线不能相交?

大学物理试卷(电学)答案

一、选择题(共24分) A D B C D C B B

二、填空题(共28分) 9(本题5分)

02εσ

向右 2分 023εσ 向右 2分 0

2εσ 向左 1分 10(本题3分)

0 3分

11(本题5分)

()

j

y a qy 2

/322042+πε, (j 为y 方向单位矢量) 3分 2/a ± 2分

12(本题3分)

???? ??-πa b

r r q q 1140

0ε 3分

13(本题3分)

答案见图. 3分

14(本题3分)

U 0. 3分

15(本题3分)

垂直于 1分 仍垂直于 2分

16(本题3分)

增大 1分 增大 2分 三、计算题(共38分)

17(本题10分)解:以顶点与底面中心连线的中点为球心,()222/h R r +=为半径作一球面.可以看出,通过圆锥侧面的电通

量(电场强度通量)等于通过整个球面的电通量减去通过以圆锥底面为

底的球冠面的电通量.

通过整个球面的电通量 Φ0 =

q /ε0 2分

通过球冠面的电通量 Φ1 = Φ0 S /S 0

()2042/2r h r r q π-π?=ε()???

? ??+-=

2202/2/12h R h q ε 式中S 为球冠面积S =2πr (r -h /2),S 0为整球面积. 4分 通过圆锥侧面的电通量为Φ2, Φ2=Φ0-Φ1

()2200022/42h R qh q q

++-=εεεΦ()???

?

??++

=

22

2/2/12h R h q

ε = 9.6×104 N ·m 2/C 4分

18(本题5分)解:球心处总电势应为两个球面电荷分别在球心处产生的电势叠加,即

???? ??+π=

22110

41

r q r q U ε???

? ??π+ππ=22212104441r r r r σσε()210r r +=εσ 3分

故得 92

101085.8-?=+=r r U

εσ C/m 2 2分

19(本题5分)解:先计算细绳上的电荷在O 点产生的场强.选细绳顶端作坐标原点O ,x 轴向下为正.在x 处取一电荷元

d q = λd x = Q d x /(3R )

它在环心处的场强为 ()

2

0144d d x R q

E -π=ε ()

2

0412d x R R x

Q -π=ε 1分 整个细绳上的电荷在环心处的场强

()203020116412R

Q

x R dx R Q E R εεπ=-π=

? 2分 圆环上的电荷分布对环心对称,它在环心处的场强

E 2=0 1分

由此,合场强 i R

Q

i E E

2

0116επ=

= 1分

20(本题10分)解:电荷面密度为σ的无限大均匀带电平面在任意点的场强大小为

E =σ / (2ε0) 2分

以图中O 点为圆心,取半径为r →r +d r 的环形面积,其电量为

d q = σ2πr d r 2分

它在距离平面为a 的一点处产生的场强 (

)

2

/322

02d r

a a r d r

E +=

εσ 2分

则半径为R 的圆面积内的电荷在该点的场强为:

R

3x

x

()

?+=

R

r a

r

r a E 0

2

/32

2

d 2εσ???

?

??+-=

220

12R a a εσ 2分 由题意,令E =σ / (4ε0),得到R =a 3 2分

21(本题8分)解:因两球间距离比两球的半径大得多,这两个带电球可视为点电荷.设两球各带电荷Q ,若选无穷远处为电势零点,则两带电球之间的电势能为 )4/(020d Q W επ=

式中d 为两球心间距离. 2分

当两球接触时,电荷将在两球间重新分配.因两球半径之比为1∶4.故两球电荷之比Q 1∶Q 2 = 1∶4.

Q 2 = 4 Q 1 2分

但 Q Q Q Q Q Q 25411121==+=+

∴5/21Q Q =,5/85/242Q Q Q =?= 2分 当返回原处时,电势能为 002125

16

4W d Q Q W =π=

ε 2分

四、错误改正题(共5分) 22(本题5分)

答:(1) 串联时,总电容随之增大. 3分

(2) 正确. 2分 五、回答问题(共5分) 23(本题5分)

答:由实验和理论知道,静电场中任一给定点上,场强是唯一确定的,即其大小和方向都是确定的.用电场线形象描述静电场的空间分布时,电场线上任一点的切线方向表示该点的场强方向.如果在无电荷的空间里某一点上有几条电场线相交的话,则过此交点对应于每一条电场线都可作出一条切线,这意味着交点处的场强有好几个方向,这与静电场中任一给定点场强具有唯一确定方向相矛盾。

故:无电荷的空间里电场线不能相交. 5分

大学物理静电场总结

第七章、静 电 场 一、两个基本物理量(场强和电势) 1、电场强度 ⑴、 试验电荷在电场中不同点所受电场力的大小、方向都可能不同;而在 同一点,电场力的大小与试验电荷电量成正比,若试验电荷异号,则所 受电场力的方向相反。我们就用 q F 来表示电场中某点的电场强度,用 E 表示,即q F E = 对电场强度的理解: ①反映电场本身性质,与所放电荷无关。 ②E 的大小为单位电荷在该点所受电场力,E 的方向为正电荷所受电场力 的方向。 ③单位为N/C 或V/m ④电场中空间各点场强的大小和方向都相同称为匀强电场 ⑵、点电荷的电场强度 以点电荷Q 所在处为原点O,任取一点P(场点),点O 到点P 的位矢为r ,把试 验电荷q 放在P 点,有库仑定律可知,所受电场力为: r Q q F E 2 041επ== ⑶常见电场公式 无限大均匀带电板附近电场: εσ 02= E

2、电势 ⑴、电场中给定的电势能的大小除与电场本身的性质有关外,还与检验电荷 有关,而比值 q E pa 0 则与电荷的大小和正负无关,它反映了静电场中某给 定点的性质。为此我们用一个物理量-电势来反映这个性质。即q E p V 0 = ⑵、对电势的几点说明 ①单位为伏特V ②通常选取无穷远处或大地为电势零点,则有: ?∞ ?==p p dr E V q E 0 即P 点的电势等于场强沿任意路径从P 点到无穷远处的线积分。 ⑶常见电势公式 点电荷电势分布:r q V επ04= 半径为R 的均匀带点球面电势分布:R q V επ04= ()R r ≤≤0 r q V επ04= ()R r ≥ 二、四定理 1、场强叠加定理 点电荷系所激发的电场中某点处的电场强度等于各个点电荷单独存在时对 该点的电场强度的矢量和。即

大学物理下册知识点总结(期末)

大学物理下册 学院: 姓名: 班级: 第一部分:气体动理论与热力学基础 一、气体的状态参量:用来描述气体状态特征的物理量。 气体的宏观描述,状态参量: (1)压强p:从力学角度来描写状态。 垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。单位 Pa (2)体积V:从几何角度来描写状态。 分子无规则热运动所能达到的空间。单位m 3 (3)温度T:从热学的角度来描写状态。 表征气体分子热运动剧烈程度的物理量。单位K。 二、理想气体压强公式的推导: 三、理想气体状态方程: 1122 12 PV PV PV C T T T =→=; m PV RT M ' =;P nkT = 8.31J R k mol =;23 1.3810J k k - =?;231 6.02210 A N mol- =?; A R N k = 四、理想气体压强公式: 2 3kt p nε =2 1 2 kt mv ε=分子平均平动动能 五、理想气体温度公式: 2 13 22 kt mv kT ε== 六、气体分子的平均平动动能与温度的关系: 七、刚性气体分子自由度表 八、能均分原理: 1.自由度:确定一个物体在空间位置所需要的独立坐标数目。 2.运动自由度: 确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度 (1)质点的自由度: 在空间中:3个独立坐标在平面上:2 在直线上:1 (2)直线的自由度: 中心位置:3(平动自由度)直线方位:2(转动自由度)共5个 3.气体分子的自由度 单原子分子 (如氦、氖分子)3 i=;刚性双原子分子5 i=;刚性多原子分子6 i= 4.能均分原理:在温度为T的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为 1 2 kT 推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。 5.一个分子的平均动能为: 2 k i kT ε=

大学物理物理知识点总结!!!!!!

y 第一章质点运动学主要容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动程 ()r r t =r r 运动程的分量形式() ()x x t y y t =???=?? 位移 是描述质点的位置变化的物理量 △t 时间由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △,r =r △路程是△t 时间质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和向的物理量) 平均速度 x y r x y i j i j t t t u u u D D ==+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度向是曲线切线向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x ????ρ ?2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ? ?+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x ? 二.抛体运动

大学物理(电场)

大 学 物 理(电 学) 一、选择题(共24分) 1(本题3分)如图所示,两个同心均匀带电球面,内球面半径为R 1、带有电荷Q 1,外球面 半径为R 2、带有电荷Q 2,则在外球面外面、距离球心为r 处的P 点的场强大小E 为: (A) 202 14r Q Q επ+. (B)()()2 202210144R r Q R r Q -π+-πεε. (C) ()2 120214R R Q Q -π+ε. (D) 2 02 4r Q επ. [ ] 2(本题3分)A 和B 为两个均匀带电球体,A 带电荷+q ,B 带电荷-q ,作一与A 同心的球面S 为高斯面,如图所示.则 (A) 通过S 面的电场强度通量为零,S 面上 各点的场强为零. (B) 通过S 面的电场强度通量为q / ε0,S 面上场强的大小为2 0π4r q E ε= . (C) 通过S 面的电场强度通量为(- q ) / ε0,S 面上场强的大小为2 0π4r q E ε=. (D) 通过S 面的电场强度通量为q / ε0,但S 面上各点的场强不能直接由高斯 定理求出. [ ] 3(本题3分)半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关系曲线为:[ ] (C (A (B (D 4(本题3分)静电场中某点电势的数值等于 (A)试验电荷q 0置于该点时具有的电势能. (B)单位试验电荷置于该点时具有的电势能. (C)单位正电荷置于该点时具有的电势能. (D)把单位正电荷从该点移到电势零点外力所作的功. [ ]

5(本题3分)图示一均匀带电球体,总电荷为+Q ,其外部同心地罩 一内、外半径分别为r 1、r 2的金属球壳.设无穷远处为电势零点,则 在球壳内半径为r 的P 点处的场强和电势为: (A) 2 04r Q E επ=,r Q U 04επ=. (B) 0=E ,104r Q U επ=. (C) 0=E ,r Q U 04επ=. (D) 0=E ,2 04r Q U επ=. [ ] 6(本题3分) 两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则 (A) 空心球电容值大. (B) 实心球电容值大. (C) 两球电容值相等. (D) 大小关系无法确定. [ ] 7(本题3分)一空气平行板电容器充电后与电源断开,然后在两极板间充满某种各向同性、均匀电介质,则电场强度的大小E 、电容C 、电压U 、电场能量W 四个量各自与充入介质前相比较,增大(↑)或减小(↓)的情形为 (A) E ↑,C ↑,U ↑,W ↑. (B) E ↓,C ↑,U ↓,W ↓. (C) E ↓,C ↑,U ↑,W ↓. (D) E ↑,C ↓,U ↓,W ↑. [ ] 8(本题3分)真空中有“孤立的”均匀带电球体和一均匀带电球面,如果它们的半径和所带的电荷都相等.则它们的静电能之间的关系是 (A) 球体的静电能等于球面的静电能. (B) 球体的静电能大于球面的静电能. (C) 球体的静电能小于球面的静电能. (D) 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能. [ ] 二、填空题(共28分) 9(本题5分)两块“无限大”的均匀带电平行平板,其电荷面密度分别为σ( σ>0)及-2 σ,如图所示.试写出各区域的电场强度E . Ⅰ区E 的大小__________________,方向____________. Ⅱ区E 的大小__________________,方向____________. Ⅲ区E 的大小__________________,方向_____________. 10(本题3分)由一根绝缘细线围成的边长为l 的正方形线框,使它均匀带电,其电荷线 密度为λ,则在正方形中心处的电场强度的大小E =_____________. 11(本题5分)电荷均为+q 的两个点电荷分别位于x 轴上的+a 和-a 位置,如图所示.则y 轴上各点电场强度的表示式为 E =______________________,场强最大值的位置在y = __________________________. σⅠⅡ Ⅲ -2σ +q +q -a +a O x y

大学物理下册知识点总结材料(期末)

大学物理下册 学院: : 班级: 第一部分:气体动理论与热力学基础一、气体的状态参量:用来描述气体状态特征的物理量。 气体的宏观描述,状态参量: (1)压强p:从力学角度来描写状态。 垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。单位 Pa (2)体积V:从几何角度来描写状态。 分子无规则热运动所能达到的空间。单位m 3 (3)温度T:从热学的角度来描写状态。 表征气体分子热运动剧烈程度的物理量。单位K。 二、理想气体压强公式的推导: 三、理想气体状态方程: 1122 12 PV PV PV C T T T =→=; m PV RT M ' =;P nkT = 8.31J R k mol =;23 1.3810J k k - =?;231 6.02210 A N mol- =?; A R N k = 四、理想气体压强公式: 2 3kt p nε =2 1 2 kt mv ε=分子平均平动动能 五、理想气体温度公式: 2 13 22 kt mv kT ε== 六、气体分子的平均平动动能与温度的关系: 七、刚性气体分子自由度表 八、能均分原理: 1.自由度:确定一个物体在空间位置所需要的独立坐标数目。 2.运动自由度: 确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度 (1)质点的自由度: 在空间中:3个独立坐标在平面上:2 在直线上:1 (2)直线的自由度: 第一部分:气体动理论与热力学基础 第二部分:静电场 第三部分:稳恒磁场 第四部分:电磁感应 第五部分:常见简单公式总结与量子物理基础

中心位置:3(平动自由度) 直线方位:2(转动自由度) 共5个 3. 气体分子的自由度 单原子分子 (如氦、氖分子)3i =;刚性双原子分子5i =;刚性多原子分子6i = 4. 能均分原理:在温度为T 的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为 12 kT 推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。 5.一个分子的平均动能为:2 k i kT ε= 五. 理想气体的能(所有分子热运动动能之和) 1.1mol 理想气体2 i E RT = 5. 一定量理想气体()2i m E RT M νν' == 九、气体分子速率分布律(函数) 速率分布曲线峰值对应的速率 v p 称为最可几速率,表征速率分布在 v p ~ v p + d v 中的分子数,比其它速率的都多,它可由对速率分布函数求极值而得。即 十、三个统计速率: a. 平均速率 M RT M RT m kT dv v vf N vdN v 60.188)(0 === == ??∞ ∞ ππ b. 方均根速率 M RT M k T v dv v f v N dN v v 73.13)(20 2 2 2 == ? = = ??∞ C. 最概然速率:与分布函数f(v)的极大值相对应的速率称为最概然速率,其物理意义为:在平衡态条件下,理想气体分子速率分布在p v 附近的单位速率区间的分子数占气体总分子数的百分比最大。 M RT M RT m kT v p 41.1220=== 三种速率的比较: 各种速率的统计平均值: 理想气体的麦克斯韦速率分布函数 十一、分子的平均碰撞次数及平均自由程: 一个分子单位时间里受到平均碰撞次数叫平均碰撞次数表示为 Z ,一个分子连续两次碰撞之间经历的平均自由路程叫平均自由程。表示为 λ 平均碰撞次数 Z 的导出: 热力学基础主要容 一、能 分子热运动的动能(平动、转动、振动)和分子间相互作用势能的总和。能是状态的单值函数。 对于理想气体,忽略分子间的作用 ,则 平衡态下气体能: 二、热量 系统与外界(有温差时)传递热运动能量的一种量度。热量是过程量。 )(12T T mc Q -=)(12T T Mc M m -=) (12T T C M m K -= 摩尔热容量:( Ck =Mc ) 1mol 物质温度升高1K 所吸收(或放出)的热量。 Ck 与过程有关。 系统在某一过程吸收(放出)的热量为: )(12T T C M m Q K k -= 系统吸热或放热会使系统的能发生变化。若传热过程“无限缓慢”,或保持系统与外界无穷小温差,可看成准静态传热过程。 准静态过程中功的计算: 元功: 41 .1:60.1:73.1::2=p v v v Z v = λn v d Z 2 2π=p d kT 22πλ= n d Z v 221πλ= = kT mv e v kT m v f 22232 )2(4)(-=ππ?∞ ?=0 )(dv v f v v ? ∞ ?= 22)(dv v f v v ∑∑+i pi i ki E E E =内) (T E E E k =理 =RT i M m E 2 =PdV PSdl l d F dA ==?=

大学物理常用公式(电场磁场-热力学)

第四章 电 场 一、常见带电体的场强、电势分布 1)点电荷:2 01 4q E r πε= 04q U r πε= 2)均匀带电球面(球面半径R )的电场: 2 00 ()()4r R E q r R r πε≤?? =?>?? 00()4()4q r R r U q r R R πεπε?>??=??≤?? 3)无限长均匀带电直线(电荷线密度为λ):02E r λ πε= ,方向:垂直于带电直线。 4)无限长均匀带电圆柱面(电荷线密度为λ): 00()() 2r R E r R r λ πε≤?? =?>?? 5)无限大均匀带电平面(电荷面密度为σ)的电场:0/2E σε=,方向:垂直于平面。 二、静电场定理 1、高斯定理:0 e S q E dS φε= ?= ∑?v v ? 静电场是有源场。 q ∑指高斯面内所包含电量的代数和;E ? 指高斯面上各处的电场强度,由高斯面内外的全 部电荷产生; S E dS ??v v ?指通过高斯面的电通量,由高斯面内的电荷决定。 2、环路定理:0l E dl ?=?v v ? 静电场是保守场、电场力是保守力,可引入电势能 三、 求场强两种方法 1、利用场强势叠加原理求场强 分离电荷系统:1 n i i E E ==∑v v ;连续电荷系统:E dE =?v v 2、利用高斯定理求场强 四、求电势的两种方法 1、利用电势叠加原理求电势 分离电荷系统:1 n i i U U == ∑;连续电荷系统: U dU =? 2、利用电势的定义求电势 r U E dl =?? v v 电势零点 五、应用 点电荷受力:F qE =v v 电势差: b ab a b a U U U E dr =-=??

大学物理电场部分问题详解

2/εδE o x 02/εδE o x 2/εδ0 2/εδ-E o x 0 2/εδ0 2/εδ-o E x 第六章 电荷的电现象和磁现象 序号 学号 专业、班级 一 选择题 [ C ]1 .一带电体可作为点电荷处理的条件是 (A)电荷必须呈球形分布。 (B)带电体的线度很小。 (C)带电体的线度与其它有关长度相比可忽略不计。 (D)电量很小。 [ D ]2.真空中一“无限大”均匀带负电荷的平面如图所示,其电场的场强分布图线应是(设场强方向向右为正、向左为负) (A ) (B ) (C ) (D ) 二 填空题 1. 在点电荷系的电场中,任一点的电场强度等于 ________________________________略________________________________________________, 这称为场强叠加原理。 2.静电场中某点的电场强度,其数值和方向等于_________略____________________________ ___________________________________________________________________________。 3.两块“无限大”的带电平行电板,其电荷面密度分别为δ(δ> 0)及-2δ,如图所示, 试写出各区域的电场强度E 。 Ⅰ区E 的大小 0 2εσ , 方向 向右 。 Ⅱ区E 的大小 23εσ , 方向 向右 。 δ -x o I II III σ 2-σ 02/εσ0/εσ0 2/2ε0 22εσ

Ⅲ区E 的大小 0 2εσ, 方向 向左 。 4.A 、B 为真空中两个平行的“无限大”均匀带电平面,已知两平面间的电场强度大小都为E 0 , 两平面外侧电场强度大小都为 E 0 / 3 ,方向如图。则A 、B 两平面上的电荷面密度分别为 A δ= 3/E 200ε- , B δ = 3/E 400ε 。 三 计算题 1.一段半径为a 的细圆弧,对圆心的角为θ0,其上均匀分布有正电荷 q ,如图所示,试以 a , q , θ0表示出圆心O 处的电场强度。 解:建立如图坐标系,在细圆弧上取电荷元l a q q d d 0 ?=θ, 电荷元视为点电荷,它在圆心处产生的场强大小为: θθπεθπεπεd 4d 44d d 0 2003020a q l a q a q E === 方向如图所示。将E d 分解, θθcos d d ,sin d d E E E E y x -=-= 由对称性分析可知,? ==0d x x E E 2 sin 2d cos 4d 0 202 2 02 000 θθπεθ θθπεθθ a q a q E E y y - =-==??- 圆心O 处的电场强度j a q j E E y 2 sin 200 20θθπε- ==

大学物理静电场知识点总结

大学物理静电场知识点 总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

大学物理静电场知识点总结 1. 电荷的基本特征:(1)分类:正电荷(同质子所带电荷),负电荷(同电子所带电荷)(2)量子化特性(3)是相对论性不变量(4)微观粒子所带电荷总是存在一种对称性 2. 电荷守恒定律 :一个与外界没有电荷交换的孤立系统,无论发生什么变化,整个系统的电荷总量必定保持不变。 3.点电荷:点电荷是一个宏观范围的理想模型,在可忽略带电体自身的线度时才成立。 4.库仑定律: 表示了两个电荷之间的静电相互作用,是电磁学的基本定律之一,是表示真空中两个静止的点电荷之间相互作用的规律 12 12123 0121 4q q F r r πε= 5. 电场强度 :是描述电场状况的最基本的物理量之一,反映了电 场的基 0 F E q = 6. 电场强度的计算: (1)单个点电荷产生的电场强度,可直接利用库仑定律和电场强度的定义来求得 (2)带电体产生的电场强度,可以根据电场的叠加原理来求解 πεπε== = ∑ ? n i i 33i 1 i q 11dq E r E r 44r r

(3)具有一定对称性的带电体所产生的电场强度,可以根据高斯定理来求解 (4)根据电荷的分布求电势,然后通过电势与电场强度的关系求得电场强度 7.电场线: 是一些虚构线,引入其目的是为了直观形象地表示电场强度的分布 (1)电场线是这样的线:a .曲线上每点的切线方向与该点的电场强度方向一致 b .曲线分布的疏密对应着电场强度的强弱,即越密越强,越疏越弱。 (2)电场线的性质:a .起于正电荷(或无穷远),止于负电荷(或无穷远)。b .不闭合,也不在没电荷的地方中断。c .两条电场线在没有电荷的地方不会相交 8. 电通量: φ= ??? e s E dS (1)电通量是一个抽象的概念,如果把它与电场线联系起来,可以把曲面S 的电通量理解为穿过曲面的电场线的条数。(2)电通量是标量,有正负之分。 9. 高斯定理: ε?= ∑?? s S 01 E dS i (里) q (1)定理中的E 是由空间所有的电荷(包括高斯面内和面外的电荷)共同产生。(2)任何闭合曲面S 的电通量只决定于该闭合曲面所包围的电荷,而与S 以外的电荷无关

大学物理静电场总结word版本

大学物理静电场总结

第七章、静 电 场 一、两个基本物理量(场强和电势) 1、电场强度 ⑴、 试验电荷在电场中不同点所受电场力的大小、方向都可能不同;而在 同一点,电场力的大小与试验电荷电量成正比,若试验电荷异号,则所 受电场力的方向相反。我们就用 q F 来表示电场中某点的电场强度,用 E 表示,即q F E = 对电场强度的理解: ①反映电场本身性质,与所放电荷无关。 ②E 的大小为单位电荷在该点所受电场力,E 的方向为正电荷所受电场力 的方向。 ③单位为N/C 或V/m ④电场中空间各点场强的大小和方向都相同称为匀强电场 ⑵、点电荷的电场强度 以点电荷Q 所在处为原点O,任取一点P(场点),点O 到点P 的位矢为r ,把试 验电荷q 放在P 点,有库仑定律可知,所受电场力为: r Q q F E 2 041επ== ⑶常见电场公式 无限大均匀带电板附近电场:εσ 02= E 2、电势 ⑴、电场中给定的电势能的大小除与电场本身的性质有关外,还与检验电荷 有关,而比值q E pa 0 则与电荷的大小和正负无关,它反映了静电场 中某给 定点的性质。为此我们用一个物理量-电势来反映这个性质。即q E p V 0 = ⑵、对电势的几点说明 ①单位为伏特V

②通常选取无穷远处或大地为电势零点,则有: ?∞ ?==p p dr E V q E 0 即P 点的电势等于场强沿任意路径从P 点到无穷远处的线积分。 ⑶常见电势公式 点电荷电势分布:r q V επ04= 半径为R 的均匀带点球面电势分布:R q V επ04= ()R r ≤≤0 r q V επ04= ()R r ≥ 二、四定理 1、场强叠加定理 点电荷系所激发的电场中某点处的电场强度等于各个点电荷单独存在时对 该点的电场强度的矢量和。即 E E E n E +++= (21) 2、电势叠加定理 V 1 、V 2 ...V n 分别为各点电荷单独存在时在P 点的电势点电荷系 的电场中,某点的电势等于各点电荷单独 存在时在该点电势的代数和。 3、高斯定理 在真空中的静电场内,通过任意封闭曲面的电通量等于该闭合曲面包围的所 有电荷的代数和除以 ε 说明: ①高斯定理是反映静电场性质的一条基本定理。 ②通过任意闭合曲面的电通量只取决于它所包围的电荷的代数和。 ③高斯定理中所说的闭合曲面,通常称为高斯面。 三、静电平衡 1、静电平衡 当一带电体系中的电荷静止不动,从而电场分布不随时间变化时,带电 体系即达到了静电平衡。 说明: ①导体的特点是体内存在自由电荷。在电场作用下,自由电荷可以移

大学物理电磁场练习题含答案

前面是答案和后面是题目,大家认真对对. 三、稳恒磁场答案 1-5 CADBC 6-8 CBC 三、稳恒磁场习题 1. 有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中 通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 (A) 0.90. (B) 1.00. (C) 1.11. (D) 1.22. [ ] 2. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度B 为 (A) l I π420μ. (B) l I π220μ. (C) l I π02μ. (D) 以上均不对. [ ] 3. 通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P . [ ]

4. 无限长载流空心圆柱导体的内外半径分别为 a 、 b ,电流在导体截面上均匀分布, 则空间各处的B ? 的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确 的图是 [ ] 5. 电流I 由长直导线1沿平行bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导 线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B ?、2B ? 和3B ?表示,则O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ??,B 3 = 0. (C) B ≠ 0,因为虽然B 2 = 0、B 3= 0,但B 1≠ 0. (D) B ≠ 0,因为虽然021≠+B B ? ?,但B 3 ≠ 0. [ ] 6. 电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆

大学物理静电场总结

第七章、静 电 场 一、两个基本物理量(场强和电势) 1、电场强度 ⑴、 试验电荷在电场中不同点所受电场力的大小、方向都可能不同;而在 同一点,电场力的大小与试验电荷电量成正比,若试验电荷异号,则所 受电场力的方向相反。我们就用 q F 来表示电场中某点的电场强度,用 E 表示,即q F E = 对电场强度的理解: ①反映电场本身性质,与所放电荷无关。 ②E 的大小为单位电荷在该点所受电场力,E 的方向为正电荷所受电场力 的方向。 ③单位为N/C 或V/m ④电场中空间各点场强的大小和方向都相同称为匀强电场 ⑵、点电荷的电场强度 以点电荷Q 所在处为原点O,任取一点P(场点),点O 到点P 的位矢为r ,把试 验电荷q 放在P 点,有库仑定律可知,所受电场力为: r Q q F E 2 041επ== ⑶常见电场公式 无限大均匀带电板附近电场: εσ 02= E 2、电势 ⑴、电场中给定的电势能的大小除与电场本身的性质有关外,还与检验电荷 有关,而比值 q E pa 0 则与电荷的大小和正负无关,它反映了静电场中某给 定点的性质。为此我们用一个物理量-电势来反映这个性质。即q E p V 0 = ⑵、对电势的几点说明 ①单位为伏特V ②通常选取无穷远处或大地为电势零点,则有: ?∞ ?==p p dr E V q E 0

即P 点的电势等于场强沿任意路径从P 点到无穷远处的线积分。 ⑶常见电势公式 点电荷电势分布:r q V επ04= 半径为R 的均匀带点球面电势分布:R q V επ04= ()R r ≤≤0 r q V επ04= ()R r ≥ 二、四定理 1、场强叠加定理 点电荷系所激发的电场中某点处的电场强度等于各个点电荷单独存在时对 该点的电场强度的矢量和。即 E E E n E +++= (21) 2、电势叠加定理 V 1 、V 2 ...V n 分别为各点电荷单独存在时在P 点的电势点电荷系 的电场中,某点的电势等于各点电荷单独 存在时在该点电势的代数和。 3、高斯定理 在真空中的静电场内,通过任意封闭曲面的电通量等于该闭合曲面包围的所 有电荷的代数和除以 ε 说明: ①高斯定理是反映静电场性质的一条基本定理。 ②通过任意闭合曲面的电通量只取决于它所包围的电荷的代数和。 ③高斯定理中所说的闭合曲面,通常称为高斯面。 三、静电平衡 1、静电平衡 当一带电体系中的电荷静止不动,从而电场分布不随时间变化时,带电 体系即达到了静电平衡。 说明: ①导体的特点是体内存在自由电荷。在电场作用下,自由电荷可以移动, 从而改变电荷分布;而电荷分布的改变又影响到电场分布。 ②均匀导体的静电平衡条件:体内场强处处为零。 ③导体是个等势体,导体表面是个等势面。 ④导体外靠近其表面的地方场强处处与表面垂直。

大学物理第7章 电场题库答案(含计算题答案)

第七章 电场 填空题 (简单) 1、两无限大平行平面的电荷面密度分别为σ+和σ+,则两无限大带电平面外的电场 强度大 小为 σε ,方向为 垂直于两带电平面并背离它们 。 2、在静电场中,电场强度E 沿任意闭合路径的线积分为 0 ,这叫做静电场的 环 路定理 。 3、静电场的环路定理的数学表达式为 0l E dl =? ,该式可表述为 在静 电场中,电场强度的环流恒等于零 。 4、只要有运动电荷,其周围就有 磁场 产生; 5、一平行板电容器,若增大两极板的带电量,则其电容值会 不变 ;若在两 极板间充入均 匀电介质,会使其两极板间的电势差 减少 。(填“增大”,“减小” 或“不变”) 6、在静电场中,若将电量为q=2×108库仑的点电荷从电势V A =10伏的A 点移到电 势V B = -2伏特的B 点,电场力对电荷所作的功A ab = 92.410? 焦耳。 (一般)

7、当导体处于静电平衡时,导体内部任一点的场强 为零 。 8、电荷在磁场中 不一定 (填一定或不一定)受磁场力的作用。 9、如图所示,在电场强度为E 的均匀磁场中,有一半径为R 的半球面, E 与半球面轴线的夹角为α。则通过该半球面的电通量为 2cos B R πα-? 。 10、真空中两带等量同号电荷的无限大平行平面的电荷面密度分别为σ+和σ+,则 两无限大带电平面之间的电场强度大小为 0 ,两无限大带电平面外的电场强度大小为 σε 。 11、在静电场中,电场力所做的功与 路径 无关,只与 起点 和 终点位 置 有关。 12、由高斯定理可以证明,处于静电平衡态的导体其内部各处无 净电荷 , 电荷只能分布于 导体 外表面 。因此,如果把任一物体放入空心导体的空腔内,该物体就 不受任何外 电场的影响,这就是 静电屏蔽 的原理。(一般) 13、静电场的高斯定理表明静电场是 有源 场, (一般)

同济大学大学物理下知识点总结

普通物理(下)学习总结 第九章——热力学基础 章节概述:热力学整章的重点在于理想气体动态方程、热力学两大定律在各种状态下的应用以及卡诺定理用来计算各种热机的效率。 1、 开尔文温度和摄氏温度的换算。t=T-273.15 2、 平衡状态、准静态过程和非静态过程的区别。对于一个孤立系统而言,如果其宏观性质 经过充分长的时间后保持不变,即系统的状态参量不再随时间改变,此时系统属于平衡态。而如果系统在变化过程中,每一个中间状态都无线接近于平衡态,则称之为准静态过程。 3、 理想气体的状态方程:注意玻尔兹曼常量和斯密特常量的定义。 4、 焦耳的实验,定义了热功当量。如用做功和传热的方式使系统温度升高相同时,所传递 的热量和所做的功总有一定的比例关系,即1卡热量=4.18焦耳的功可见,功与热量具有等效性。做功与传热虽然有等效的一面,但本质上有着区别。做功:通过物体作宏观位移完成。作用是机械运动与系统内分子无规则运动之间的转换。从而改变内能。传热:通过分子间相互作用完成。作用是外界分子无规则热运动与系统内分子无规则热运动之间的转换。从而改变了内能。 5、 对微小过程,即准静态过程,dW dE dQ += 6、 等温等压过程、绝热过程、多方过程中热力学第一定律的应用。 7、 热循环、制冷机与热机的关系、卡诺循环及其效率的计算。

8、热力学第二定律的两种表述(克劳斯修表述和开尔文表述)。开尔文表述(开氏表述): 不可能从单一热源吸取热量,使它完全变为有用功而不引起其它变化。克劳修斯表述(克氏表述):热量不能自动地从低温物体传到高温物体。 第十章——气体动理论 章节概述:本章主要讲述了气体动理论的两个基本公式——压强公式和能量公式,理解分子热运动的原理,能够理解热力学第二定律和熵的意义。在本章中还大量地运用了统计规律来对分子的热运动进行分析,即通过对微观物理量求统计平均值的方法得到宏观物理量。 1、自然界的一切宏观物体,无论是气体、液体亦或是固体,都是由大量分子或原子构成。分子间存在相互作用力。构成物质的分子处于永恒的、杂乱无章的运动之中。 2、理想气体的压强公式和气体温度的微观实质。气体的温度其实标志着气体内部分子无规则热运动的剧烈程度,代表了气体分子的平均平动动能。 3、刚性分子的自由度。 多原子分子 3 3 6 内能公式为。

大学物理上、下册重点知识总结

五 机械振动 知识点: 1、 简谐运动 微分方程:02 22=+x dt x d ω ,弹簧振子F=-kx,m k = ω, 单摆l g =ω 振动方程:()φω+=t A x cos 振幅A,相位(φω+t ),初相位φ,角频率ω。πγπ ω22== T 。周期T, 频率γ。 ω由振动系统本身参数所确定;A 、φ可由初始条件确定: A=2 20 20 ωv x + ,? ?? ? ?? - =00arctan x v ωφ; 2由旋转矢量法确定初相: 初始条件:t=0 1) 由 得 2)由 得 3)由 得 4)由 得 3简谐振动的相位:ωt+φ: 1)t+φ→(x,v )存在一一对应关系; 2)相位在0→2π内变化,质点无相同的运动状态; 相位差2n π(n 为整数)质点运动状态全同; 3)初相位φ(t=0)描述质点初始时刻的运动状态; (φ取[-π→π]或[0→2π]) 4)对于两个同频率简谐运动相位差:△φ=φ2-φ1. 简谐振动的速度:V=-A ωsin(ωt+φ) 加速度:a=)cos(2 ?ωω+-t A 简谐振动的能量: E=E K +E P = 22 1kA , 2 /3π?=

作简谐运动的系统机械能守恒 4)两个简谐振动的合成(向同频的合成后仍为谐振动): 1)两个同向同频率的简谐振动的合成: X 1=A 1cos (1φω+t ) ,X 2=A 2cos (2φω+t ) 合振动X=X 1+X 2=Acos (φω+t ) 其中 A= ()12212 221cos 2φφ-++A A A A ,tan 2 2112 211cos cos sin sin φφφφφA A A A ++= 。 相位差:12φφφ-=?=2k π时, A=A 1 + A 2, 极大 12φφφ-=?=(2k+1)π时,A=A 1 + A 2 极小 若 2) 两个相互垂直同频率的简谐振动的合成: x=A 1 cos (1φω+t ) ,y=A 2 cos (2φω+t ) 其轨迹方程为: 如果 ) 其合振动的轨迹为顺时针的椭圆 其合振动的轨迹为逆时针的椭圆 相互垂直的谐振动的合成:若频率相同,则合成运动轨迹为椭园;若两分振动的频率成简单整数比,合成运动的轨迹为李萨如图形。 同向异频的合成:拍现象, 拍频12γγγ-= 。 重点: 1、熟记振动图像; 2、掌握各个物理量的计算公式; 3、掌握、熟记初相的确定; 4、理解、掌握振动的合成。 难点: 1、用旋转矢量法确定初相; 2、两种振动的合成及合成后A 和φ的确定。 六 机 械 波 知识点 1 21,??=>A A π ??<-<120.1

大学物理下必考15量子物理知识点总结

大学物理下必考15量子物理知识点总结 大学物理下必考15量子物理知识点总结 15.1量子物理学的诞生普朗克量子假设一、黑体辐射 物体由其温度所决定的电磁辐射称为热辐射。物体辐射的本领越大,吸收的本领也越大,反之亦然。能够全部吸收各种波长的辐射能而完全不发生反射和透射的物体称为黑体。二、普朗克的量子假设: 1.组成腔壁的原子、分子可视为带电的一维线性谐振子,谐振子能够与周围的电磁场交换能量。 2.每个谐振子的能量不是任意的数值,频率为ν的谐振子,其能量只能为 hν,2hν,…分立值, Enh其中n=1,2,3…,h=6.626×1034Js为普朗克常数。 3.当谐振子从一个能量状态变化到另一个状态时,辐射和吸收的能量是hν的整数倍。 15.2光电效应爱因斯坦光量子理论一、光电效应的实验规律 金属及其化合物在光照射下发射电子的现象称为光电效应。逸出的电子为光电子,所测电流为光电流。 截止频率:对一定金属,只有入射光的频率大于某一频率ν0时,电子才能从该金属表面逸出,这个频率叫红限。

遏制电压:当外加电压为零时,光电流不为零。因为从阴极发出的光电子具有一定的初动能,它可以克服减速电场而到达阳极。当外加电压反向并达到一定值时,光电流为零,此时电压称为遏制电压。 1mvm2eU2二、爱因斯坦光子假说和光电效应方程1.光子假说 一束光是一束以光速运动的粒子流,这些粒子称为光子;频率为v的每一个光子所具有的能量为h,它不能再分割,只能整个地被吸收或产生出来。2.光电效应方程 根据能量守恒定律,当金属中一个电子从入射光中吸收一个光子后,获得能量hv,如果hv大于该金属的电子逸出功A,这个电子就能从金属中逸出,并且有 1hAmvm221上式为爱因斯坦光电效应方程,式中mvm2为光电子的最大初动能。当hA2时,电子无法获得足够能量脱离金属表面,因此存在红限0Ah。三、光(电磁辐射)的波粒二象性 光子能量Emc2hhhc2chh光子动量pmc c光具有波粒二象性。光在传播过程中,波动性比较显著,光在与物质相互作用时(发射和吸收),粒子性比较显著。四、光电效应的应用 利用光电效应可以制成光电成像器件,能将可见或不可见的辐射图像转换或增强成为可观察记录、传输、储存的图像。 15.3康普顿效应及光子理论的解释一、康普顿效应 光子质量mX射线通过散射物质时,在散射线中除了有波长与原波长相同的成分0,还出现了波长较长的成分。二、光子理论的解释

大学物理下归纳总结

大学物理下归纳总结 黄海波整理制作 2010-12-13于厦门 电学 基本要求: 1.会求解描述静电场的两个重要物理量:电场强度E 和电势V 。 2.掌握描述静电场的重要定理:高斯定理和环路定理(公式内容及物理意义)。 3.掌握导体的静电平衡及应用;介质的极化机理及介质中的高斯定理。 主要公式: 一、 电场强度 1 计算场强的方法(3种) 1、点电荷场的场强及叠加原理 点电荷系场强:∑=i i i r r Q E 3 04πε 连续带电体场强:? =Q r dQ r E 3 4πε (五步走积分法)(建立坐标系、取电荷元、写E d 、分解、积分) 2、静电场高斯定理: 物理意义:表明静电场中,通过任意闭合曲面的电通量(电场强度沿任意闭合曲面的面积分),等于该曲面内包围的电荷代数和除以0ε。 对称性带电体场强: 3、利用电场和电势关系: x E x U =??- 二、电势 电势及定义: 1.电场力做功:? ?=?=2 1 0l l l d E q U q A 2. 静电场环路定理:静电场的保守性质

物理意义:表明静电场中,电场强度沿任意闭合路径的线积分为0。 3.电势:)0(00 =?=?p p a a U l d E U ;电势差:??=?B A AB l d E U 电势的计算: 1.点电荷场的电势及叠加原理 点电荷系电势:∑= i i i r Q U 04πε (四步走积分法)(建立坐标系、取电荷元、写dV 、积分) 2.已知场强分布求电势:定义法 ???=?=l v p dr E l d E V 0 三、静电场中的导体及电介质 1. 弄清静电平衡条件及静电平衡下导体的性质 2. 了解电介质极化机理,及描述极化的物理量—电极化强度P , 会用介质中的高斯定理, 求对称或分区均匀问题中的 ,,D E P 及界面处的束缚电荷面密度σ 。 3. 会按电容的定义式计算电容。

大学物理电场部分答案

第六章电荷得电现象与磁现象 序号学号姓名专业、班级 一选择题 [ C ]1 、一带电体可作为点电荷处理得条件就是 (A)电荷必须呈球形分布。 (B)带电体得线度很小。 (C)带电体得线度与其它有关长度相比可忽略不计。 (D)电量很小。 [ D ]2.真空中一“无限大”均匀带负电荷得平面如图所示,其电场得场强分布 图线应就是(设场强方向向右为正、向左为负) (A)??(B)? (C) ??(D) 二填空题 1.在点电荷系得电场中,任一点得电场强度等于 ________________________________略________________________________________________, 这称为场强叠加原理。 2.静电场中某点得电场强度,其数值与方向等于_________略____________________________ ___________________________________________________________________________。 3.两块“无限大”得带电平行电板,其电荷面密度分别为δ(δ> 0)及-2δ,如图所示,试写出各区域得电场强度。 Ⅰ区得大小 , 方向向右。 Ⅱ区得大小,方向向右。 Ⅲ区得大小 , 方向向左。 4.A、B为真空中两个平行得“无限大”均匀带电平面,已知两平面间得电 场强度大小都为E0 , 两平面外侧电场强度大小都为E0/ 3, 图。则A、B两平面上得电荷面密度分别为 =,= 。 三计算题 1.一段半径为a得细圆弧,对圆心得张角为θ0,其上均匀分布有正电荷q,如图所示,试以a,q,θ0表示出圆心O处得电场强度。 解:建立如图坐标系,在细圆弧上取电荷元, 电荷元视为点电荷,它在圆心处产生得场强大小为: 方向如图所示。将分解,

相关主题
文本预览
相关文档 最新文档