浙教版七年级数学上册2.1《有理数的加法》教案2
- 格式:doc
- 大小:331.00 KB
- 文档页数:2
《有理数的加减法》教案一教学目标1.知识与技能 :在有理数加、减法混合运算的教学过程中,掌握计算方法,培养学生的运算能力.2.数学思考:通过观察,比较,归纳等得出有理数加减混合运算的方法。
3.解决问题 :能运用有理数加、减法法则解决混合运算和实际问题。
4.情感与态度 :认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。
二教学重点:省略加号、括号,得到简单的书写方式,再进行加法运算三教学难点:培养学生良好的思维习惯(先准确判断加减法的类型后计算) 三教学模式:启发式四教学过程设计(一 ) 知识要点回顾1 有理数加法法则2 运算律(1) 加法交换律(2) 加法结合律3 有理数减法法则例1计算下列各式1 )-23+(-12) 2) -16+293)(-2008)+2008 4 ) 0+(-7)例2、某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.•某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,•+5.(1)问收工时距A地多远?(2)若每千米路程耗油0.2升,问从A地出发到收工共耗油多少升? 课堂练习1抢答(1) 5+(-6)(2) -(-7)+(-2)(3) (-4)+(-5)(4)-4+(-6);(5)15+(-17)(6)-3+3(7) (+9)+(-7)+(+10)+(-3)+(-9)2 计算(1)(+17)+(-32)+(-16)+(+24)+(-1);(2)(+653)+(-532)+(452)+(-131) 例3 计算(1) 3-(-3)=_______; (2) (-11)-2=_______;(3) 0-(-6)=_______; (4) (-7)-(+8)=_______;(5) -12-(-5)=________;例4把下列两个式子写成省略括号的和的形式.把它读出来,并计算出结果.(1)(-5)-(+9.6)+(+7.3)+(-0.7)-(-3.07);(2)4 35-(+213)-(-4.8)+(-323)-(+4.6)课堂练习1.计算:(1)(3.1+4.2)-(4.2-1.9);(2)(-2.4)-0.6-1.8;(3)(-41)-83+169; (4)(-71)-(-72)-173; (5)(-1)-(+331)-(-132); (6)(-9)-(+9)-(-18)-9.三 综合应用1 .如果|a|=7,|b|=5,试求a-b 的值.思路解析:本题中对a 、b 分成四种取值情况进行讨论.解:∵|a|=7,|b|=5,∴a=±7,b=±5.因此,有四种可能:(1)当a=7,b=5时,a-b=2;(2)当a=7,b=-5时,a-b=12;(3)当a=-7,b=5时,a-b=-12;(4)当a=-7,b=-5时,a-b=-2.四作业1 .有一批小麦,标准质量为每袋90千克,现抽取10袋样品进行称重检测,结果如下(单位:千克):97,95,86,96,94,93,87,98,91.这10袋小麦的总质量是多少?总计超过标准质量多少千克或不足标准质量多少千克?3.计算:(1)(-1.5)-(-9.4)-(+3.6)+(-4.3)-(+5.2);(2)0-(+12)-(-13)-(-14)-(+16);(3)0-(-2.75)-(+0.71)-(-4);(4)(-323)-(-234)-(-123)-(+1.75).思路解析:本题是有理数的减法运算,根据有理数减法法则,把减法全部转化为加法再进行计算,同时也可运用加法运算律使计算简便.解:(1)原式=-1.5-3.6-4.3-5.2+9.4=-5.2;(2)原式=-12-16+13+14=-46+712=-112;(3)原式=2.75+4-0.71=6.04;(4)原式=-323+123+234-134=-2+1=-1.4.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西方向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下:(单位:千米)+15,-4,+13,―10,―12,+3,―13,―17.(1)将最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?思路解析:要求出小王距出车地点的距离,就是求所给的数据的代数和;要求出汽车耗油多少升,就要先求出汽车的行程,而汽车的行程是所给数据的绝对值的和解:(1)(+15)+(-4)+(+13)+(―10)+(―12)+(+3)+(―13)+(―17)=-25.所以最后一名老师送到目的地时,小王在出车地点的西方,距离是25千米.(2)|+15|+|-4|+|+13|+|―10|+|―12|+|+3|+|―13|+|―17|=87.0.4× 87 = 34.8.所以这天下午汽车共耗油34.8升.5 .已知a=-12,b=-14,c=13,求下列各式的值.(1)a-b+c;(2)a-b-c.思路解析:用数字去代替代数式中相应的字母时,必须用括号将数字和它前面的性质符号在一起,然后再进行运算.解:(1)a-b+c=(-12)-(-14)+13=-12+14+13=112;(2)a-b-c=(-12)-(-14)-13=-12+14-6 .如下图:(1)A,B两点间的距离是多少?(2)B,C两点间的距离是多少?思路解析:求两点间的距离就是用表示这两点的数相减,由于求的是“距离”,所以结果应是正数,因此,将相减的式子求绝对值即可.解:(1)|AB|=|2-(-113)|=|2+113|=313;(2)|BC|=|-113-(-3)|=|-113+3|=132.季节中的花开花落,都有自己的命运与节奏,岁月如歌的谱曲与纳词,一定是你。
浙教版数学七年级上册第二章《有理数的运算》复习教学设计一. 教材分析浙教版数学七年级上册第二章《有理数的运算》复习教学设计,主要涉及有理数的加法、减法、乘法、除法以及混合运算。
本章内容为学生提供了有理数运算的基本方法和规则,是进一步学习数学的基础。
教材通过丰富的例题和练习题,帮助学生掌握有理数运算的方法,培养学生的运算能力和逻辑思维能力。
二. 学情分析学生在学习本章内容前,已初步掌握了实数的概念,对加法、减法、乘法、除法有一定的了解。
但部分学生对有理数运算的规则和技巧还不够熟练,特别是在混合运算中,对运算顺序和运算法则的掌握程度不一。
因此,在复习教学中,需要针对学生的实际情况,重点巩固运算规则,提高学生的运算速度和准确性。
三. 教学目标1.掌握有理数的加法、减法、乘法、除法运算方法。
2.掌握混合运算的顺序和运算法则。
3.提高学生的运算能力和逻辑思维能力。
4.培养学生的团队合作精神和自主学习能力。
四. 教学重难点1.重难点:有理数的混合运算。
2.难点:运算顺序和运算法则的运用。
五. 教学方法1.采用问题驱动法,引导学生通过解决问题来掌握运算方法。
2.使用案例分析法,分析典型例题,让学生深刻理解运算规则。
3.运用合作学习法,分组讨论,培养学生的团队协作能力。
4.采用巩固练习法,通过适量练习,提高学生的运算速度和准确性。
六. 教学准备1.准备相关教案和教学PPT。
2.准备典型例题和练习题。
3.准备黑板和粉笔。
4.准备多媒体教学设备。
七. 教学过程1.导入(5分钟)回顾实数的概念,引导学生认识到有理数是实数的一部分。
通过提问方式,让学生回顾加法、减法、乘法、除法的基本概念和方法。
2.呈现(10分钟)利用PPT展示本章的主要内容和知识点,包括有理数的加法、减法、乘法、除法以及混合运算的规则。
引导学生对比实数和有理数的区别,明确有理数运算的重要性。
3.操练(10分钟)分组进行练习,每组选择一道混合运算的题目进行讨论和解答。
浙教版数学七年级上册《2.1 有理数的加法》教学设计1一. 教材分析浙教版数学七年级上册《2.1 有理数的加法》是学生在学习有理数基本概念后的第一个有理数运算内容。
这部分内容主要介绍有理数的加法法则,包括同号相加、异号相加、以及互为相反数的两个数相加等。
本节课内容是后续学习有理数减法、乘法和除法的基础,对学生掌握有理数运算具有重要的意义。
二. 学情分析七年级的学生已经掌握了整数和分数的概念,对基本的运算规则有一定的了解。
但学生在学习有理数的加法时,可能会对有理数的符号、绝对值以及运算规则产生困惑。
因此,在教学过程中,需要引导学生理解有理数加法的本质,并通过大量的实例来帮助学生掌握有理数加法的运算规则。
三. 教学目标1.理解有理数的加法概念,掌握有理数加法的基本规则。
2.能够正确进行有理数的加法运算。
3.能够运用有理数加法解决实际问题。
四. 教学重难点1.教学重点:有理数的加法法则。
2.教学难点:有理数加法运算的灵活运用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过思考和讨论来理解有理数加法的概念和规则。
2.使用多媒体教学手段,展示有理数加法的动画和实例,帮助学生形象地理解有理数加法的过程。
3.通过大量的练习和实际问题,让学生在实践中掌握有理数加法的运算方法。
六. 教学准备1.准备相关的教学PPT和教学素材。
2.准备练习题和实际问题,用于学生的操练和巩固。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生回顾已学的整数和分数的加法规则,为新课的学习做好铺垫。
2.呈现(15分钟)使用PPT展示有理数加法的动画和实例,引导学生思考和讨论有理数加法的规则。
教师通过讲解和演示,向学生介绍有理数加法的基本法则。
3.操练(15分钟)让学生分组进行练习,互相讨论和解答有理数加法的问题。
教师巡回指导,解答学生的问题,并给予及时的反馈。
4.巩固(10分钟)教师挑选一些典型的练习题,让学生在黑板上进行板书和解答。
《有理数的加减法》教学设计《有理数的加减法》教学设计有理数的加法与小学的加法大有不同,小学的加法不涉及到符号的问题,下面给大家分享《有理数的加减法》教学设计,一起来看看吧!《有理数的加减法》教学设计1教学目标:1、会将有理数的减法运算转化为有理数的加法运算。
2、会将有理数的加减混合运算转化为有理数的加法运算。
教学重点、难点:会进行有理数的减法运算,会进行有理数的加减混合运算。
课前复习:1、有理数加法法则是什么?2、有理数加法运算律是什么?教学过程:一、有理数的减法法则实际生活中有很多时候要涉及到有理数的减法。
例如:某地某天的气温是―2至5C,这一天的温差是多少呢?(温差是最高气温减最低气温,单位:C)。
显然,这天的温差是5―(―2)。
这里就用到了有理数的减法。
我们知道,减法是与加法相反的运算,计算5―(―2),就是要求一个数,使之与(―2)的和得4,因为与―3相加得4,所以这个数应该是7,即:5―(―2)=7。
(1)另一方面,我们知道5+(+2)=7(2)由(1),(2)有5―(―2)=5+(+2)(3)从(3)式能看出减―2相当于加哪个数吗?用上面的方法考虑:0―(―2)=___, 0+(+2)=___;1―(―2)=___, 1+(+2)=____;―5―(―2)=___,―5+(+2)=___。
这些数减3的结果与它们加+2的结果相同吗?从(3)式能看出减―2相当于加哪个数吗?把5换成0,1,—5,用上面的方法考虑,并看它们的结果相同吗?计算:10-8=___,10+(-8)=____;13-7=___,13+(-7)=____。
上述式子表明:减去一个数,等于加上这个数的相反数。
于是,得到有理数减法法则:减去一个数,等于加这个数的相反数。
用式子可以表示成ab=a+(b)例题解析:计算:(1)(-4)―(―5);(2)0-6;(3)7.1―(―4.9);解:(1)(-4)―(―5)=(-4)+5=1;(2))0-6=0+(-6)=-6;(3)7.1―(―4.9)=7.1+4.9=12;二、有理数加减混合运算有理数的.加减混合运算,可以按照运算顺序,从左到右逐一加以计算,通常也会利用有理数的减法法则,把它写成只有加法运算的和的形式。
2.1 有理数的加法(第1课时)一、教学目标:知识与技能:使学生理解有理数加法的意义,掌握有理数加法法则,并能准确地进行加法运算。
过程与方法:渗透数形结合思想,体现分类思想,培养学生观察、分析、归纳等能力。
情感态度与价值观:体会数学来源于生活,激发学生探究数学的兴趣,培养学生及时检验的良好习惯。
二、教学重难点:重点:有理数加法法则。
难点:异号两数相加的法则。
三、教学过程:(一)导入新课:在小学认识了自然数之后,我们又学习了加、减、乘、除四则运算,同样我们学习了有理数的意义之后,将开始学习有理数的运算,这节课我们一起来学习有理数的加法。
通过回忆小学算术运算的学习过程,类比联想有理数的加法与小学的加法的联系,点明教学内容,激发学生学习的欲望。
(二)探究新知:1、问题情境:一建筑工地仓库记录星期一和星期二水泥的进货和出货数量如下,其中进货为正,出货为负(单位:吨)进出货情况库存变化星期一+5 -2星期二+3 -4合计问1:列出算术表示这两天水泥进货和出货的合计数量,并算出结果(填表)。
问2:星期一该建筑工地仓库的水泥库存是增加了还是减少了?星期二呢?(此问培养学生处理表格信息的能力,给学生大胆发挥的空间,将教师控制课堂的预设过程变成师生共同建设,共同发展的过程。
也借此引出有理数的加法。
)问1答:水泥进货的合计为(+5)+(+3)=+8;水泥出货的合计为(-2)+(-4)=-6;教师讲解:也可以在数轴上表示水泥进货的合计:在数轴上表示水泥出货的合计:小结:同号两数相加,取与加数相同的符号,并把绝对值相加;问2答:星期一该建筑工地仓库的水泥库存增加了3吨,用算式表示为(+5)+(-2)=+3;星期二该建筑工地仓库的水泥库存减少了1吨,用算式表示为(+3)+(-4)=-1;教师讲解:也可以在数轴上表示星期一、星期二的库存变化结果:小结:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
初中七年级数学《有理数的加法》优秀教案教学是一种创造性劳动。
写一份优秀教案是设计者教育思想、智慧、动机、经验、个性和教学艺术性的综合体现。
下面就是我给大家带来的初中七年级数学《有理数的加法》教案,希望能帮助到大家!数学《有理数的加法》教案1教学目标1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;5.本节课通过行程问题说明法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。
教学建议(一)重点、难点分析本节教学的重点是依据法则熟练进行运算。
难点是法则的理解。
(1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。
(2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。
(3)如果是同号相加,取相同的符号,并把绝对值相加。
如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。
一个数与0相加,仍得这个数。
(二)知识结构(三)教法建议1.对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。
2.法则是规定的,而教材开始部分的行程问题是为了说明加法法则的合理性。
3.应强调加法交换律“a+b=b+a”中字母a、b的任意性。
4.计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。
不要盲目动手,应该先仔细观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。
2.1有理数的加法(2)
教学目标:
1.经历探索有理数运算律的过程,理解有理数的运算律。
2.掌握多个有理数相加的顺序和方法,探索利用运算律简化运算过程。
3.灵活运用有理数的加法解决简单实际问题。
教学重点:
理解有理数加法交换律、结合律及其合理灵活的运用。
教学难点:
灵活运用有理数运算律及例4要求列出两种不同意义的算式。
教学过程:
一、创设情境,引入新课:
1、合作学习:请在下列图案内任意填入一个有理数,要求相同的图案内填相同的数。
二、师生互动,讲授新课:
1、(1)老师提问:算出各算式的结果,比较左、右两边算式的结果是否相同呢?(2)请多位同学说说自己的结果,发现了什么?
得出:在有理数运算中,加法交换律和结合律仍成立。
加法交换律:两个数相加,交换加数的位置,和不变。
表示成:a+b=b+a
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
表示成:(a+b)+c=a+(b+c)
指出:更一般地,任意若干个数相加,无论各数相加的先后次序如何,其和不变。
2、应用练习:
例1计算
(1)15+(-13)+18
(2)(-2.48)+4.33+(-7.52)+(-4.33)
(3)5/6+(-1/7)+(-1/5)+(-6/7)
(鼓励学生用简便方法解题,并让学生充分说明其依据与原因)
解:(1)15+(-13)+18=(15+18)+(-13)=33+(-13)=20
得出:同号数先相加
(2)(-2.48)+4.33+(-7.52)+(-4.33)
=-2.48+(-7.52)+4.33+(-4.33)
=[(-2.48)+(-7.52)]+[4.33+(-4.33)]
=(-10)+0= -10
得出:能凑整的先凑整,有相反数的先把相反数相加
(3)5/6+(-1/7)+(-1/5)+(-6/7)
=[5/6+(-1/6)]+[(-1/7)+(-6/7)]
=2/3+(-1)= -1/3
得出:有分母相同的,先把同分母的数相加
3、练一练:P29, T1,T2
例2小明遥控一辆玩具车,让它从A地出发,先向东行驶15m,再向西行驶25m,然后又向东行驶20m,再向西行驶35m,问玩具赛车最后停在何处?一共行驶了多少
米?
提示:在解题过程中,可以作示意图帮助思考。
如图:
三、练习反馈,巩固新知:
1、练一练:P29,T3
2、议一议:数扩展到有理数之后,下面这些结论还成立吗?请说明理由(如果认为结论不成立,请举例说明):
(4)若两个数的和是0,则这两个数都是0;
(5)任何两数相加,和不小于任何一个加数。
四、梳理知识,总结收获:
这节课我们还学习了有理数加法交换律和结合律,可利用其进行简便计算,在计算时,要先看看有无相反数,有则先相加得零,再利用凑整或同号相加,计算出结果。
五、布置作业。
P30
T1、计算:
(1)(-1)+0+3(2)(-10)+21+(-13)
(3)3+(-2.5)+(-4)(4)(-15)+[8+(-7)]
T2、用简便方法计算,并说明有关理由:
(1)2.15+(-4.25)+(-0.75)+(-3/20)
(2)(-3/4)+(-1/6)+(+1/4)+(-5/6)
T3、婷婷家某星期各天的收支情况如下(记收入为正):
+120元,-27.6元,-5元,-74元,+16.8元,-31.9元,25元。
用有理数加法计算婷婷家这星期末结余多少元。
T4、有6筐蔬菜,每筐以50千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录入图。
你能用简便方法求出这6筐的总质量吗?
T5、列出两个由3个数相加的算式,使它分别符合下列条件:
(1)3个数同号,和为-11
(2)3个数不全同号,和为0。