旋转体的体积试题解析——高数常考题目
- 格式:ppt
- 大小:830.50 KB
- 文档页数:17
旋转体(圆柱、圆锥、圆台)(北京习题集)(教师版)一.选择题(共6小题)1.(2019春•西城区校级期中)若圆柱的轴截面是一个正方形,其面积为4S ,则它的一个底面面积是 () A .4SB .4S πC .S πD .2S π2.(2019•西城区校级模拟)用一块圆心角为240︒、半径为R 的扇形铁皮制成一个无底面的圆锥容器(接缝忽略不计),则该容器的体积为( )ABCD3.(2018春•西城区期末)圆柱的侧面展开图是一个边长为2的正方形,那么这个圆柱的体积是( ) A .2πB .1πC .22π D .21π4.(2017春•丰台区期中)直角三角形的两条直角边的长度分别是3,4,以直角三角形的斜边所在直线为旋转轴,旋转一周形成几何体的体积是( ) A .12πB .1445πC .485πD .48π5.(2015秋•西城区校级期中)下列命题中错误的是( ) A .圆柱的轴截面是过母线的截面中面积最大的一个B .圆锥的轴截面是所在过顶点的截面中面积最大的一个C .圆台的所有平行于底面的截面都是圆面D .圆锥所有的轴截面是全等的等腰三角形6.(2014秋•西城区校级期中)在ABC ∆中,4AB =,3BC =,90ABC ∠=︒,若使ABC ∆绕直线BC 旋转一周,则所形成的几何体的体积是( ) A .36πB .28πC .20πD .16π二.填空题(共8小题)7.(2017秋•西城区期末)在ABC ∆中,3AB =,4BC =,AB BC ⊥.以BC 所在的直线为轴将ABC ∆旋转一周,则旋转所得圆锥的侧面积为 .8.(2018春•西城区校级期中)圆台两底面半径分别是2和5,母线长是,则它的轴截面的面积是 . 9.(2017秋•东城区期末)一个横放的圆柱形水桶,桶内的水占底面周长的四分之一,那么当桶直立时,水的高度与桶的高度的比为 .10.(2017秋•东城区期末)圆22(1)2x y -+=绕直线0kx y k --=旋转一周所得的几何体的表面积为 . 11.(2017秋•海淀区校级期中)用一张48cm cm ⨯的矩形硬纸卷成圆柱的侧面,则圆柱轴截面的面积为 2cm (接头忽略不计).12.(2017春•丰台区期中)已知圆柱底面半径是2,高是3,则圆柱的表面积是 .13.(2015秋•昌平区期末)已知一个圆柱的底面半径为2,体积为16π,则该圆柱的母线长为 ,表面积为 . 14.(2016秋•昌平区月考)四边形ABCD 四顶点的坐标分别为(0,0)A ,(1,0)B ,(2,1)C ,(0,3)D ,将四边形绕y 轴旋转一周得到一几何体,则此几何体的表面积为 . 三.解答题(共1小题)15.(2015秋•海淀区校级期中)如图,AB 是圆O 的直径,点C 是半圆的中点,PA ⊥平面ABC ,PA AB =,6PB D =是PB 的中点,E 是PC 上一点. (Ⅰ) 若DE PB ⊥,求PEEC的值; (Ⅱ)若点Q 是平面ABC 内一点,且||2||QA QC =,求点Q 在ABC ∆内的轨迹长度.旋转体(圆柱、圆锥、圆台)(北京习题集)(教师版)参考答案与试题解析一.选择题(共6小题)1.(2019春•西城区校级期中)若圆柱的轴截面是一个正方形,其面积为4S ,则它的一个底面面积是 () A .4SB .4S πC .S πD .2S π【分析】根据圆柱的轴截面是正方形,且轴截面面积是4S ,出圆柱底面圆的直径,代入面积公式计算. 【解答】解:圆柱的轴截面是一个正方形,且此正方形的面积为4S ,故此正方形的边长为故此圆柱的底面直径为,故圆柱的底面面积为:S π, 故选:C .【点评】本题考查的知识点是旋转体,其中熟练掌握圆柱的几何特征是解答的关键.2.(2019•西城区校级模拟)用一块圆心角为240︒、半径为R 的扇形铁皮制成一个无底面的圆锥容器(接缝忽略不计),则该容器的体积为( )ABCD【分析】根据题意求出扇形围成的圆锥底面圆半径和高,再计算圆锥的体积. 【解答】解:扇形的圆心角为42403π︒=,半径为R ; 设扇形围成的圆锥底面半径为r ,高为h ; 则423r R ππ=,解得23Rr =;h =, 则该圆锥的体积为221454339R V r h R ππ===. 故选:A .【点评】本题考查了圆锥的结构特征与体积计算问题,是基础题.3.(2018春•西城区期末)圆柱的侧面展开图是一个边长为2的正方形,那么这个圆柱的体积是( ) A .2πB .1πC .22π D .21π【分析】由题意求出圆柱的高和底面圆半径,再求圆柱的体积. 【解答】解:如图所示,圆柱的侧面展开图是一个边长为2的正方形, 则圆柱的高为2h =, 底面圆的周长为22r π=, 解得1r π=,∴圆柱的体积是2212()2V r h ππππ===.故选:A .【点评】本题考查了圆柱的侧面展开图和体积的计算问题,是基础题.4.(2017春•丰台区期中)直角三角形的两条直角边的长度分别是3,4,以直角三角形的斜边所在直线为旋转轴,旋转一周形成几何体的体积是( ) A .12πB .1445πC .485πD .48π【分析】由已知中,3AC =,4BC =,5AB =,可得三角形ABC 为直角三角形,我们可以判断出以斜边AB 为轴旋转一周,所得旋转体的形状是AB 边的高CO 为底面半径的两个圆锥组成的组合体,计算出底面半径及两个圆锥高之和,代入圆锥体积公式,即可求出旋转体的体积;【解答】解:以该直角三角形的斜边所在直线为旋转轴旋转一周形成的几何体是两个圆锥的组合体, 其中圆锥的底面半径为125,高的和为5, 所以该几何体的体积211248()5355V ππ=⨯⨯⨯=.故选:C .【点评】题考查的知识点是旋转体,圆锥的体积和表面积,其中根据已知判断出旋转所得旋转体的形状及底面半径,高,母线长等关键几何量,是解答本题的关键. 5.(2015秋•西城区校级期中)下列命题中错误的是( ) A .圆柱的轴截面是过母线的截面中面积最大的一个B .圆锥的轴截面是所在过顶点的截面中面积最大的一个C .圆台的所有平行于底面的截面都是圆面D .圆锥所有的轴截面是全等的等腰三角形【分析】对于A ,B ,计算出截面面积与轴截面面积比较大小即可判断,对于C ,D ,利用旋转体的结构特征进行分析判断.【解答】解:对于A ,设圆柱的底面半径为r ,高为h ,设圆柱的过母线的截面四边形在圆柱底面的边长为a ,则截面面积2S ah rh =.∴当2a r =时截面面积最大,即轴截面面积最大,故A 正确.对于B ,设圆锥SO 的底面半径为r ,高为h ,过圆锥定点的截面在底面的边长为AB a =,则O 到AB 的距离为,∴截面三角形SAB ∴截面面积22221)(222h r h r S ++==.故截面的最大面积为222h r hr +.故B 错误.对于C ,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C 正确. 对于D ,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D 正确. 故选:B .【点评】本题考查了旋转体的结构特征,属于中档题.6.(2014秋•西城区校级期中)在ABC ∆中,4AB =,3BC =,90ABC ∠=︒,若使ABC ∆绕直线BC 旋转一周,则所形成的几何体的体积是( ) A .36πB .28πC .20πD .16π【分析】使ABC ∆绕直线BC 旋转一周,则所形成的几何体是一个底面半径为4,高为3的一个圆锥,代入圆锥体积公式,可得答案.【解答】解:将ABC ∆绕直线BC 旋转一周, 得到一个底面半径为4,高为3的一个圆锥, 故所形成的几何体的体积2143163V ππ=⨯⨯⨯=,故选:D .【点评】本题考查的知识点是旋转体,其中分析出旋转得到的几何体形状及底面半径,高等几何量是解答的关键. 二.填空题(共8小题)7.(2017秋•西城区期末)在ABC ∆中,3AB =,4BC =,AB BC ⊥.以BC 所在的直线为轴将ABC ∆旋转一周,则旋转所得圆锥的侧面积为 15π .【分析】以BC 所在的直线为轴将ABC ∆旋转一周,形成的旋转体是底面半径为3r AB ==,高为4BC =的圆锥,由此能求出旋转所得圆锥的侧面积.【解答】解在ABC ∆中,3AB =,4BC =,AB BC ⊥.229165AC AB BC ∴=+=+=, 以BC 所在的直线为轴将ABC ∆旋转一周,形成的旋转体是底面半径为3r AB ==,高为4BC =的圆锥,∴旋转所得圆锥的侧面积:S rl AB AC ππ==⨯⨯ 3515ππ=⨯⨯=故答案为:15π.【点评】本题考查过圆锥的侧面积的求法,考查圆锥、旋转体等基础知识,考查运算求解能力、空间想象能力,数形结合思想,是中档题.8.(2018春•西城区校级期中)圆台两底面半径分别是2和5,母线长是310,则它的轴截面的面积是 63 . 【分析】圆台的轴截面为等腰梯形,求出梯形的高,即可求出轴截面的面积. 【解答】解:由题意,圆台的轴截面为等腰梯形, 圆台两底面半径分别是2和5,母线长是310∴22(310)(52)9--,∴轴截面的面积是1(410)9632⨯+⨯=.故答案为:63.【点评】本题考查轴截面的面积,考查学生的计算能力,确定梯形的高是关键.9.(2017秋•东城区期末)一个横放的圆柱形水桶,桶内的水占底面周长的四分之一,那么当桶直立时,水的高度与桶的高度的比为 (2):4ππ- .【分析】直接求出水桶两种放置时,水的体积相等,即可得到水的高度与桶的高度的比值. 【解答】解:横放时水桶底面在水内的面积为221142R R π-.221142V R R h π⎛⎫=- ⎪⎝⎭水,直立时2V R x π=水,:(2):4x h ππ∴=-故答案为:(2):4ππ-【点评】本题考查简单几何体和球的知识,考查空间想象能力,计算能力.10.(2017秋•东城区期末)圆22(1)2x y -+=绕直线0kx y k --=旋转一周所得的几何体的表面积为 8π . 【分析】由题意知圆22(1)2x y -+=的圆心在直线0kx y k --=上, 圆绕直线旋转一周所得的几何体是球, 由球的表面积公式求解即可.【解答】解:圆22(1)2x y -+=的圆心坐标为(1,0) 而直线0kx y k --=过定点(1,0),∴圆22(1)2x y -+=绕直线0kx y k --=的球,其表面积为24(2)8S ππ==. 故答案为:8π.【点评】本题考查了球的结构特征以及球表面积公式的计算问题,是基础题.11.(2017秋•海淀区校级期中)用一张48cm cm ⨯的矩形硬纸卷成圆柱的侧面,则圆柱轴截面的面积为 32π2cm (接头忽略不计).【分析】以4为高卷起,则28r π=,82r π=;若以8为高卷起,则24R π=,42R π=,由此能求出轴截面面积.【解答】解:以4为高卷起,则28r π=,82r π∴=,∴轴截面面积为232cm π.若以8为高卷起,则24R π=, 42R π∴=,∴轴截面面积为232cm π.故答案为:232cm π.【点评】本题考查轴截面面积的求法,考查分类讨论的数学思想,属于中档题.12.(2017春•丰台区期中)已知圆柱底面半径是2,高是3,则圆柱的表面积是 20π .【分析】利用圆柱的表面积公式直接计算. 【解答】解:由题意,圆柱的底面积是228r ππ=, 侧面积4312ππ=⨯=,故圆柱的表面积81220S πππ=+=. 故答案为:20π.【点评】本题考查的知识点是旋转体,熟练掌握圆柱的表面积公式,是解答的关键.属于基础题.13.(2015秋•昌平区期末)已知一个圆柱的底面半径为2,体积为16π,则该圆柱的母线长为 4 ,表面积为 . 【分析】代入体积和表面积公式计算.【解答】解:由圆柱的体积公式2V r h π=得164h ππ=,∴圆柱的高4h =,∴圆柱的母线长4l h ==;圆柱的表面积22222222424S r rl πππππ=+=⨯+⨯⨯=. 故答案为4,24π.【点评】本题考查了圆柱的结构特征,圆柱的体积,表面积计算,属于基础题.14.(2016秋•昌平区月考)四边形ABCD 四顶点的坐标分别为(0,0)A ,(1,0)B ,(2,1)C ,(0,3)D ,将四边形绕y 轴旋转一周得到一几何体,则此几何体的表面积为 (721)π+ .【分析】过C 作y 轴的垂线交y 轴于E ,则三角形DCE 是直角三角形,四边形ABCE 是直角梯形,进而可得四边形ABCD 绕y 轴旋转一周所得几何体是一个圆锥和一个圆台的组合体,结合圆台和圆锥的表面积公式,可得答案.【解答】解:过C 作y 轴的垂线交y 轴于E ,则三角形DCE 是直角三角形,四边形ABCE 是直角梯形, 四边形ABCD 绕y 轴旋转一周所得几何体是一个圆锥和一个圆台的组合体,易求得1AB =,2BC ,2CD =,1AE =,2ED =,22DC =, 所得旋转体的表面积是21(12)2222(721)S ππππ=+++=. 故答案为(721)π+.【点评】本题考查的知识点是旋转体,熟练掌握圆台和圆锥表面积公式是解答的关键. 三.解答题(共1小题)15.(2015秋•海淀区校级期中)如图,AB 是圆O 的直径,点C 是半圆的中点,PA ⊥平面ABC ,PA AB =,6PB D=是PB 的中点,E 是PC 上一点. (Ⅰ) 若DE PB ⊥,求PEEC的值; (Ⅱ)若点Q 是平面ABC 内一点,且||2||QA QC =,求点Q 在ABC ∆内的轨迹长度.【分析】(1)由PA ⊥平面ABC 可得PA BC ⊥,又BC AC ⊥,故而BC ⊥平面PAC ,于是BC PC ⊥,又DE PB ⊥故~PDE PCB ∆∆,利用勾股定理和相似比求出PE ,CE 得出比值;(2)在平面ABC 上建立平面直角坐标系,求出Q 点的轨迹为圆,利用弧长公式计算点Q 在ABC ∆内的轨迹长度. 【解答】解:()I AB 为直径,AC BC ∴⊥,PA ⊥平面ABC ,BC ⊂平面ABC ,PA BC ∴⊥,又AC PA A =,AC ⊂平面PAC ,PA ⊂平面PAC ,BC ∴⊥平面PAC ,PC ⊂平面PAC ,BC PC ∴⊥,6PB =,PA AB =,∴232PA AB ==,23AC BC ==, 222233PC PA AC PB AB +=-=132PD PB ==.在Rt PBC ∆中,DE PB ⊥,~PDE PCB ∴∆∆,∴PD PEPC PB=, ∴2333PB PD PE PC ===33233EC PC PE =-=, ∴2323PE EC ==. ()II 以点C 为坐标原点,OB 所在直线为x 轴,OA 所在直线为y 轴建立如图所示的面直角坐标系,则(0,3)A ,(0,0)C . 设动点Q 的坐标为(,)x y ,则22||(3)QA x y =+-22||QC x y +,∴2222(3)2x y x y +-+整理可得:22(1)4x y ++=,即Q 的轨迹是以(0,1)P -为圆心,以2为半径的圆,设Q 的轨迹与x 轴,y 轴的交点分别为M ,N ,则(3M ,0),(0,1)N . 连结PM ,PN ,则3sin MC MPN PM ∠==,3MPN π∴∠=. ∴点Q 在ABC ∆内的轨迹长度2233MN ππ=⨯=.【点评】本题考查了线面垂直的判定,轨迹方程,弧长公式,属于中档题.。
第十章 多面体与旋转体考试内容:棱柱(包括平行六面体).棱锥.棱台.多面体. 圆柱.圆锥.圆台.球.球冠.旋转体.体积的概念与体积公理.棱柱、圆柱的体积.棱锥、圆锥的体积.棱台、圆台的体积.球和球缺的体积.考试要求:(1)理解棱柱、棱锥、棱台、圆柱、圆锥、圆台、球及其有关概念和性质.(2)掌握直棱柱、正棱锥、正棱台和圆柱、圆锥、圆台、球的表面积和体积公式以及球冠的面积、球缺的体积公式(球缺体积公式不要求记忆),并能运用这些公式进行计算.(3)了解多面体和旋转体的概念,能正确画出直棱柱、正棱锥、正棱台、圆柱、圆锥、圆台的直观图.(4)对于截面问题,只要求会解决与几种特殊的截面(棱柱、棱锥、棱台的对角面,棱柱的直截面,圆柱、圆锥、圆台的轴截面和平行于底面的截面,球的截面)以及已给出图形或它的全部顶点的其他截面的有关问题.一、选择题1. (85(1)3分)如果正方体ABCD -A ′B ′C ′D ′的棱长为a ,那么四面体A'-ABD 的体积是A.2a 3B.4a 3C.3a 3D.6a 32. (89(3)3分)如果圆锥的底半径为2,高为2,那么它的侧面积是 A.43π B.22π C.23π D.42π3. (89(8)3分)已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧,且相距为1,那么这个球的半径是 A.4 B.3 C.2 D.54. (90(3)3分)如果轴截面为正方形的圆柱的侧面积是S ,那么圆柱的体积等于 A.2S S B.πS 2S C.4SS D.πS 4S5. (90上海)设过长方体同一个顶点的三个面的对角线长分别为a ,b ,c ,那么这个长方体的对角线长为A.222222222222c b a 21D.)c b (a 31C.)c b (a 21B.c b a ++++++++ 6. (90广东)一个圆台的母线长是上下底面半径的等差中项,且侧面积为8πcm 2,那么母线长是 A.4cm B.22cm C.2cm D.2cm7. (91上海)设长方体对角线的长度是4,过每一顶点有两条棱与对角线的夹角都是60°,则此长方体的体积是 A.27332 B.82 C.83 D.1638. (91上海)设正方体的全面积为24cm 2,一个球内切于该正方体,那么这个球的体积是A.6πcm 3B.34πcm 3C.38πcm 3 D.332πcm 39. (91三南)设正六棱锥的底面边长为1,侧棱长为5,那么它的体积为A.63B.23C.33D.210. (91三南)体积相等的正方体、球、等边圆柱(即底面直径与母线相等的圆柱)的全面积分别为S 、S ′、S",那么它们的大小关系是 A.S <S ′<S" B.S <S"<S ′ C.S ′<S"<S D.S ′<S <S"C DABD' A' B' C'11. (92(5)3分)已知轴截面是正方形的圆柱的高与球的直径相等,则圆柱的全面积与球的表面积的比是 A.6:5 B.5:4 C.4:3 D.3:2 12. (92(18)3分)长方体的全面积为11,十二条棱长之和为24,则这个长方体的一条对角线长为A.23B.14C.5D.6 13. (92上海)下列命题中的真命题是 A.各侧面都是矩形的棱柱是长方体B.有两个相邻侧面是矩形的棱柱是直棱柱C.各侧面都是等腰三角形的四棱锥是正四棱锥D.有两个面互相平行,其余四个面都是等腰梯形的六面体是正四棱台 14. (92三南)在长方体ABCD -A ′B ′C ′D ′中,若AB =BC =a ,AA ′=2a ,那么A 点到直线A ′C 的距离等于A.362 a B.263 a C.323a D.36a15. (92三南)有一条半径为2的弧,度数是60°,它绕过弧中点的直径旋转得一个球冠,那么这个球冠的面积是A.4(2-3)πB.2(2-3)πC.43πD.23π 16. (92三南)若等边圆柱的体积是16πcm 2,则其底面半径为A.432cmB.4cmC.232cmD.2cm17. (93(3)3分)当圆锥的侧面积和底面积的比值是2时,圆锥的轴截面顶角是A.45°B.60°C.90°D.120° 18. (93(13)3分)若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是.. A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥 19. (93(14)3分)如果圆柱轴截面的周长l 为定值,那么圆柱体积的最大值是A.3)61(πB.3)31(π C.3)41(π D.4π)41(320. (93上海)设有三个命题:甲:底面是平行四边形的四棱柱是平行六面体; 乙:底面是矩形的平行六面体是长方体; 丙:直四棱柱是平行六面体; 以上命题中真命题的个数是: A.0 B.1 C.2 D.321. (94(7)4分)圆柱正六棱台的上、下底面边长分别为2和4,高为2,则其体积为 A.323 B.283 C.243 D.20322. (94(13)5分)圆柱过球面上A 、B 、C 三点的截面和球心的距离等于球半径的一半,且AB =BC =CA =2,则球面面积是 A.916π B.38π C.4π D.964π 23. (95(4)4分)正方体的全面积是a 2,它的顶点都在球面上,这个球的表面积是A.3a 2π B.2a 2π C.2πa 2 D.3πa 224. (95上海)设棱锥的底面面积为8cm 2,那么棱锥的中截面(过棱锥高的中点且平行于底面的截面)的面积是 A.4cm 2 B.22cm 2 C.2cm 2 D.2cm 225. (96(9)4分)将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD =a ,则三棱锥D -ABC的体积为A.6a 3B.12a 3C.12a 33D.12a 2326. (96(14)5分)母线长为l 的圆锥体积最大时,其侧面展开图圆心角φ等于A.322π B.332π C.2π D.362π 27. (97(8)4分)长方体一个顶点上三条棱的长分别是3,4,5,且它的八个顶点都在同一个球面上,这个球的表面积是 A.202π B.252π C.50π D.200π28. (97(12)5分)圆台上、下底面积分别为π、4π,侧面积为6π,这个圆台的体积是A.332π B.23π C.637π D.337π 29. (98(8)4分)已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为A.120°B.150°C.180°D.240° 30. (98(9)4分)如果棱台的两底面积分别为S ,S',中截面积是S 0,那么A.2')('00SS S B S S S =+= C.2S 0=S +S' D.S 02=2SS' 31. (98(10)4分)向高为H 的水瓶中注水,注满为止,h 的函数关系的图像如图所示,那么水瓶的形状是 A. B. C. 32. (98(13)分)球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过这3个点的小圆面积为4π,那么这个球的半径为A.43B.23C.2D.333. (99(7)4分)若干毫升水倒入底面半径为2cm 的圆柱形器皿中,量得水面的高度为6cm ,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是 A.63cm B.6cm C.2318cm D.3312cm34. (99(10)4分)如图,在多面体ABCDEF 中,已知面ABCD 是边长为3的正方形,EF ∥AB ,EF=23,EF 与面AC 的距离为2,则该多面体的体积为 A.29 B.5 C.6 D.215 35. (99(12)5分)如果圆台的上底面半径为5,下底面半径为R ,中截面把圆台分成上下两个圆台,它们的侧面积之比为1:2,那么R = A.10 B.15 C.20 D.2536. (2000安徽(5)4分)一个圆锥的底面直径和高都同一个球的直径相等,那么圆锥与球的体积之比是 A.1:3 B.2:3 C.1:2 D.2:9 37. (2000⑶5分)一个长方体共一顶点的三个面的面积分别是6,3,2,这个长方体对角线的长是 A.23 B.32 C.6 D.638. (2000⑼5分)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是A.ππ221+B.ππ441+C.ππ21+D.ππ241+39. (2000⑿5分)如图,OA 是圆锥底面中心O 到母线的垂线,OA 绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为A.arccos 321 B.arccos 21C.arccos21D.arccos 42140. (2000上海(14)4分)设有不同的直线a 、b 和不同的平面α、β、γ,给出下列三个命题:⑴若a∥α,b∥α,则a∥b; ⑵若a∥α,a∥β,则α∥β; ⑶若α⊥γ,β⊥γ,则α∥β.其中正确命题的个数是 A.0 B.1 C.2 D.3 41. (2001(3)5分)若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积是A .6πB .π33C .3πD .9π二、填空题1. (86(13)4分)在xoy 平面上,四边形ABCD 的四个顶点坐标依次为(0,0),(1,0),(2,1),(0,3),则这个四边形绕x 轴旋转一周所得到的几何体的体积为___________.2. (87(15)4分)一个正三棱台的下底和上底周长分别为30cm 和12cm ,而侧面积等于两底面积之差,则斜高为_________.注:满足条件“侧面积等于两底面积之差”的三棱台不存在,只有“压缩”成平面图形方可,而此时所求“斜高”实为内、外两正方形(上、下底)对应边的距离.3. (90(20)3分)如图,三棱柱ABC -A 1B 1C 1中,若E ,F 分别为AB ,AC 中点,平面EB 1C 1F 将三棱柱分成体积为V 1,V 2的两部分,那么V 1:V 2=______.4. (90上海)已知圆锥的中截面周长为a,母线长为l ,则它的侧面积等于____ 5. (91(18)3分)已知正三棱台上底面边长为2,下底面边长为4,且侧棱与底面所成的角是45°,那么这个正三棱台的体积等于________.6. (91(20)3分)在球面上有四个点P 、A 、B 、C ,如果PA 、PB 、PC 两两互相垂直,且PA =PB =PC =a ,那么这个球面的面积是_________.7. (91上海)一个圆柱的底面直径和高都等于一个球的直径,则这个圆柱的体积与球的体积的比值为___________8. (91三南)在体积为V 的三棱柱ABC -A ′B ′C ′中,已知S 是侧棱CC ′上的一点,过点S 、A 、B 的截面截得的三棱锥的体积为V ′,那么过点S 、A ′、B ′的截面截得的三棱锥的体积为__________9. (91三南)已知圆台的上下底面半径分别为r 、2r ,侧面积等于上下底面面积之和,则圆台的高为__________10. (92上海)已知圆台下底面半径为8cm,高为6cm ,母线与底面成45°角,那么圆台的侧面积为_________(cm 2)(结果保留π) 11. 如(92上海)图,直平行六面体A ′C 的上底面ABCD 是菱形,∠BAD=60°,侧面为正方形,E 、F 分别为A ′B ′、AA ′的中点,M 是AC 与BD 的交点,则EF 与B ′M 所成的角的大小为_________(用反三角函数表示) 12. (92三南)已知三棱锥A -BCD 的体积为V ,棱BC 的长为a ,面ABC 和面DBC 的面积分别为S 、S ′,设面ABC 和面DBC 所成二面角为α,则sin α=_____________ 13. (93(20)4分)在半径为30m 的圆形广场上空,设置一个照明光源,射向地面的光成圆锥形,其轴截面顶角为120°,若要光源恰好照亮整个广场,其高度应为______(精确到0.1m) 14. (93上海)已知圆台的上下底半径分别是10cm 和20cm ,他的侧面展开后所得扇形的圆心角是180°,那么圆台的侧面积是______cm 2(保留π)15. (94(19)4分)设圆锥底面圆周上两点A 、B 间的距离为2,圆锥顶点到直线AB 的距离为3,AB 和圆锥轴的距离为1,则该圆锥的体积为________.16. (94上海)有一个实心圆锥体的零件,它的轴截面是边长为10cm 的等边三角形,现在要在它的整个表面镀上一层防腐材料,已知每平方厘米的工料价格是0.10元,则需要费用_____元17. (95(17)4分)已知圆台上、下底面圆周都在球面上,且下底面过球心,母线与底面所成的BACDD'C' B'A'M F E角为3π,则圆台的体积与球的体积之比为________. 18. (95上海)把圆心角为216°,半径为5分米的扇形铁皮焊成一个锥形容器(不计焊缝),那么容器的容积是_________立方分米(结果保留两位小数)19. (96上海)如图,在正三角形ABC 中,E 、F 分别是AB 、AC 的中点,AD ⊥BC ,EH ⊥BC ,FG ⊥BC ,D 、H 、G 为垂足,若将正三角形ABC 绕AD 旋转一周所得的几何体的体积为V ,则其中由阴影部分所产生的旋转体的体积与V 的比值是___________ 20. (96上海)把半径为3cm ,中心角为π的扇形卷成一个圆锥形容器,这个容器的容积为_________cm 3(结果保留π)21. (97上海)设正四棱锥底面边长为4cm ,侧面和底面所成的二面角为60°,则这个棱锥的侧面积为___________cm 2 22. (98(18)4分)如图:在直四棱柱ABCD -A ′B ′C ′D ′中,当底面四边形ABCD 满足条件_______时,有A ′C ⊥B ′D ′.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形) 23. (99上海)若四面体各条棱长是1或2,且该四面体不是正四面体,则其体积的值是__________(只需写出一个可能的值)24. (2000安徽(16)4分)右图是一体积为72的正四面体,连结两个面的重心E 、F ,则线段EF 的长是_________.25. (2000安徽(18)4分)在空间,下列命题正确的是____________.(注:把你认为正确的命题的序号都填上)①如果两条直线a 、b 分别与直线l 平行,那么a ∥b②如果一条直线a 与平面β内的一条直线b 平行,那么a ∥β ③如果直线a 与平面β内的两条直线b 、c 都有垂直,那么a ⊥β ④如果平面β内的一条直线a 垂直平面γ,那么β⊥γ26. (2000⒃4分)如图,E 、F 分别为正方体的面ADD 1A 1、面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面上的射影可能是__________________.(要求:把可能的图的序号都.填上) 27. (2000上海(7)4分)命题A :底面为正三角形,且顶点在底面的射影为底面中心的三棱锥是正三棱锥.命题A 的等价命题B 可以是:底面为正三角形,且_________的三棱锥是正三棱锥.28. (2001(13)4分)若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的侧面积是 .29. (2001北京(13)4分)已知球内接正方体的表面积为S ,那么球体积等于__________。
8.3 简单几何体的表面积与体积(精讲)考点一 旋转体的体积【例1】(2021·山东莱西·高一期末)在ABC 中,2AB =,32BC =,120ABC ∠=︒,若将ABC 绕BC 边所在的直线旋转一周,则所形成的面围成的旋转体的体积是______. 【答案】32π 【解析】依题意可知,旋转体是一个大圆锥去掉一个小圆锥,所以sin 602OA AB =︒==,1cos60212OB AB =︒=⨯=,所以旋转体的体积:()21332V OC OB ππ=⋅⋅-=故答案为:32π. 【一隅三反】1.(2021·湖南省邵东市第三中学高一期中)圆台上、下底面面积分别是π、4π积是( )A B .C D 【答案】D【解析】由题意1(4)3V ππ=+=.故选:D .2.(2021·山东任城·高一期中)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周六尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为6尺,米堆的高为5尺,问堆放的米有多少斛?”已知1斛米的体积约为1.6立方尺,圆周率约为3,估算出堆放的米约有_______斛.【答案】12.5【解析】设圆柱的底面半径为r 尺,则14⨯2πr =6,∴r ≈4,∴圆锥的体积V =21134543⨯⨯⨯⨯=20立方尺,∴堆放的米约有201.6=12.5斛. 故答案为:12.5.3.(2021·上海市七宝中学)已知圆锥的侧面展开图是半径为2的半圆,则圆锥的体积为________.【解析】由题意圆锥的母线长为2l =,设圆锥底面半径为r ,则22r ππ=,1r =,所以高为h体积为2211133V r h ππ==⨯=..考点二 旋转体的表面积【例2】(2021·吉林·延边二中高一期中)如图,圆锥的底面直径和高均是4,过PO 的中点O '作平行于底面的截面,以该截面为底面挖去一个圆柱,(1)求剩余几何体的体积 (2)求剩余几何体的表面积【答案】(1)103π;(2)8π+. 【解析】(1)由题意知,因为O '为PO 的中点,所以挖去圆柱的半径为1,高为2,剩下几何体的体积为圆锥的体积减去挖去小圆柱的体积, 所以22110241233V πππ=⋅⨯⨯-⨯⨯=.(2)因为圆锥的底面直径和高均是4,所以半径为2,母线l =所以圆锥的表面积为2122(4S πππ=⨯+⨯⨯+, 挖去的圆柱的侧面积为:22124S ππ=⨯⨯=,所以剩余几何体的表面积为12(4+4+8S S S πππ==+=+. 【一隅三反】1.(2021·广东·仲元中学高一期中)已知一个母线长为1的圆锥的侧面展开图的圆心角等于240︒,则该圆锥的侧面积为( )A B .881πCD .23π【答案】D【解析】将圆心角240︒化为弧度为:43π,设圆锥底面圆的半径为r 由圆心角、弧长和半径的公式得:4213r ππ=⨯,即23r = 由扇形面积公式得:22133S ππ=⨯⨯=所以圆锥的侧面积为23π.故选:D.2.(2021·全国·高一课时练习)已知圆台的上、下底面半径分别为10和20,它的侧面展开图的扇环的圆心角为180°,则这个圆台的侧面积为( ) A .600π B .300π C .900π D .450π【答案】A【解析】圆台的上底面圆半径10r '=,下底面圆半径20r =,设圆台的母线长为l ,扇环所在的小圆的半径为x ,依题意有:220()210l x x ππππ⨯=+⎧⎨⨯=⎩,解得2020x l =⎧⎨=⎩,所以圆台的侧面积20()()1020600+S r r l πππ'=⨯=+=. 故选:A3(2021·全国·高一课时练习)圆台的上、下底面半径和高的比为1:4:4,若母线长为10,则圆台的表面积为________. 【答案】168π【解析】圆台的轴截面如图所示,设上底面半径为r ,下底面半径为R ,高为h 则4h R r ==,则它的母线长为510l r =, 所以2r,8R =.故()(82)10100S R r l πππ=+=+⨯=侧,22100464168S S r R ππππππ=++=++=表侧.故答案为:168π考点三 多面体的体积【例3-1】(2021·全国·高一课时练习)如图所示,正方体ABCD-A 1B 1C 1D 1的棱长为1,则三棱锥D-ACD 1的体积是( )A .16B .13C .1 2D .1【答案】A【解析】三棱锥D-ACD 1的体积等于三棱锥D 1-ACD 的体积,三棱锥D 1-ACD 的底面ACD 是直角边长为1的等腰直角三角形,高D 1D=1,∴三棱锥D-ACD 1的体积为V=1132⨯×1×1×1=16.故选:A【例3-2】(2021·全国·高一课时练习)若正四棱台的斜高与上、下底面边长之比为5∶2∶8,体积为14,则棱台的高度为( ) A .8 B .4C .2D .【答案】C【解析】如图,设棱台的上、下底面边长分别为2x ,8x ,斜高h '为5x ,则棱台的高h x ,由棱台的体积公式1()3V S S h '=得:2224161)31(6444++x x x x ⋅=,解得12x =,棱台的高为h =4x =2. 故选:C 【一隅三反】1.(2021·全国·高一课时练习)设四棱锥的底面是对角线长分别为2和4的菱形,四棱锥的高为3,则该四棱锥的体积为( ) A .12 B .24 C .4 D .30【答案】C【解析】所求的体积为11324432⨯⨯⨯⨯=,故选:C.2.(2021·全国·高一课时练习)棱台的上、下底面面积分别是2,4,高为3,则棱台的体积等于( )A .6B .3+C .6+D .6【答案】C【解析】依题意,棱台的上底面面积2S '=,下底面面积4S =,高为3h =,故由公式可知,棱台的体积是()()11243633V S S h '==⨯⨯=+ 故选:C.3.(2021·全国·高一课时练习)若一个四棱锥的底面的面积为3,体积为9,则其高为( ) A .13B .1C .3D .9【答案】D【解析】设四棱锥的高为h ,则由锥体的体积公式得:13×3h =9,解得h =9,所以所求高为9. 故选:D4.(2021·广东·仲元中学高一期中)如图所示,在长方体ABCD A B C D ''''-中,用截面截下一个棱锥C A DD '''-则棱锥C A DD '''-的体积与剩余部分的体积之比为( )A .1:5B .1:4C .1:3D .1:2【答案】A【解析】由图知:13C A DD A DD V C D S'''''-''=⋅⋅,ABCD A B C D A D DA V C D S ''''''-''=⋅,而2A D DA A DD S S''''=,∴剩余部分的体积为53ABCD A B C D C A DD A DD V V C D S'''''''''--''-=⋅,∴棱锥C A DD '''-的体积与剩余部分的体积之比为1:5.故选:A考点四 多面体的表面积【例4】(2021·全国·高一课时练习)正六棱柱的底面边长为2,最长的一条对角线长为积为()A .4)B .2)C .1)D .8)【答案】B【解析】正六棱柱的底面边长为2,最长的一条对角线长为12BB =,它的表面积为)16=2622sin 6222412223S S S π=+⨯⨯⨯⨯⨯+⨯⨯==表面积底面积矩形.故选:B. 【一隅三反】1.(2021·全国·高一课时练习)若六棱柱的底面是边长为3的正六边形,侧面为矩形,侧棱长为4,则其侧面积等于( ) A .12 B .48 C .64 D .72【答案】D【解析】六棱柱的底面是边长为3的正六边形, 故底面周长6318C =⨯=, 又侧面是矩形,侧棱长为4, 故棱柱的高4h =,∴棱柱的侧面积72S Ch ==,故选:D2.(2021·全国·高一课时练习)如图,在正方体ABCD -A 1B 1C 1D 1中,三棱锥D 1AB 1C 的表面积与正方体的表面积的比为( )A .1∶1B .1C .1D .1∶2【答案】C【解析】设正方体的边长为a ,则表面积216S a =,因为三棱锥11D AB C -的各面均是正三角形,其边长为正方体侧面对角线.,三棱锥D 1AB 1C 的表面积)222142S =⨯⨯=,所以2221::6S S a ==故选:C3(2021·全国·高一课时练习)长方体同一顶点上的三条棱长分别为2,2,3,则长方体的体积与表面积分别为( ) A .12,32 B .12,24 C .22,12 D .12,11【答案】A【解析】长方体的体积为22312⨯⨯=,表面积为()222+23+2332⨯⨯⨯=, 故选:A.4.(2021·全国·高一课时练习)(多选)正三棱锥底面边长为3,侧棱长为则下列叙述正确的是( )A .正三棱锥高为3 BC D 【答案】ABD【解析】设E 为等边三角形ADC 的中心,F 为CD 的中点,连接,,PF EF PE , 则PE 为正三棱锥的高,PF 为斜高,又PF ==32EF ==,故3PE ==, 故AB 正确.而正三棱锥的体积为1393⨯=,侧面积为1332⨯⨯=故C 错误,D 正确. 故选:ABD.5(2021·全国·高一课时练习)(多选)在正方体1111ABCD A B C D -中,三棱锥11D AB C -的表面积与正方体的表面积的比不可能是( )A .1:1B .C .D .1:2【答案】ABD【解析】设正方体1111ABCD A B C D -的棱长为a ,则正方体1111ABCD A B C D -的表面积为226S a =.三棱锥11D AB C -的正四面体,其中一个面的面积为212S ==,则三棱锥11D AB C -的表面积为2214S ==所以三棱锥11D AB C -的表面积与正方体的表面积的比为22126S S a ==::故选:ABD.考点五 有关球的计算【例5-1】(2021·全国·高一课时练习)长方体的三个相邻面的面积分别是2,3,6,这个长方体的顶点都在同一个球面上,则这个球的表面积为( ) A .72π B .56π C .14π D .16π【答案】C【解析】设长方体的三条棱长分别为a ,b ,c ,由题意得236ab ac bc =⎧⎪=⎨⎪=⎩,得123a b c =⎧⎪=⎨⎪=⎩∴2414S R ππ球==. 故选:C【例5-2】(2021·广东高州·高一期末)已知正四面体ABCD的表面积为A 、B 、C ,D 四点都在球O 的球面上,则球O 的体积为( ) A. BCD .3π【答案】C【解析】正四面体各面都是全等的等边三角形,设正四面体的棱长为a ,所以该正四面体的表面积为2142S a =⨯⨯=,所以a =1, 所以正方体的外接球即为该正四面体的外接球,O 的体积为343π⨯=⎝⎭. 故选:C. 【一隅三反】1.(2021·全国·高一课时练习)表面积为16π的球的内接轴截面为正方形的圆柱的体积为( )A .B .C .16πD .8π【答案】A【解析】由题意可知,4πR 2=16π,所以R =2,即球的半径R =2.设圆柱的底面圆半径为r 2R =,即2816r =,所以r ,∴V 圆柱=πr 2·2r =2π·π.故选:A.2.(2021·全国·高一课时练习)若一个正方体内接于表面积为4π的球,则正方体的表面积等于( )A .B .8C .D .【答案】B【解析】设正方体棱长为x ,球半径为R ,则24π4πS R ==球,解得1R =,22R ==,解得x =所以该正方体的表面积为22668S x ==⨯=正.故选:B.3.(2021·全国·高一课时练习)(多选)我国古代数学名著《九章算术》中将正四棱锥称为方锥.已知半球内有一个方锥,方锥的底面内接于半球的底面,方锥的顶点在半球的球面上,若方锥的体积为18,则半球的说法正确的是( ) A .半径是3 B .体积为18π C .表面积为27π D .表面积为18π【答案】ABC【解析】如图,PAC △是正四棱锥的对角面,设球半径为r ,AC 是半圆的直径,,棱锥体积为2312)1833V r r =⨯⨯==,3r =,半球体积为332231833V r πππ==⨯=,表面积为2223327S πππ=⨯+⨯=, 故选:ABC .4.(2021·全国·高一课时练习)一个球内有相距9cm 的两个平行截面,它们的面积分别为249cm π和2400cm π2,求球的体积和表面积.【答案】球的表面积为22500cm π,球的体积为362500cm 3π. 【解析】(1)当截面在球心的同侧时,如图①所示为球的轴截面,由截面性质知12AO //BO ,1O ,2O 为两截面圆的圆心,且11OO AO ⊥,22OO BO ⊥,①设球的半径为R ,因为2249O B ππ=,所以27cm O B =,同理得120cm O A =.设1cm OO x =,则2(9)cm OO x =+, 在1Rt O OA 中,22220R x =+,① 在2Rt OO B 中,2227(9)R x =++,② 联立①②可得15x =,25R =.所以2242500cm S R ππ==球,33462500cm 33V R ππ==球.(2)当截面在球心的两侧时,如图②所示为球的轴截面,由球的截面性质知,12O A//O B ,1O ,2O 分别为两截面圆的圆心,且11OO O A ⊥,22OO O B ⊥.②设球的半径为R ,因为2249O B ππ⋅=,所以27cm O B =.因为21400O A ππ⋅=,所以120cm O A =.设1cm O O x =,则2(9)cm OO x =-. 在1Rt OO A △中,22400R x =+,在2Rt OO B 中,22(9)49R x =-+, 所以22400(9)49x x +=-+, 解得15x =-(不合题意,舍去) 综上所述,球的表面积为22500cm π. 球的体积为362500cm 3π. 考点六 综合运用【例6】(2021·全国·高一课时练习)一块边长为12cm 的正三角形薄铁片,按如图所示设计方案,裁剪下三个全等的四边形(每个四边形中有且只有一组对角为直角),然后用余下的部分加工制作成一个“无盖”的正三棱柱(底面是正三角形的直棱柱)形容器.(1)请将加工制作出来的这个“无盖”的正三棱柱形容器的容积V 表示为关于x 的函数,并标明其定义域; (2)若加工人员为了充分利用边角料,考虑在加工过程中,使用裁剪下的三个四边形材料恰好拼接成这个正三棱柱形容器的“顶盖”.请指出此时x 的值(不用说明理由),并求出这个封闭的正三棱柱形容器的侧面积S .【答案】(1)323(012)82x V x x =-+<<;(2)6cm x =,2S =侧.【解析】(1)结合平面图形数据及三棱柱直观图,求得三棱柱的高6cm 2x h ⎫=-⎪⎝⎭,其底面积22cm S =,则三棱柱容器的容积232236624282x x x x V Sh x x ⎫⎛⎫==-=-=-+⎪ ⎪⎝⎭⎝⎭, 即所求函数关系式为323(012)82x V x x =-+<<;(2)此时6cm x =,而相应棱柱的高h ,故侧面积为236S =⨯=. 【一隅三反】1.(2021·安徽镜湖·高一期中)如图所示,在边长为5的正方形ABCD 中,以A 为圆心画一个扇形,以O 为圆心画一个圆,M ,N ,K 为切点,以扇形为圆锥的侧面,以圆O 为圆锥的底面,围成一个圆锥,求该圆锥的表面积与体积.【答案】表面积10π. 【解析】设圆的半径为r ,扇形的半径为R ,由题意,得(522R r Rr ππ⎧+=⎪⎨=⎪⎩,解得r R ⎧=⎪⎨=⎪⎩所以围成的圆锥的母线长为l =r =h ∴圆锥的表面积210S rl r πππ=+=;∴圆锥的体积为213V r h π==.2.(2021·全国·高一课时练习)有一塔形几何体由3个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,求该塔形的表面积(含最底层正方体的底面面积).【答案】36【解析】易知由下向上三个正方体的棱长依次为2,1.考虑该几何体在水平面的投影,可知其水平投影面积等于下底面最大正方体的底面面积.∴S 表=2S 下+S 侧=2×22+4×[22+2+12]=36, ∴该几何体的表面积为36.3.(2021·全国·高一课时练习)养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m ,高为4 m.养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大4 m (高不变);二是高度增加4 m (底面直径不变). (1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的表面积; (3)哪个方案更经济些?【答案】(1)2563π(m 3),96π(m 3);(m 2),60π(m 2);(3)方案二比方案一更加经济. 【解析】(1)若按方案一,仓库的底面直径变成16 m ,则仓库的体积为V 1=13S ·h=13×π×2162⎛⎫⎪⎝⎭×4=2563π(m 3).若按方案二,仓库的高变成8 m ,则仓库的体积为V 2=13S ·h=13×π×2122⎛⎫⎪⎝⎭×8=96π(m 3).(2)若按方案一,仓库的底面直径变成16 m ,半径为8 m.圆锥的母线长为l 1m ),则仓库的表面积为S 1=π×8×(m 2). 若按方案二,仓库的高变成8 m.圆锥的母线长为l 210(m ), 则仓库的表面积为S 2=π×6×10=60π(m 2).(3)由(1)、(2)知,V 1<V 2,S 2<S 1,故方案二体积更大,表面积更小,所需耗材更少,即方案二比方案一更加经济.。
高数定积分求旋转体体积,绕y轴的怎么算
首先分析待求不等式的右侧:x²(3-2lnx)+3(1-2x),不妨记为g(x),显然g(1)= 0;再分析可知其定义域为x>0。
再分析奇函数的性质,f(x)=-f(-x),对于x=0就有f(0)=-f(0),所以f(0)=0。
构建函数h(x)=f(x-1)-g(x),不等式的解集就是h(x)<0的区间;根据上述分析可发现:
h(1)=f(0)-g(1)=0
分析h的导函数:
h`(x)=f`(x-1)-g`(x)
因为f`(x)>-2,令x=t-1,代入不等式得到:f`(t-1)>-2,所以f`(x-1)>-2。
继续分析g`(x):
g`(x)=2x(3-2lnx)+x²[-(2/x)]-6=4x-6-4xlnx
扩展资料:
若f(x)在[a,b]上恒为正,可以将定积分理解为在Oxy坐标平面上,由曲线(x,f(x))、直线x=a、x=b以及x轴围成的面积值(一种确定的实数值)。
若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有!
一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。
一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
一个定积分式的值,就是原函数在上限的值与原函数在下限的值的差。
正因为这个理论,揭示了积分与黎曼积分本质的联系,可见其在微积分学以至更高等的数学上的重要地位,因此,牛顿-莱布尼兹公式也被称作微积分基本定理。
旋转体体积二重积分一、引言旋转体是数学中的一个重要概念,对于计算旋转体的体积,二重积分是一种常用的方法。
本文将通过详细的步骤和实例,讨论如何使用二重积分计算旋转体的体积,以及相关的数学原理和公式。
二、旋转体的定义在解释旋转体之前,我们先来了解一下什么是旋转。
在平面几何中,旋转是指一个平面图形绕着某个定点旋转一定角度。
而在三维空间中,旋转则是指一个空间图形绕着某个定轴旋转一定角度。
旋转体是由将一个曲线绕某个轴旋转一定角度形成的立体图形。
具体来说,我们可以将一个平面曲线绕着某条直线产生旋转,形成一个旋转体。
三、旋转体的体积计算方法旋转体的体积计算可以使用二重积分的方法。
二重积分是将一个二元函数在一个闭合区域上求和的过程,可以将其理解为对一个曲面进行切割,然后对每个小区域进行近似求和。
3.1 旋转体的切割为了计算旋转体的体积,我们需要对旋转体进行切割。
将旋转体沿着旋转轴划分成无数个无穷小的圆盘,如图所示:插入图示3.2 旋转体的体积微元每个切割的圆盘可以看作是一个微元,其体积可以表示为:dV = π · r² · dh其中,r为当前切割圆盘的半径,h为切割圆盘的厚度。
这个公式原理实际上是通过计算圆柱体的体积得出的,每个切割圆盘可以近似看作一个圆柱体。
3.3 旋转体的体积计算通过对所有微元的体积进行累加,即可得到旋转体的体积。
假设旋转体由闭曲线y=f(x)(a≤x≤b)绕x轴旋转一周,那么旋转体的体积可以表示为:V = ∫[a,b] π · f(x)² dx这就是旋转体体积的二重积分表示。
通过计算该积分,我们可以得到旋转体的体积。
四、旋转体体积计算实例为了更好地理解旋转体体积的计算方法,我们来看一个具体的实例。
实例:计算曲线y=x²在y轴上旋转一周所得到的旋转体的体积。
4.1 解题过程首先我们需要确定旋转体的上下限。
由于曲线y=x²在y轴上旋转一周,所以上下限分别为0和1。
安徽大学2008—2009学年第一学期院/系 专业 姓名 学号答 题 勿 超 装 订 线------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------《高等数学C (一)》考试试卷(A 卷)(闭卷 时间120分钟)题 号一二三四五六总分得 分阅卷人一、填空题(每小题2分,共10分)得分1.已知()sin f x x =, 2[()]1f x x ϕ=−,则()x ϕ=.2.设x →∞时,21ax bx +与1sinx是等价无穷小量,则=a ,b =. 3.曲线C :5433101031y x x x x =−+++上的拐点坐标为. 4.设()x f x xe =,则n 阶导函数()()n f x =.5.设为由方程()y f x =33sin 330x y x y +−+=所确定的隐函数,则'(0)y =.得分二、选择题(每小题2分,共10分) 1.设函数1()lim1nn xf x x →∞+=+(x >−1),则对于函数()f x ( )A.不存在间断点.B. 仅有1x =是间断点.C.仅有是间断点.D. 0x =0x =与1x =都是间断点.2.函数()f x 在点0x 处的左、右导数存在且相等是()f x 在点0x 处可导的( )A.充分非必要条件 .B.必要非充分条件.C.充分必要条件D.无关条件.3.设()f x 的导函数为sin 2x ,则()f x 有一个原函数为( )A.1cos 22x −B.1cos 22xC.1sin 24x −D. 1sin 24x4.下列说法正确的是( )A. 函数()f x 在(,内的极值点一定是驻点.)a bB. 函数()f x 在[,内的最大值一定是极大值.]a bC. 函数()f x 的驻点一定不是间断点.D. 若,则00()()0f x f x ′′′==0x x =一定不是()f x 的极值点.5.下列各种描述正确的是( )A.12111d x x 1x +∞+∞−=−=∫.B.因为1()f x x=为奇函数,所以111d 0x x −=∫.C..sin d limsin d lim 00a aa a x x x x +∞−∞−→+∞→+∞==∫∫=D. 1112111d 2x x x−−−=−=−∫.三、计算下列极限(每小题6分,共24分) 得分1.lim n →+∞2.n3.lim (arctan )2x x x π→+∞−4.()21sin 0lim cos xx x →四、计算下列积分(每小题6分,共24分) 得分1.x ()0a >2.2∫3.x ∫4.1|ln|de e x x−∫得分 五、综合分析题(每小题10分,共20分)1.设2,1(),1x xf xax b x⎧≤=⎨,.+>⎩试确定的值,使得,a b()f x处处可导,并求其导函数()f x′.2.设为由曲线D1xy=和直线1,2,0x x y===所围成的平面图形.(1)求的面积.D(2)求由绕D x轴旋转所得到的旋转体体的体积.六、证明题(每小题6分,共12分)得分1.证明方程23126x x x +++=0有且仅有一个实根.2.设()f x ,在[,上连续,且()g x ]a b ()0g x ≠[,]x a b ∈(,)a b ξ∈,.试证明至少存在一个,使得()d ()()()d ba b af x x fg g x xξξ=∫∫.。