多轴数控加工中心
- 格式:doc
- 大小:1.18 MB
- 文档页数:4
数控加工中心的分类一、根据加工类型分类1. 数控铣削加工中心:主要用于铣削加工,具有较高的加工精度和加工效率,常用于复杂零件和高精度零件的加工。
2. 数控车削加工中心:主要用于车削加工,能够实现车削、铣削、钻孔等多种加工操作,常用于轴类零件和盘类零件的加工。
3. 数控磨削加工中心:主要用于磨削加工,具有高精度的磨削能力和加工效率,常用于超精密零件和高硬度零件的加工。
二、根据控制轴数分类1. 三轴数控加工中心:只具备三个直线运动轴,可以实现平面内任意点的加工,常用于中小型零件的加工。
2. 五轴数控加工中心:具备三个直线运动轴和一个或两个旋转轴,可以实现复杂零件的加工,特别是对空间曲面和斜面的加工。
3. 多轴数控加工中心:具备三个以上的直线运动轴和两个以上的旋转轴,可以实现任意空间曲面的加工,常用于大型和复杂零件的加工。
三、根据自动化程度分类1. 手动数控加工中心:操作人员需要手动更换刀具和夹具,加工过程需要人工监控和调整,适用于小批量生产。
2. 半自动数控加工中心:操作人员需要根据加工需求,通过手动或自动方式更换刀具和夹具,同时需要人工监控和调整加工过程,适用于中批量生产。
3. 全自动数控加工中心:操作人员只需要设置好程序和参数,即可实现全自动加工,无需人工监控和调整,适用于大批量生产。
四、根据布局分类1. 立式数控加工中心:主轴垂直于工作台,占地面积小,结构紧凑,适用于小型零件的加工。
2. 卧式数控加工中心:主轴平行于工作台,适用于大型零件的加工。
3. 龙门式数控加工中心:主轴位于龙门架内,具有较大的加工范围和刚性,适用于大型、重型零件的加工。
4. 复合数控加工中心:同时具备立式、卧式、龙门式等多种布局形式,可以实现多种加工需求,具有较高的灵活性和加工能力。
五、根据精度等级分类1. 普通数控加工中心:精度等级一般为±0.01mm,适用于一般精度的加工需求。
2. 高精度数控加工中心:精度等级一般为±0.005mm或更高,适用于高精度、高要求的加工需求,如航空航天、精密仪器等领域。
四轴加工中心参数概述四轴加工中心是一种用于进行金属加工的机床,具有四个坐标轴,可进行多轴数控加工。
为了达到最佳加工效果,四轴加工中心需要根据具体的加工需求进行参数调整。
本文将深入探讨四轴加工中心的参数设置,包括加工速度、加工深度、加工精度、半径补偿等方面内容。
加工速度加工速度是指加工中心在进行加工过程中,工具移动的速度。
加工速度直接影响加工效率和加工质量。
一般而言,加工速度越快,加工效率越高,但也容易导致加工质量不稳定。
因此,在设置加工速度时需要考虑多个因素,如材料硬度、工具刃口磨损等。
在参数设置过程中,通常会选择一个合适的加工速度范围,并根据具体情况进行微调。
加工深度加工深度是指工具在加工过程中进入材料的深度。
加工深度的设置主要受材料性质、工具强度和加工精度要求等因素影响。
一般而言,加工深度越大,加工时间越长,但也可以提高加工效率。
然而,加工深度过大可能导致工具折断或产生加工质量问题。
因此,在设置加工深度时需要综合考虑多个因素,为了实现更好的加工效果,常常需要通过实验和经验总结来确定最佳加工深度。
加工精度加工精度是指加工中心在进行加工过程中的精确度和稳定性。
加工精度对于一些精密零部件的加工尤为重要。
在四轴加工中心中,加工精度的设置涉及到多个参数,如进给速度、回转速度、切削速度等。
为了实现更高的加工精度,需要根据加工材料、加工形状和加工要求等因素,逐步调整不同参数,使其在一个合适的范围内。
半径补偿半径补偿是指在进行切削操作时,考虑到刀具半径的大小,通过适当调整刀具路径,保证最终加工出的尺寸与设计尺寸一致。
四轴加工中心通常会有半径补偿功能,可以根据实际情况进行设置。
半径补偿的参数设置与材料硬度、刀具半径、切削速度等有关,需要通过试验和实践来确定最佳参数。
总结四轴加工中心参数的设置对于加工效果和加工质量具有重要影响。
加工速度、加工深度、加工精度和半径补偿等参数需要根据具体情况进行合理的调整,以满足加工要求。
加工中心工作的原理
加工中心是一种高效率、高精度的机械加工设备,其工作原理如下:
1. 控制系统:加工中心配备了先进的数控系统,通过编程控制机床的运动和操作。
操作员可以通过输入指令,控制机床的加工过程和参数。
2. 主轴和刀具:加工中心通常配备了多轴主轴,可以进行高速旋转和切削。
刀具安装在主轴上,通过刀具的切削运动,将工件进行加工。
3. 工作台:工作台是加工中心的一个重要部件,用于夹持和固定工件。
工作台可以进行多轴运动,使工件在不同方向上进行加工。
4. 自动换刀系统:加工中心通常配备了自动换刀系统,可以根据加工需要自动更换不同的刀具。
自动换刀系统可以提高加工效率和灵活性。
5. 冷却系统:加工中心通常配备冷却系统,用于冷却刀具和工件,以防止过热和损坏。
6. 编程和运动控制:操作员通过编程控制加工中心的运动和操作。
编程可以使用CAD/CAM软件生成,也可以手动编写。
编程包括设定刀具路径、加工深度、切削速度等参数。
7. 监测和检测:加工中心通常配备监测和检测设备,可以实时监测加工过程中的温度、振动等参数,以保证加工质量和安全。
总之,加工中心通过控制系统、主轴和刀具、工作台等部件的协同工作,实现高精度、高效率的机械加工。
科技资讯 SC I EN C E &TE C HN O LO G Y I NF O R MA T IO N 信 息 技 术1 绪论1.1UG简介Unigraphics(简称UG)起源于美国麦克唐纳.道格拉斯飞机公司。
以CA D/CAM/C AE 一体化而著称于世界。
1991年11月并入美国通用汽车公司EDS分部,该软件以世界一流集成化设汁广泛用于通用机械、模具、汽车及航空航天领域。
是当前世界上最先进和紧密集成的、面向制造行业的C A I D/C A D/ C A E/C A M高端软件。
多年来,世界各国的制造商们一直在探索更好的方法去使用计算机辅助技术自动化产品开发过程,更快地递交产品到市场;使复杂产品的设计简化;减少产品成本和增加企业的竞争实力。
为此必需捕捉和应用最新的技术,这就是UG。
1.2CAD/CAM概述数控编程经历了手工编程、A H语言编程和交互式图形编程3个阶段。
交互式图形编程就是通常所说的C A M软件编程。
由于CAM软件自动编程具有速度快、精度高、直观性好、使用简便、便于检查和修改等优点,已成为目前国内外数控加工中普遍采用的数控编程方法。
数控编程的核心是刀位点计算。
对于复杂的产品,其数控加工刀位点的人工计算十分困难,而CA D技术的发展为解决这一问题提供了有力的工具。
利用CA D技术生成的产品三维造型包含了数控编程所需要的完整的产品表面几何信息,而计算机软件可针对这些几何信息进行数控加工刀位的自动计算。
因此,绝大多数的数控编程软件同时具备C A D的功能。
1.3UG CAM 的作用和地位UG是当今世界上最先进的高端CA D/ CA M/CA E/CA ID软件,其各大功能高度集成。
U G C AM就是U G的计算机辅助制造模块,与UG的CAD模块紧密地集成在一起。
在当今世界,属于最好的数控编程工具之一。
一方面U G C A M功能强大,可以实现对极其复杂零件和特别零件的加工;另一方面对使用者而言,U G C A M又是一个易于使用的编程工具。
加工中心工作原理
加工中心是一种高精密加工设备,它利用先进的控制系统和多轴工作台来完成各种复杂零件的加工任务。
其工作原理主要包括以下几个方面:
1. 控制系统:加工中心采用计算机数控系统(CNC)进行控
制和指令传递。
操作人员通过输入加工程序和参数,然后由计算机对这些指令进行解释和执行,最终实现机床的自动化操作。
2. 工作台:加工中心通常配备多轴工作台,这些工作台可按照不同的角度和方向进行平移、旋转和倾斜等运动。
通过精确的控制,工作台能够使刀具在不同的方向上进行加工,从而实现多轴联动加工。
3. 刀具系统:加工中心配备多个刀具,这些刀具通过刀库、换刀器等设备进行管理和切换。
根据加工需求,计算机会控制刀具的选择和位置,并通过自动换刀系统将合适的刀具装配到主轴上,从而实现不同形状和尺寸零件的加工。
4. 主轴系统:加工中心的主轴是完成切削操作的核心部件,它通过电机驱动旋转刀具。
根据加工程序的指令,计算机会控制主轴的转速和进给量,以确保切削过程的准确性和稳定性。
5. 冷却系统:加工中心在加工过程中会产生大量热量,为了保证机床和刀具的工作温度适宜,通常会配置冷却系统。
冷却系统可以将冷却液通过喷淋或者直接注入切削区域,起到冷却和润滑的作用,有效提高加工质量和刀具寿命。
综上所述,加工中心通过控制系统、工作台、刀具系统、主轴系统和冷却系统等部件的协同作用,实现了对工件进行高精度、多功能的加工,大大提高了生产效率和产品质量。
五轴加工中心工作原理
五轴加工中心是一种高精度的数控机床,具有多轴同时工作的能力,能够实现复杂零件的加工。
其工作原理是通过控制五个坐标轴的运动,使刀具在不同角度和方向上对工件进行加工,从而实现多面加工和多角度加工的要求。
五轴加工中心的五个坐标轴分别是X轴、Y轴、Z轴、A轴和C轴。
其中,X、Y、Z轴分别代表机床的三个线性坐标轴,用于控制刀具在水平、竖直和深度方向上的移动。
而A轴和C轴则是机床的两个旋转坐标轴,分别用于控制刀具在水平面和垂直面上的旋转角度。
在加工过程中,五轴加工中心通过数控系统控制各个坐标轴的运动,使刀具能够按照预先设定的加工路径对工件进行加工。
在进行五轴加工时,刀具可以同时在五个坐标轴上进行移动和旋转,从而实现对工件的多面加工和多角度加工。
这种同时控制多个坐标轴的加工方式,可以大大提高加工效率和加工精度,特别适用于复杂曲面零件的加工。
五轴加工中心还具有高速切削和高精度加工的优点。
由于刀具可以在多个方向上进行移动和旋转,可以更灵活地选择最佳的切削路径,减少切削阻力,提高切削效率。
同时,多轴加工中心的高精度传动装置和控制系统,可以保证刀具的精确定位和稳定加工,确保加工零件的精度和表面质量。
总的来说,五轴加工中心通过同时控制多个坐标轴的运动,实现了复杂零件的高效加工。
其工作原理是通过数控系统控制各个坐标轴的运动,使刀具在不同角度和方向上对工件进行加工。
五轴加工中心具有高速切削、高精度加工和多面加工的优点,适用于复杂曲面零件的加工,是现代制造业中不可或缺的重要设备。
多轴数控加工中心仿真软件简介
2010-08-01
随着我国数控加工业不断发展,加工要求也不断地在提高。
三轴数控加工在满足产品形状复杂度、形位高精度和加工周期短等要求方面,存在很多不足。
而多轴数控加工中心恰恰可以弥补这些不足,一次装夹可完成多个面的加工,简化对刀、装夹过程,减少由此产生的误差,提高加工效率。
可以加工三轴加工中心无法完成的复杂形状的曲面。
多轴数控加工中心具有多轴联动加工和多方向平面定位加工。
多轴联动加工功能适合各种复杂曲面的加工,多方向平面定位加工功能适合加工有多方向加工平面特征零件的加工。
多轴数控加工中心有多种结构形式,不同结构形式的机床适用加工对象也不尽相同,即使同一零件在不同结构形式的机床上加工,其编程要求也有所区别。
多轴数控加工中心刀具运动轨迹比三轴加工更复杂,发生干涉、碰撞的可能性比三轴加工要大得多。
我国数控职业教育事业经过近十年的快速发展,职业院校对多轴数控加工中心教学和实训的需求也变得比较特出了。
但是,多轴数控机床比三轴数控机床的投资和运行成本更大,操作上也更为复杂,发生碰撞的可能性也更大。
同时,多
轴数控实训教师也是十分紧缺的。
上海宇龙软件工程有限公司在国家科技部创新基金( 2009年年度第一批立项项目代号09C26213100595)的支持下,已经成功开发了《多轴数控加工中心仿真软件》。
为我国数控职业教育技术又填补了一个空白。
上海宇龙软件工程有限公司开发的本软件能够实现五轴加工中心的五轴联动加工和多方向平面定位加工仿真,能够实现RTCP(刀尖自动跟踪)功能;能够提供工作台旋转(P型)和工作台旋转+主轴旋转(M型)两种机床结构的多种机床模型;能够实现旋转轴为AC轴、BC轴、A轴等各种四轴或者五轴加工中心的加工仿真。
本软件现有版本已经包含的数控系统有:SIEMENS 840D、广州数控GSK25i、FANUC 0i,年内将相继推出MAZAK mazatrol 640、HEIDENHAIN iTNC 530、FANUC 32i等系统。
本软件在本公司原产品《数控加工仿真系统》4.8版本基础上,还增加了以下各项功能:用户可以使用自己设计定义的夹具、工件可以翻转重新装夹加工、虚拟电子探头、一些针对多轴特点的新测量方法。
上海宇龙软件工程有限公司的这项成果将为我国数控职业教育事业水平跨越性提升做出贡献。
多轴加工中心仿真系统主要功能及规格:
机床种类:
✧SIEMENS 840D 五轴联动立式加工中心 X、Y、Z、C(工作台旋转)、
B(主轴头旋转)
✧GSK 25i 五轴联动立式加工中心 X、Y、Z、C、B(数控转台)
✧FANUC 0i 四轴联动立式加工中心 X、Y、Z、A(数控转台)
工件毛坯种类:
✧六面体、圆柱体
✧工件可多次翻转加工
夹具种类:
✧平口钳、工艺板、三爪卡盘、四爪卡盘
工件坐标系设定:
✧可采用寻边器、圆销、光电探测器等工具测量、设置工件坐标系
刀具库:
✧用户可自定义刀具规格的刀具库
✧刀具类型:
✓标准钻头
✓平底铣刀、球头铣刀、牛鼻铣刀、面铣刀
✓镗刀
机床操作方式:
✧手动操作、自动循环加工、MDI操作
程序编辑方式:
✧通过数控系统面板输入
✧使用通讯方式导入数控系统
检测:
✧可检测零件的加工尺寸
程序功能:
✧SIEMENS 840D :ISO编程,支持变量编程,刀具中心点控制(RTCP),
倾斜面加工,三维刀具长度补偿,钻孔循环、平面铣销循环、腔槽
加工循环
✧GSK 25i:ISO编程,宏指令编程、固定循环编程
✧FANUC 0i:ISO编程,宏指令编程、固定循环编程
其他:
✧操作过程记录
✧操作过程回放
✧项目管理
系统要求:
✧系统支持Windows XP / Vista
✧CPU要求英特尔双核处理器 2.5GHZ
✧Windows XP系统要求内存1GB、Vista系统要求内存2GB。