物理方法专题五+极限法(精品)
- 格式:doc
- 大小:1.73 MB
- 文档页数:15
极限法(特殊值法)在物理高考中的应用“极限法”是一种特殊的方法,它的特点是运用题中的隐含条件,或已有的概念,性质,对选项中的干扰项进行逐个排除,最终达到选出正确答案的目的。
极限法在物理解题中有比较广泛的应用,将貌似复杂的问题推到极端状态或极限值条件下进行分析,问题往往变得十分简单。
利用极限法可以将倾角变化的斜面转化成平面或竖直面。
可将复杂电路变成简单电路,可将运动物体视为静止物体,可将变量转化成特殊的恒定值,可将非理想物理模型转化成理想物理模型,从而避免了不必要的详尽的物理过程分析和繁琐的数学推导运算,使问题的隐含条件暴露,陌生结果变得熟悉,难以判断的结论变得一目了然。
1.(12安徽)如图1所示,半径为R 均匀带电圆形平板,单位面积带电量为σ,其轴线上任意一点P (坐标为x )的电场强度可以由库仑定律和电场强度的叠加原理求出:E =2πκσ()⎥⎥⎦⎤⎢⎢⎣⎡+-21221x r x,方向沿x 轴。
现考虑单位面积带电量为0σ的无限大均匀带电平板,从其中间挖去一半径为r 的圆板,如图2所示。
则圆孔轴线上任意一点Q (坐标为x )的电场强度为 ( ) A. 2πκ0σ()2122x r x+B. 2πκ0σ()2122xrr+C. 2πκ0σr x D. 2πκ0σxr【解析】当→∝R 时,22xR x +=0,则0k 2E δπ=,当挖去半径为r 的圆孔时,应在E中减掉该圆孔对应的场强)(220r xr x -12E +=πκδ,即21220x r x2E )(+='πκδ。
选项A正确。
2.(11福建)如图,一不可伸长的轻质细绳跨过滑轮后,两端分别悬挂质量为m 1和m 2的物体A 和B 。
若滑轮有一定大小,质量为m且分布均匀,滑图1图2轮转动时与绳之间无相对滑动,不计滑轮与轴之间的磨擦。
设细绳对A 和B 的拉力大小分别为T 1和T 2,已知下列四个关于T 1的表达式中有一个是正确的,请你根据所学的物理知识,通过一定的分析判断正确的表达式是( ) A.21112(2)2()m m m g T m m m +=++ B. 12112(2)4()m m m gT m m m +=++C. 21112(4)2()m m m g T m m m +=++ D. 12112(4)4()m m m gT m m m +=++【解析】利用极限的思维方式,若滑轮的质量m =0,则细绳对A 和B 的拉力大小T 1和T 2相等为T 。
教学内容:极限法初中物理教学中的应用教学重点:极限法初中物理教学中的应用教学难点:对极限法的理解与运用引入:问在雨中,一个人从A走到B,是走的快被淋水多,还是走的慢被淋水多?如果说走的慢被淋的水少的话,一下利用极限法就可以排除了,慢的极限就为0,这个人速度为0,那么相当于这个人一直在雨水中淋着。
这是生活对极限法很好的诠释。
进行新课:极限法的实质有些物理问题涉及的因素较多,过程复杂,我们往往难以洞察其变化规律并对其作出迅速准确的判断.但是,如果我们将问题推想到极端状态或极端条件下进行分析,问题有时会顿时变得明朗而简单.极限法定义:将问题从一般状态推到特殊状态进行分析处理的解题方法就是极限法,又称极端法.教学重点:极限法的应用教学难点:极限法的理解极限法听起来似乎陌生,但这只是在中学教学中没有对学生具体的给以定义,事实上在初中阶段, 很多地方都应用到了极限法,刚刚接触物理时就将这种方法渗透到教学中, 以便于发展学生的科学思维能力。
教材从第二章《声现象》的第一节就开始渗透极限法 .在探究声音的传播是否需要介质时,用另一个手机拨通玻璃罩内的手机,随着罩内空气的不断抽出,听到手机铃声越来越弱,利用极限法,假设罩内被抽成真空,将不能听到铃声.由此得出结论,声音不能在真空中传播。
只不过在这时,我们给它定义为“理想化模型法”,或“建立在实验基础上的推理法”而已。
教材第八章第一节《牛顿第一定律》实验“探究阻力对物体运动的影响”时发现,小车受到的阻力越小,小车运动的路程越远,应用极限法,设想小车在绝对光滑的水平面上运动,即不受到阻力作用小车将永远沿直线运动下去。
著名的物理学家牛顿在伽利略等科学家研究的基础上,多次试验,深入研究,最终总结出著名的“牛顿第一定律”。
教材第十二章第三节《机械效率》中,在探究影响斜面机械效率的因素时,先让学生猜想,斜面的机械效率与斜面的倾斜程度有什么关系?由于学生的知识有限很难进行合理的猜想。
专题05极限临界方法极限临界方法是解决物理问题经常用到的一种方法。
伽利略应用极限临界方法探究力与运动的关系。
他做了著名的斜坡实验,在这个实验中,两个光滑斜坡对接,其中一个斜坡的倾角可以调节,当从一个斜坡某一点让小球自由滚下,能看到小球滚到另一斜坡与起点等高处,这个实验最关键的问题是要使阻力足够小,使小球达到与起点等高处,只有这样,才能进行极限思维:当斜坡倾角趋近于零时,小球运动到无穷远处,小球永不停息地运动下去。
这就是伽利略的理想实验,它一方面以真实的科学实验为根据,抓住关键性的科学事实,为理想实验的进行提供可靠的基础;另一方面,又要充分发挥极限临界方法的能动作用,进行合乎逻辑的推理。
极限临界方法实际上是依据一定的实验基础,进行理想推演的思维过程,是思维由存在向虚无、或由虚无向存在推进的过程,对于我们解决一些物理问题有所启迪:一种情况是对于有些问题不容易得出通解,我们可以应用极限临界方法求其特解(特解是理想状况下的不存在的解),由特解再回溯通解的有关特性;另一种情况是先求出问题的通解,再由极限临界方法逼近其特解,得出极值。
极限临界方法是临界方法与极限方法的综合。
典例1.(19年海南卷)如图,一段半圆形粗铜线固定在绝缘水平桌面(纸面)上,铜线所在空间有一匀强磁场,磁场方向竖直向下。
当铜线通有顺时针方向电流时,铜线所受安培力的方向()A. 向前B. 向后C. 向左D. 向右【答案】A【解析】以竖直轴为对称轴,把半圆形通电铜线对称等分,每一段通电铜线长趋近于零但不为零,每一段通电铜线可以看作直线段,对称轴两边的对称直铜线受到的安培力由左手定则确定,其方向关于对称轴对称且斜向上,合力竖直向上。
由此得出半圆形通电铜线受到的合力竖直向上。
【点评与总结】本题利用极限思维方法将半圆形通电铜线化曲为直,从而有利于问题的解决。
也可以用等效法处理:半圆形铜线的受力与水平直径长的铜导线等效。
针对训练1.(19年全国3卷)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上。
高中物理解题技巧:巧用极限法极限法的概述在高中物理试题中常用的解题方法中,极限法是其中之一。
但是极限法的起源却要追溯到对于数学领域的研究过程中。
在中国古代的东汉时期,一位著名的数学方面的科学家刘徽提出了一种计算圆周率的方法,即“割圆术“。
这种方法是利用正多边形进行内接或者外切的实验来使其无限地接近于圆,刘徽利用这种方法最后求出了圆周率的近似值。
由此也可以看出,刘徽的圆周率应用的方法与极限法是极其吻合的,都是一个从有限认识到无限认识的过程。
同时值得注意的是,运用这种极限法计算出来的圆周率使其在未来以前多年间稳居世界领先位置,并且为中国教育事业的发展做出了突出的贡献,就可以看出极限法对于促进我国教育事业发展起到的重要作用,所以在将其运用到高中物理试题的解答过程中时,我们学生本身一定要掌握好极限法本质的特征,在充分理解极限法原理与应用的基础之上,不断提高我们自身的学习成绩。
巧用极限法来解答高中物理试题在高中物理教学中,我们在学习瞬时速度的一节课时,应用到解题方法就是极限法。
一般在对瞬时速度的相关习题进行分析时,我们都会从运动学的角度入手。
根据高中物理课本中的基础知识我们可以知道,物理中平均速度的公式是V=△X/△T,而当我们在求物体运行的瞬时速度的时候,就可以假设△T趋近与无限小时,我们就可以将V当做是物体运动过程中的瞬时速度。
而我们在计算公式中的瞬时速度的物理学含义则是表示某人或者某个物体在某一时间点所移动的速度。
在极限法运用的过程中,只出现一个物理量变化的情况很多,但是这并不代表表不存在两个物理量会发生变化情况的存在。
如果一旦物理量中的两个同时发生上升或者下降的变化,但是值得注意的是,这种变化之间的关系必须是函数关系。
这是只要我们对其中一个变量进行持续不断地改变时,一定会在某一个时刻使另一个变量出现极限值。
利用这种极限法来解决这类的物理试题不仅简化了试题的计算量,而且提供了极为有效的解题方法,使的我们对于物理的学习更加方便易懂,从而能达到提高我们学习效率与学习成绩的目的。
思维方法05 巧解电场强度的五种思维方法对“连续”质点系持续施加作用力时,质点系动量(或其他量)连续发生变化。
这类问题的处理思路是:正确选取研究对象,即选取很短时间Δt 内动量(或其他量)发生变化的那部分质点作为研究对象,建立如下的“柱状”模型:在时间Δt 内所选取的研究对象分布在以S 为截面积、长为v Δt 的柱体内,这部分质点的质量为Δm =ρSv Δt ,以这部分质点为研究对象,研究它在Δt 时间内动量(或其他量)的变化情况,再根据动量定理(或其他规律)求出有关的物理量。
1.方法概述场强有三个公式:E =F q 、E =k Q r 2、E =Ud ,在一般情况下可由上述公式计算场强,但在求解带电圆环、带电平面等一些特殊带电体产生的场强时,上述公式无法直接应用。
这时,如果转换思维角度,灵活运用补偿法、微元法、对称法、等效法、极限法等巧妙方法,可以化难为易。
2.常见类型与解题思路 方法一:补偿法将有缺口的带电圆环(或半球面、有空腔的球等)补全为圆环(或球面、球体等)分析,再减去补偿的部分产生的影响。
【例证1】已知均匀带电球体在球的外部产生的电场与一个位于球心的、电荷量相等的点电荷产生的电场相同。
如图所示,半径为R 的球体上均匀分布着电荷量为Q 的电荷,在过球心O 的直线上有A 、B 两个点,O 和B 、B 和A 间的距离均为R ,现以OB 为直径在球内挖一球形空腔,若静电力常量为k ,球的体积公式为V =43πr 3,则A 点处场强的大小为( )A .7kQ 36R 2B .5kQ 36R 2C .7kQ 32R 2D .3kQ 16R 2 方法二:对称法利用空间上对称分布的电荷形成的电场具有对称性的特点,使复杂电场的叠加计算问题大为简化。
【例证2】如图,在点电荷-q 的电场中,放着一块带有一定电量、电荷均匀分布的绝缘矩形薄板,MN 为其对称轴,O 点为几何中心,点电荷-q 与a 、O 、b 之间的距离分别为d 、2d 、3d 。
(高中物理)极限法解题例析2012-8-10历年高考物理试题都是以能力为核心的,即考查学生的分析问题和解决问题的能力,具体的能力包括,判断能力,推理能力,思维能力,这些能力的形成需要用具体的思维方法来引导。
极限思维方法就是物理教学中的的一种。
极限和极限思维,极限本是个数学概念,研究量的变化趋势和数学关系。
当一个变量趋于无限大或无限小时,另一相关量的变化趋势。
如一位空间取极限,12x x x -=∆,长度变成坐标点,时间取极限12t t t -=∆,时间变成了时刻,极限在物理学中的应用就形成了极限思维方法。
物理学中的极限思维方法,是针对物理对象的过程和状态的变化,按照物理过程的变化趋势合理外推到极端的情况。
研究物理问题时,通常是将状态参量的一般变化,推到极限值。
在物理学中的平均速度和瞬时速度的关系也是和极限有关的,当时间取极限,位移取极限,平均速度就转化为瞬时速度。
极限法解题可以化繁为简,化难为易,具有简捷迅速等优点。
【例1】如图一所示,质量为m=1Kg 的物块放在倾角为θ的斜面上,斜面体质量为M=2Kg ,斜面与物块间的动摩擦因数μ=0.2,地面光滑,θ=370,现对斜面体施一水平推力F ,要使物体m 相对斜面静止,力F 应为多大?(设物体与斜面间的最大静摩擦力等于滑动摩擦力,g 取10m/s 2)【解析】:现采用极限法把F 推向两个极端来分析:当F 较大时(足够大),物块将相对斜面上滑;当F 较小时(趋于零),物块将沿斜面加速下滑;因此F 不能太小,也不能太大,F 的取值是一个范围(1)设物块处于相对斜面向下滑的临界状态时,推力为F 1,此时物块受力如图乙,取加速度a 的方向为x 轴正方向。
对m :x 方向: 1cos sin ma N N =-θμθy 方向: 0sin cos =-+mg N N θμθ对整体:11)(a m M F += (图一) 把已知条件代入,解得:21/78.4s m a =,N F 34.141=(2)设物块处于相对斜面向上滑的临界状态时,推力为F 2,此时物块受力如图丙,对m :x 方向:1cos sin ma N N =+θμθy 方向:0sin cos =--mg N N θμθ对整体:22)(a m M F +=把已知条件代入,解得:21/2.11s m a =,N F 6.331=则力F 的范围:N F N 6.334.14≤≤点评:里的取值范围决定物体运动趋势与状态,物体的运动趋势与状态又是分析力的取值的一个基础,因此,分析还是要结合力与状态的关系出发,运用极限的方法,寻找解题的思路。
五、极限法方法简介极限法是把某个物理量推向极端,即极大和极小或极左和极右,并依此做出科学的推理分析,从而给出判断或导出一般结论。
极限法在进行某些物理过程的分析时,具有独特作用,恰当应用极限法能提高解题效率,使问题化难为易,化繁为简,思路灵活,判断准确。
因此要求解题者,不仅具有严谨的逻辑推理能力,而且具有丰富的想象能力,从而得到事半功倍的效果。
赛题精讲例1:如图5—1所示, 一个质量为m 的小球位于一质量可忽略的直立弹簧上方h 高度处,该小球从静止开始落向弹簧,设弹簧的劲度系数为k ,则物块可能获得的最大动能为 。
解析:球跟弹簧接触后,先做变加速运动,后做变减速运动,据此推理,小球所受合力为零的位置速度、动能最大。
所以速最大时有mg = kx ①由机械能守恒有:mg (h + x) = E k +12kx 2 ②联立①②式解得:E k = mgh -22m g 2k例2:如图5—2所示,倾角为α的斜面上方有一点O ,在O 点放一至斜面的光滑直轨道,要求一质点从O 点沿直轨道到达斜面P 点的时间最短。
求该直轨道与竖直方向的夹角β 。
解析:质点沿OP 做匀加速直线运动,运动的时间t 应该与β角有关,求时间t 对于β角的函数的极值即可。
由牛顿运动定律可知,质点沿光滑轨道下滑的加速度为: a = gcos β该质点沿轨道由静止滑到斜面所用的时间为t ,则:12at 2=OP 所以:t =2OPg cos β① 由图可知,在ΔOPC 中有:o OP sin(90)-α=o OCsin(90)+α-β图5—1图5—2所以:OP =OCcos cos()αα-β ②将②式代入①式得:t =2OCcos g cos cos()αβα-β=[]4OCcos cos cos(2)g αα+α-β显然,当cos(α-2β) = 1 ,即β =2α时,上式有最小值。
所以当β =2α时,质点沿直轨道滑到斜面所用的时间最短。
高中物理学习方法:极限法
高中物理是理科三大科目之一,在大学的很多专业都有广泛应用。
小编给大家整理了这篇《高中物理学习方法:极限法》,供大家参考。
高中物理极限法英语 极限法在现代数学乃至物理等学科中有广泛的应用。
由有限小到无限小,由有限多到无限多,由有限的差别到无限地接近,
就达到事物的本真。
极限法揭示了变量与常量、无限与有限的对立统一关系,借助极限法,人们可以从直线去接近曲线,从有限接近无限,从“不变”认识“变”,从不确定认识确定,从近似认识准确.从量变认识质变。
高中物理极限法起源 早在中国东汉时期的中国伟大的数学家刘徽,在
几何方面,提出了”割圆术”,即将圆周用内接或外切正多边形穷竭的一种求
圆面积和圆周长的方法.他利用割圆术科学地求出了圆周率π=3.14的结果.他
用割圆术,从直径为2尺的圆内接正六边形开始割圆,依次得正12边形、正24边形……,割得越细,正多边形面积和园面积之差越小,用他的原话说是“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。
”他计算了3072边形面积并验证了这个值.刘徽提出的计算圆周率的科学方法,奠定了此后千余年中国圆周率计算在世界上的领先地位。
“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。
体现了微积分
的思想。
高中物理学习方法:极限法 高中物理教学中关于瞬时速度的分析就采
用了这种极限法的思想,从运动学角度看,平均速度的公式是v=△x/△t,当△t足够小的时候所求的v就是瞬时速度。
得的平均速度就越能较精确的描述人经
过某点时的快慢程度。
当位移足够小(也就是时间足够短)时,所得到的平均。
高一新生物理学习方法之极限法高一物理学习方法之极限法极限法在现代数学乃至物理等学科中有广泛的应用。
由有限小到无限小,由有限多到无限多,由有限的差别到无限地接近,就达到事物的本真。
极限法揭示了变量与常量、无限与有限的对立统一关系,借助极限法,人们可以从直线去接近曲线,从有限接近无限,从“不变”认识“变”,从不确定认识确定,从近似认识准确.从量变认识质变。
早在中国东汉时期的中国伟大的数学家刘徽,在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法.他利用割圆术科学地求出了圆周率=3.14的结果.他用割圆术,从直径为2尺的圆内接正六边形开始割圆,依次得正12边形、正24边形……,割得越细,正多边形面积和园面积之差越小,用他的原话说是“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。
”他计算了3072边形面积并验证了这个值.刘徽提出的计算圆周率的科学方法,奠定了此后千余年中国圆周率计算在世界上的领先地位。
“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。
体现了微积分的思想。
高一物理教学中关于瞬时速度的分析就采用了这种极限法的思想,从运动学角度看,平均速度的公式是v=△x/△t,当△t足够小的时候所求的v就是瞬时速度。
得的平均速度就越能较精确的描述人经过某点时的快慢程度。
当位移足够小(也就是时间足够短)时,所得到的平均速度就是“一闪而过”的瞬时速度了。
如果两个量在某一空间的变化关系为单调上升或单调下降的函数关系(如因变量与自变量成正比的关系),那么,连续地改变其中一个量总可以使其变化在该区间达到极点或极限。
根据这种假定来考虑具体问题的思维方法我们就把它称为极点思维法或极限思维法。
同样极限思维法在中学物理教学中的作用运用极限思维法来求解某些物理问题时,与常规解法相比较,可大大地缩短解题时间,提高解题效率。
五、极限法方法简介极限法是把某个物理量推向极端,即极大和极小或极左和极右,并依此做出科学的推理分析,从而给出判断或导出一般结论。
极限法在进行某些物理过程的分析时,具有独特作用,恰当应用极限法能提高解题效率,使问题化难为易,化繁为简,思路灵活,判断准确。
因此要求解题者,不仅具有严谨的逻辑推理能力,而且具有丰富的想象能力,从而得到事半功倍的效果。
赛题精讲例1:如图5—1所示, 一个质量为m 的小球位于一质量可忽略的直立弹簧上方h 高度处,该小球从静止开始落向弹簧,设弹簧的劲度系数为k ,则物块可能获得的最大动能为 。
解析:球跟弹簧接触后,先做变加速运动,后做变减速运动,据此推理,小球所受合力为零的位置速度、动能最大。
所以速最大时有 mg =kx ① 图5—1由机械能守恒有 221)(kx E x h mg k +=+ ② 联立①②式解得 kg m m g h E k 2221⋅-= 例2:如图5—2所示,倾角为α的斜面上方有一点O ,在O 点放一至斜面的光滑直轨道,要求一质点从O 点沿直轨道到达斜面P 点的时间最短。
求该直轨道与竖直方向的夹角β。
解析:质点沿OP 做匀加速直线运动,运动的时间t 应该与β角有关,求时间t 对于β角的函数的极值即可。
由牛顿运动定律可知,质点沿光滑轨道下滑的加速度为βcos g a =该质点沿轨道由静止滑到斜面所用的时间为t ,则OP at =221 所以βcos 2g OP t =① 由图可知,在△OPC 中有图5—2)90sin()90sin(βαα-+=- OC OP 所以)cos(cos βαα-=OC OP ② 将②式代入①式得 g OC g OC t )]2cos([cos cos 4)cos(cos cos 2βαααβαβα-+=-=显然,当2,1)2cos(αββα==-即时,上式有最小值. 所以当2αβ=时,质点沿直轨道滑到斜面所用的时间最短。
此题也可以用作图法求解。
例3:从底角为θ的斜面顶端,以初速度0υ水平抛出一小球,不计空气阻力,若斜面足够长,如图5—3所示,则小球抛出后,离开斜面的最大距离H 为多少?解析:当物体的速度方向与斜面平行时,物体离斜面最远。
以水平向右为x 轴正方向,竖直向下为y 轴正方向,则由:gt v v y ==θtan 0,解得运动时间为θtan 0g v t =该点的坐标为 θθ2202200tan 221tan gv gt y g v t v x ==== 由几何关系得:θθtan cos /x y H =+解得小球离开斜面的最大距离为 θθsin tan 220⋅=gv H 。
这道题若以沿斜面方向和垂直于斜面方向建立坐标轴,求解则更加简便。
例4:如图5—4所示,一水枪需将水射到离喷口的水平距离为3.0m的墙外, 从喷口算起, 墙高为4.0m 。
若不计空气阻力,取2/10s m g =,求所需的最小初速及对应的发射仰角。
解析:水流做斜上抛运动,以喷口O 为原点建立如图所示的 直角坐标,本题的任务就是水流能通过点A (d 、h )的最小初速度和发射仰角。
图5— 3 图5—4根据平抛运动的规律,水流的运动方程为⎪⎩⎪⎨⎧-⋅=⋅=20021sin cos gt t v y t v x αα 把A 点坐标(d 、h )代入以上两式,消去t ,得:h h d h hd dh d gd h d gd d h gd v -⋅+-⋅++=+-=-⋅-=]2cos 2sin [/)]12(cos 2sin /[)tan (cos 2/222222222220αααααα 令 ,sin /,cos /,tan /2222θθθ=+=+=h d h h d d d h 则上式可变为,,6.7134arctan 45arctan 2145245902,1)2sin(,,)2sin(/022220最小时亦即发射角即当显然v d h h h d gd v=+=+=+==-=---+=θαθαθαθα 且最小初速0v =./5.9/103)(22s m s m h h d g ==++例5:如图5—5所示,一质量为m 的人,从长为l 、质量为M 的铁板的一端匀加速跑向另一端,并在另一端骤然停止。
铁板和水平面间摩擦因数为μ,人和铁板间摩擦因数为μ',且μ'>>μ。
这样,人能使铁板朝其跑动方向移动 的最大距离L 是多少?解析:人骤然停止奔跑后,其原有动量转化为与铁板一起向前冲的动量,此后,地面对载人铁板的阻力是地面对铁板的摩擦力f ,其加速度g mM g m M m M f a μμ=++=+=)(1。
由于铁板移动的距离v a v L ''=故,212越大,L 越大。
v '是人与铁板一起开始地运动的速度,因此人应以不会引起铁板运动的最大加速度奔跑。
人在铁板上奔跑但铁板没有移动时,人若达到最大加速度,则地面与铁板之间的摩擦力达到最大静摩擦g m M )(+μ,根据系统的牛顿第二定律得: 02⋅+=M ma F所以 g m m M m F a +==μ2 ①哈设v 、v '分别是人奔跑结束及人和铁板一起运动时的速度 因为 v m M mv '+=)( ②图5—5且L a v l a v 12222,2='=并将1a 、2a 代入②式解得铁板移动的最大距离 l mM m L += 例6:设地球的质量为M ,人造卫星的质量为m ,地球的半径为R 0,人造卫星环绕地球做圆周运动的半径为r 。
试证明:从地面上将卫星发射至运行轨道,发射速度 )2(00rR g R v -=,并用该式求出这个发射速度的最小值和最大值。
(取R 0=6.4×106m ),设大气层对卫星的阻力忽略不计,地面的重力加速度为g )解析:由能量守恒定律,卫星在地球的引力场中运动时总机械能为一常量。
设卫星从地面发射的速度为发v ,卫星发射时具有的机械能为 02121R Mm G mv E -=发 ① 进入轨道后卫星的机械能为r Mm G mv E -=2221轨 ② 由E 1=E 2,并代入,rGM v =轨解得发射速度为 )2(00r R R GM v -=发 ③ 又因为在地面上万有引力等于重力,即:g R R GM mg R Mm G 0020==所以④ 把④式代入③式即得:)2(00r R g R v -=发 (1)如果r=R 0,即当卫星贴近地球表面做匀速圆周运动时,所需发射速度最小 为s m gR v /109.730min ⨯==.(2)如果∞→r ,所需发射速度最大(称为第二宇宙速度或脱离速度)为s m g R v /102.11230max ⨯==例7:如图5—6所示,半径为R 的匀质半球体,其重心在球心O 点正下方C 点处,OC=3R/8, 半球重为G ,半球放在水平面上,在半球的平面上放一重为G/8的物体,它与半球平在间的动摩擦因数2.0=μ, 求无滑动时物体离球心 图5—6O 点最大距离是多少?解析:物体离O 点放得越远,根据力矩的平衡,半球体转过的角度θ越大,但物体在球体斜面上保持相对静止时,θ有限度。
设物体距球心为x 时恰好无滑动,对整体以半球体和地面接触点为轴,根据平衡条件有:θθcos 8sin 83x G R G =⋅得 θt a n 3R x =可见,x 随θ增大而增大。
临界情况对应物体所受摩擦力为最大静摩擦力,则: R R x Nf m m 6.03,,2.0tan =====μμθ所以. 例8:有一质量为m=50kg 的直杆,竖立在水平地面上,杆与地面间静摩擦因数3.0=μ,杆的上端固定在地面上的绳索拉住,绳与杆的夹角30=θ,如图5—7所示。
(1)若以水平力F 作用在杆上,作用点到地面的距离L L h (5/21=为杆长),要使杆不滑倒,力F 最大不能越过多少?(2)若将作用点移到5/42L h =处时,情况又如何?解析:杆不滑倒应从两方面考虑,杆与地面间的静摩擦力达到极限的前提下,力的大小还与h 有关,讨论力与h 的关系是关键。
杆的受力如图5—7—甲所示,由平衡条件得)(0cos 0sin =--=--=--fL h L F mg T N f T F θθ另由上式可知,F 增大时,f 相应也增大,故当f 增大到最大静摩擦力时,杆刚要滑倒,此时满足:N f μ=解得:hh L mgL F mas --=μθθ/tan )(tan由上式又可知,当L h h h L 66.0,/tan )(0=∞→--即当μθ时对F 就没有限制了。
(1)当0152h L h <=,将有关数据代入max F 的表达式得 N F 385m ax =(2)当,5402h L h >=无论F 为何值,都不可能使杆滑倒,这种现象即称为自锁。
图5—7 图5—7—甲例9:放在光滑水平面上的木板质量为M ,如图5—8所示,板上有质量为m 的小狗以与木板成θ角的初速度0v (相对于地面)由A 点跳到B 点,已知AB 间距离为s 。
求初速度的最小值。
图5—8解析:小狗跳起后,做斜上抛运动,水平位移向右,由于水平方向动量守恒,木板向左运动。
小狗落到板上的B 点时,小狗和木板对地位移的大小之和,是小狗对木板的水平位移。
由于水平方向动量守恒,有Mmv v Mv mv θθsin cos 00==即 ① 小狗在空中做斜抛运动的时间为 gv t θsin 20= ② 又vt t v s =⋅+θcos 0 ③将①、②代入③式得 θ2sin )(0m M Mgs v += 当0,4,12sin v 时即πθθ==有最小值,mM Mgs v +=min 0。
例10:一小物块以速度s m v /100=沿光滑地面滑行,然后沿光滑曲面上升到顶部水平的高台上,并由高台上飞出,如图5—9 所示, 当高台的高度h 多大时,小物块飞行的水平距离s 最大?这个距离是多少?(g 取10m/s 2)解析:依题意,小物块经历两个过程。
在脱离曲面顶部之前,小物块受重力和支持力,由于支持力不做功,物块的机械能守恒,物块从高台上飞出后,做平抛运动,其水平距离s 是高度h 的函数。
设小物块刚脱离曲面顶部的速度为v ,根据机械能守恒定律,m g h mv mv +=2202121 ①小物块做平抛运动的水平距离s 和高度h 分别为:221gt h = ②vt s = ③ 以上三式联立解得:2202202)4()4(222g v h g v g h gh v s --=-= 当m g v h 5.2420==时,飞行距离最大,为m gv s 5220max ==。
图5—9例11:军训中,战士距墙s ,以速度0v 起跳,如图5—10所示,再用脚蹬墙面一次,使身体变为竖直向上的运动以继续升高,墙面与鞋底之间的静摩擦因数为μ。