高中物理竞赛解题方法之微元法例题
- 格式:doc
- 大小:3.63 MB
- 文档页数:14
高考物理微元法解决物理试题技巧和方法完整版及练习题含解析一、微元法解决物理试题1.如图甲所示,静止于光滑水平面上的小物块,在水平拉力F 的作用下从坐标原点O 开始沿x 轴正方向运动,F 随物块所在位置坐标x 的变化关系如图乙所示,图线右半部分为四分之一圆弧,则小物块运动到2x 0处时的动能可表示为( )A .0B .12F m x 0(1+π) C .12F m x 0(1+2π) D .F m x 0【答案】C 【解析】 【详解】F -x 图线围成的面积表示拉力F 做功的大小,可知F 做功的大小W =12F m x 0+14πx 02,根据动能定理得,E k =W =12F m x 0+14πx 02 =01122m F x π⎛⎫+ ⎪⎝⎭,故C 正确,ABD 错误。
故选C 。
2.如图所示,有一连通器,左右两管的横截面积均为S ,内盛密度为ρ的液体,开始时两管内的液面高度差为h .打开底部中央的阀门K ,液体开始流动,最终两液面相平.在这一过程中,液体的重力加速度为g 液体的重力势能( )A .减少214gSh ρ B .增加了214gSh ρ C .减少了212gSh ρD .增加了212gSh ρ 【答案】A 【解析】打开阀门K ,最终两液面相平,相当于右管内 2h 的液体流到了左管中,它的重心下降了2h ,这部分液体的质量122h m V S Sh ρρρ===,由于液体重心下降,重力势能减少,重力势能的减少量:211224p h E mgh Sh g Sgh ρρ∆='=⋅⋅=,减少的重力势能转化为内能,故选项A 正确.点睛:求出水的等效重心下移的高度,然后求出重力势能的减少量,再求出重力势能的变化量,从能量守恒的角度分析答题.3.如图所示,某力10N F =,作用于半径1m R =的转盘的边缘上,力F 的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F 做的总功应为( )A .0JB .20J πC .10JD .20J【答案】B 【解析】 【详解】把圆周分成无限个微元,每个微元可认为与力F 在同一直线上,故W F s ∆=∆则转一周中做功的代数和为2π20πJ F R W ⨯==故选B 正确。
高中物理竞赛方法集锦微元法针对训练例18:如图3—17所示,电源的电动热为E ,电容器的电容为C ,S 是单刀双掷开关,MN 、PQ 是两根位于同一水平面上的平行光滑长导轨,它们的电阻能够忽略不计,两导轨间距为L ,导轨处在磁感应强度为B 的平均磁场中,磁场方向垂直于两导轨所在的平面并指向图中纸面向里的方向.L 1和L 2是两根横放在导轨上的导体小棒,质量分不为m 1和m 2,且21m m <.它们在导轨上滑动时与导轨保持垂直并接触良好,不计摩擦,两小棒的电阻相同,开始时两根小棒均静止在导轨上.现将开关S 先合向1,然后合向2.求:〔1〕两根小棒最终速度的大小;〔2〕在整个过程中的焦耳热损耗.〔当回路中有电流时,该电流所产生的磁场可忽略不计〕 解析:当开关S 先合上1时,电源给电容器充电,当开关S 再合上2时,电容器通过导体小棒放电,在放电过程中,导体小棒受到安培力作用,在安培力作用下,两小棒开始运动,运动速度最后均达到最大.〔1〕设两小棒最终的速度的大小为v ,那么分不为L 1、L 2为研究对象得: 1111v m v m t F i i -'=∆ ∑=∆v m t F i i 111 ① 同理得: ∑=∆v m t F i i 222 ② 由①、②得:v m m t F t F i i i i )(212211+=∆+∆∑∑又因为 11Bli F i = 21i i t t ∆=∆ 22Bli F i = i i i =+21因此 ∑∑∑∑∆=∆+=∆+∆i i i i t i BL t i i BL t BLi t BLi )(212211v m m q Q BL )()(21+=-=而Q=CE q=CU ′=CBL v因此解得小棒的最终速度 2221)(L CB m m BLCE v ++= 〔2〕因为总能量守恒,因此热Q v m m C q CE +++=22122)(212121 即产生的热量 22122)(212121v m m C q CE Q +--=热)(2)()()]([2121)(21)(12121222122122212122222122C L B m m CE m m L CB m m BLCE m m L CB CE v m m CBLv C CE +++=+++--=+--=针对训练1.某地强风的风速为v ,设空气的密度为ρ,假如将通过横截面积为S 的风的动能全部转化为电能,那么其电功率为多少?2.如图3—19所示,山高为H ,山顶A 和水平面上B 点的水平距离为s.现在修一条冰道ACB ,其中AC 为斜面,冰道光滑,物体从A 点由静止开释,用最短时刻经C 到B ,不计过C 点的能量缺失.咨询AC 和水平方向的夹角θ多大?最短时刻为多少?3.如图3—21所示,在绳的C 端以速度v 匀速收绳从而拉动低处的物体M 水平前进,当绳AO 段也水平恰成α角时,物体M 的速度多大?4,如图3—22所示,质量相等的两个小球A 和B 通过轻绳绕过两个光滑的定滑轮带动C 球上升,某时刻连接C 球的两绳的夹角为θ,设A 、B 两球现在下落的速度为v ,那么C 球上升的速度多大?5.质量为M 的平板小车在光滑的水平面上以v 0向左匀速运动,一质量为m 的小球从高h 处自由下落,与小车碰撞后反弹上升的高度仍为h.设M>>m ,碰撞弹力N>>g ,球与车之间的动摩擦因数为μ,那么小球弹起后的水平速度可能是〔 〕 A .gh 2 B .0 C .gh 22μ D .v 0 6.半径为R 的刚性球固定在水平桌面上.有一质量为M 的圆环状平均弹性细绳圈,原长 2πa ,a =R/2,绳圈的弹性系数为k 〔绳伸长s 时,绳中弹性张力为ks 〕.将绳圈从球的正 上方轻放到球上,并用手扶着绳圈使其保持水平,并最后停留在某个静力平稳位置.考 虑重力,忽略摩擦.〔1〕设平稳时弹性绳圈长2πb ,b=a 2,求弹性系数k ;〔用M 、R 、g 表示,g 为重力加速度〕〔2〕设k=Mg/2π2R ,求绳圈的最后平稳位置及长度.7.一截面呈圆形的细管被弯成大圆环,并固定在竖直平面内,在环内的环底A处有一质量为m、直径比管径略小的小球,小球上连有一根穿过环顶B处管口的轻绳,在外力F作用下小球以恒定速度v沿管壁做半径为R的匀速圆周运动,如图3—23所示.小球与管内壁中位于大环外侧部分的动摩擦因数为μ,而大环内侧部分的管内壁是光滑的.忽略大环内、外侧半径的差不,认为均为R.试求小球从A点运动到B点过程中F做的功W F.8.如图3—24,来自质子源的质子〔初速度为零〕,经一加速电压为800kV的直线加速器加速,形成电流为1.0mA 的细柱形质子流.质子电荷e=1.60×10-19C.这束质子流每秒打到靶上的质子数为.假设分布在质子源到靶之间的加速电场是平均的,在质子束中与质子源相距l 和4l的两处,各取一段极短的相等长度的质子流,其中质子数分不为n1和n2,那么n1: n2.9.如图3—25所示,电量Q平均分布在一个半径为R的细圆环上,求圆环轴上与环心相距为x的点电荷q所受的力的大小.10.如图3—26所示,一根平均带电细线,总电量为Q,弯成半径为R的缺口圆环,在细线的两端处留有专门小的长为△L的间隙,求圆环中心处的场强.11.如图3—27所示,两根平均带电的半无穷长平行直导线〔它们的电荷线密度为η〕,端点联线LN垂直于这两直导线,如下图.LN的长度为2R.试求在LN的中点O处的电场强度.12.如图3—28所示,有一平均带电的无穷长直导线,其电荷线密度为η.试求空间任意一点的电场强度.该点与直导线间垂直距离为r.13.如图3—29所示,半径为R的平均带电半球面,电荷面密度为δ,求球心O处的电场强度.14.如图3—30所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L 的区域内,现有一个边长为a 〔a <L 〕,质量为m 的正方形闭合线框以初速v 0垂直磁场边界滑过磁场后,速度变为v 〔v <v 0〕,求:〔1〕线框在这过程中产生的热量Q ;〔2〕线框完全进入磁场后的速度v ′.15.如图3—31所示,在离水平地面h 高的平台上有一相距L 的光滑轨道,左端接有已充电的电容器,电容为C ,充电后两端电压为U 1.轨道平面处于垂直向上的磁感应强度为B 的匀强磁场中.在轨道右端放一质量为m 的金属棒,当闭合S ,棒离开轨道后电容器的两极电压变为U 2,求棒落在离平台多远的位置.16.如图3—32所示,空间有一水平方向的匀强磁场,大小为B ,一光滑导轨竖直放置,导轨上接有一电容为C 的电容器,并套一可自由滑动的金属棒,质量为m ,开释后,求金属棒的加速度a .答案:1.321v S ρ 2.θ=60°)223(2hs g h + 3.)cos 1/(x v + 4.2cos /θv 5.CD 6.〔1〕R Mg 22)12(π+ 〔2〕绳圈掉地上,长度为原长 7.22v m mgR πμ+ 8.6.25×1015,2:1 9.2322)(x R QqxK + 10.32R l Q K ρ∆ 11.R k λ2 12.rk λ2 13.σπR 2 14.2),(210220v v v v v m +='- 15.gh m u u CBL 2)(21- 16.22L CB m mg a +=。
高考物理微元法解决物理试题技巧和方法完整版及练习题含解析一、微元法解决物理试题1.如图所示,某个力F =10 N 作用在半径为R =1 m 的转盘的边缘上,力F 的大小保持不变,但方向保持在任何时刻均与作用点的切线一致,则转动一周这个力F 做的总功为( )A .0B .20π JC .10 JD .10π J【答案】B 【解析】本题中力F 的大小不变,但方向时刻都在变化,属于变力做功问题,可以考虑把圆周分割为很多的小段来研究.当各小段的弧长足够小时,可以认为力的方向与弧长代表的位移方向一致,故所求的总功为W =F ·Δs 1+F ·Δs 2+F ·Δs 3+…=F (Δs 1+Δs 2+Δs 3+…)=F ·2πR =20πJ ,选项B 符合题意.故答案为B .【点睛】本题应注意,力虽然是变力,但是由于力一直与速度方向相同,故可以直接由W =FL 求出.2.解放前后,机械化生产水平较低,人们经常通过“驴拉磨”的方式把粮食颗粒加工成粗面来食用.如图,一个人推磨,其推磨杆的力的大小始终为F ,方向与磨杆始终垂直,作用点到轴心的距离为r ,磨盘绕轴缓慢转动,则在转动一周的过程中推力F 做的功为A .0B .2πrFC .2FrD .-2πrF【答案】B 【解析】 【分析】cos W Fx α=适用于恒力做功,因为推磨的过程中力方向时刻在变化是变力,但由于圆周运动知识可知,力方向时刻与速度方向相同,根据微分原理可知,拉力所做的功等于力与路程的乘积; 【详解】由题可知:推磨杆的力的大小始终为F ,方向与磨杆始终垂直,即其方向与瞬时速度方向相同,即为圆周切线方向,故根据微分原理可知,拉力对磨盘所做的功等于拉力的大小与拉力作用点沿圆周运动弧长的乘积,由题意知,磨转动一周,弧长2L r π=,所以拉力所做的功2W FL rF π==,故选项B 正确,选项ACD 错误. 【点睛】本题关键抓住推磨的过程中力方向与速度方向时刻相同,即拉力方向与作用点的位移方向时刻相同,根据微分思想可以求得力所做的功等于力的大小与路程的乘积,这是解决本题的突破口.3.估算池中睡莲叶面承受雨滴撞击产生的平均压强,小明在雨天将一圆柱形水杯置于露台,测得1小时内杯中水上升了45mm 。
高考物理物理解题方法:微元法习题知识归纳总结及答案解析一、高中物理解题方法:微元法1.打开水龙头,水顺流而下,仔细观察将会发现连续的水流柱的直径在流下的过程中,是逐渐减小的(即上粗下细),设水龙头出口处半径为1cm ,安装在离接水盆75cm 高处,如果测得水在出口处的速度大小为1m/s ,g =10m/s 2,则水流柱落到盆中的直径 A .1cmB .0.75cmC .0.5cmD .0.25cm【答案】A【解析】【分析】【详解】设水在水龙头出口处速度大小为v 1,水流到接水盆时的速度v 2,由22212v v gh -=得:v 2=4m/s设极短时间为△t ,在水龙头出口处流出的水的体积为 2111V v t r π=水流进接水盆的体积为22224d V v t π⋅∆= 由V 1=V 2得2221124d v t r v t ππ∆∆= 代入解得:d 2=1cm .A .1cm ,与结论相符,选项A 正确;B .0.75cm ,与结论不相符,选项B 错误;C .0.5cm ,与结论不相符,选项C 错误;D .0.25cm ,与结论不相符,选项D 错误;2.如图所示,两条光滑足够长的金属导轨,平行置于匀强磁场中,轨道间距0.8m L =,两端各接一个电阻组成闭合回路,已知18ΩR =,22ΩR =,磁感应强度0.5T B =,方向与导轨平面垂直向下,导轨上有一根电阻0.4Ωr =的直导体ab ,杆ab 以05m /s v =的初速度向左滑行,求:(1)此时杆ab 上感应电动势的大小,哪端电势高?(2)此时ab 两端的电势差。
(3)此时1R 上的电流强度多大?(4)若直到杆ab 停下时1R 上通过的电量0.02C q =,杆ab 向左滑行的距离x 。
【答案】(1)杆ab 上感应电动势为2V ,a 点的电势高于b 点;(2)ab 两端的电势差为1.6V (3)通过R 1的电流为0.2A ;(4)0.5m x =。
高中物理微元法解决物理试题解题技巧及练习题及解析一、微元法解决物理试题1.如图所示,半径为R 的1/8光滑圆弧轨道左端有一质量为m 的小球,在大小恒为F 、方向始终与轨道相切的拉力作用下,小球在竖直平面内由静止开始运动,轨道左端切线水平,当小球运动到轨道的末端时,此时小球的速率为v ,已知重力加速度为g ,则( )A .此过程拉力做功为2 FRB .此过程拉力做功为4FR πC .小球运动到轨道的末端时,拉力的功率为12Fv D .小球运动到轨道的末端时,拉力的功率为2Fv 【答案】B 【解析】 【详解】AB 、将该段曲线分成无数段小段,每一段可以看成恒力,可知此过程中拉力做功为1144W F R FR ππ=•=,故选项B 正确,A 错误;CD 、因为F 的方向沿切线方向,与速度方向平行,则拉力的功率P Fv =,故选项C 、D 错误。
2.如图所示,半径为R 的1/8光滑圆弧轨道左端有一质量为m 的小球,在大小恒为F 、方向始终与轨道相切的外力作用下,小球在竖直平面内由静止开始运动,轨道左端切线水平,当小球运动到轨道的末端时立即撤去外力,此时小球的速率为v ,已知重力加速度为g ,则( )A .此过程外力做功为FRB .此过程外力做功为C .小球离开轨道的末端时,拉力的功率为D .小球离开轨道末端时,拉力的功率为Fv【答案】B 【解析】 【详解】AB 、将该段曲线分成无数段小段,每一段可以看成恒力,可知此过程中外力做功为:,故B 正确,A 错误;CD 、因为F 的方向沿切线方向,与速度方向平行,则拉力的功率P=Fv ,故C 、D 错误; 故选B 。
【点睛】关键是将曲线运动分成无数段,每一段看成恒力,结合功的公式求出此过程中外力做功的大小;根据瞬时功率公式求出小球离开轨道末端时拉力的功率。
3.一条长为L 、质量为m 的均匀链条放在光滑水平桌面上,其中有三分之一悬在桌边,如图所示,在链条的另一端用水平力缓慢地拉动链条,当把链条全部拉到桌面上时,需要做多少功( )A .16mgL B .19mgL C .118mgL D .136mgL 【答案】C 【解析】 【分析】 【详解】悬在桌边的13l 长的链条重心在其中点处,离桌面的高度:111236h l l =⨯=它的质量是13m m '=当把它拉到桌面时,增加的重力势能就是外力需要做的功,故有1113618P W E mg l mgl =∆=⨯=A .16mgL ,与结论不相符,选项A 错误; B .19mgL ,与结论不相符,选项B 错误;C .118mgL ,与结论相符,选项C 正确; D .136mgL ,与结论不相符,选项D 错误; 故选C . 【点睛】如果应用机械能守恒定律解决本题,首先应规定零势能面,确定初末位置,列公式时要注意系统中心的变化,可以把整体分成两段来分析.4.水柱以速度v 垂直射到墙面上,之后水速减为零,若水柱截面为S ,水的密度为ρ,则水对墙壁的冲力为( ) A .12ρSv B .ρSv C .12ρS v 2 D .ρSv 2【答案】D 【解析】 【分析】 【详解】设t 时间内有V 体积的水打在钢板上,则这些水的质量为:S m V vt ρρ==以这部分水为研究对象,它受到钢板的作用力为F ,以水运动的方向为正方向,由动量定理有:0Ft mv =-即:2mvF Sv tρ=-=- 负号表示水受到的作用力的方向与水运动的方向相反;由牛顿第三定律可以知道,水对钢板的冲击力大小也为2S v ρ ,D 正确,ABC 错误。
高中物理微元法解决物理试题技巧(很有用)及练习题及解析一、微元法解决物理试题1.如图所示,某个力F=10 N作用在半径为R=1 m的转盘的边缘上,力F的大小保持不变,但方向保持在任何时刻均与作用点的切线一致,则转动一周这个力F做的总功为()A.0 B.20π J C.10 J D.10π J【答案】B【解析】本题中力F的大小不变,但方向时刻都在变化,属于变力做功问题,可以考虑把圆周分割为很多的小段来研究.当各小段的弧长足够小时,可以认为力的方向与弧长代表的位移方向一致,故所求的总功为W=F·Δs1+F·Δs2+F·Δs3+…=F(Δs1+Δs2+Δs3+…)=F·2πR=20πJ,选项B符合题意.故答案为B.【点睛】本题应注意,力虽然是变力,但是由于力一直与速度方向相同,故可以直接由W=FL求出.2.如图甲所示,静止于光滑水平面上的小物块,在水平拉力F的作用下从坐标原点O开始沿x轴正方向运动,F随物块所在位置坐标x的变化关系如图乙所示,图线右半部分为四分之一圆弧,则小物块运动到2x0处时的动能可表示为()A.0 B.12F m x0(1+π)C.12F m x0(1+2π)D.F m x0【答案】C 【解析】【详解】F-x图线围成的面积表示拉力F做功的大小,可知F做功的大小W=12F m x0+14πx02,根据动能定理得,E k=W=12F m x0+14πx02 =01122mF xπ⎛⎫+⎪⎝⎭,故C正确,ABD错误。
故选C。
3.如图所示,半径为R的1/8光滑圆弧轨道左端有一质量为m的小球,在大小恒为F、方向始终与轨道相切的外力作用下,小球在竖直平面内由静止开始运动,轨道左端切线水平,当小球运动到轨道的末端时立即撤去外力,此时小球的速率为v,已知重力加速度为g,则( )A.此过程外力做功为FRB.此过程外力做功为C.小球离开轨道的末端时,拉力的功率为D.小球离开轨道末端时,拉力的功率为Fv【答案】B【解析】【详解】AB、将该段曲线分成无数段小段,每一段可以看成恒力,可知此过程中外力做功为:,故B正确,A错误;CD、因为F的方向沿切线方向,与速度方向平行,则拉力的功率P=Fv,故C、D错误;故选B。
高考物理物理解题方法:微元法压轴难题知识归纳总结及答案解析一、高中物理解题方法:微元法1.下雨天,大量雨滴落在地面上会形成对地面的平均压强。
某次下雨时用仪器测得地面附近雨滴的速度约为10m/s 。
查阅当地气象资料知该次降雨连续30min 降雨量为10mm 。
又知水的密度为33110kg/m ⨯。
假设雨滴撞击地面的时间为0.1s ,且撞击地面后不反弹。
则此压强为( ) A .0.06Pa B .0.05PaC .0.6PaD .0.5Pa【答案】A 【解析】 【详解】取地面上一个面积为S 的截面,该面积内单位时间降雨的体积为31010m 3060sh V S S t -⨯=⋅=⋅⨯则单位时间降雨的质量为m V ρ=撞击地面时,雨滴速度均由v 减为0,在Δ0.1s t =内完成这一速度变化的雨水的质量为m t ∆。
设雨滴受地面的平均作用力为F ,由动量定理得[()]()F m t g t m t v -∆∆=∆又有Fp S=解以上各式得0.06Pa p ≈所以A 正确,BCD 错误。
故选A 。
2.如图所示,水龙头开口处A 的直径d 1=1cm ,A 离地面B 的高度h =75cm ,当水龙头打开时,从A 处流出的水流速度v 1=1m/s ,在空中形成一完整的水流束,则该水流束在地面B 处的截面直径d 2约为(g 取10m/s 2)( )A .0.5cmB .1cmC .2cmD .应大于2cm ,但无法计算 【答案】A 【解析】 【详解】设水在水龙头出口处速度大小为v 1,水流到B 处的速度v 2,则由22212v v gh -=得24m/s v =设极短时间为△t ,在水龙头出口处流出的水的体积为2111π()2d V v t =∆⋅ 水流B 处的体积为2222π()2d V v t =∆⋅ 由12V V =得20.5cm d =故A 正确。
3.如图所示,粗细均匀,两端开口的U 形管内装有同种液体,开始时两边液面高度差为h ,管中液柱总长度为4h ,后来让液体自由流动,当两液面高度相等时,右侧液面下降的速度大小是( )A 8gh B 6gh C 4gh D 2gh 【答案】A 【解析】 【分析】 【详解】设U 形管横截面积为S ,液体密度为ρ,两边液面等高时,相当于右管上方2h高的液体移到左管上方,这2h 高的液体重心的下降高度为2h ,这2h高的液体的重力势能减小量转化为全部液体的动能。
高中物理微元法解决物理试题题20套(带答案)及解析一、微元法解决物理试题1.如图所示,某个力F=10 N作用在半径为R=1 m的转盘的边缘上,力F的大小保持不变,但方向保持在任何时刻均与作用点的切线一致,则转动一周这个力F做的总功为()A.0 B.20π J C.10 J D.10π J【答案】B【解析】本题中力F的大小不变,但方向时刻都在变化,属于变力做功问题,可以考虑把圆周分割为很多的小段来研究.当各小段的弧长足够小时,可以认为力的方向与弧长代表的位移方向一致,故所求的总功为W=F·Δs1+F·Δs2+F·Δs3+…=F(Δs1+Δs2+Δs3+…)=F·2πR=20πJ,选项B符合题意.故答案为B.【点睛】本题应注意,力虽然是变力,但是由于力一直与速度方向相同,故可以直接由W=FL求出.2.如图所示,粗细均匀的U形管内装有同种液体,在管口右端用盖板A密闭,两管内液面的高度差为h,U形管中液柱的总长为4h。现拿去盖板A,液体开始流动,不计液体内部及液体与管壁间的阻力,则当两液面高度相等时,右侧液面下降的速度是A gh8B4ghC2ghD gh【答案】A【解析】试题分析:拿去盖板,液体开始运动,当两液面高度相等时,液体的机械能守恒,即可求出右侧液面下降的速度.当两液面高度相等时,右侧高为h液柱重心下降了14h,液柱的重力势能减小转化为整个液体的动能.设管子的横截面积为S,液体的密度为ρ.拿去盖板,液体开始运动,根据机械能守恒定律得211442hSg h hSv ρρ⋅=,解得8ghv =,A 正确.3.如图所示,水龙头开口处A 的直径d 1=1cm ,A 离地面B 的高度h =75cm ,当水龙头打开时,从A 处流出的水流速度v 1=1m/s ,在空中形成一完整的水流束,则该水流束在地面B 处的截面直径d 2约为(g 取10m/s 2)( )A .0.5cmB .1cmC .2cmD .应大于2cm ,但无法计算 【答案】A 【解析】 【详解】设水在水龙头出口处速度大小为v 1,水流到B 处的速度v 2,则由22212v v gh -=得24m/s v =设极短时间为△t ,在水龙头出口处流出的水的体积为2111π()2dV v t =∆⋅水流B 处的体积为2222π()2d V v t =∆⋅ 由12V V =得20.5cm d =故A 正确。
高中物理物理解题方法:微元法习题综合题附答案解析一、高中物理解题方法:微元法1.雨打芭蕉是我国古代文学中重要的抒情意象.为估算雨天院中芭蕉叶面上单位面积所承受的力,小玲同学将一圆柱形水杯置于院中,测得10分钟内杯中雨水上升了15mm ,查询得知,当时雨滴落地速度约为10m /s ,设雨滴撞击芭蕉后无反弹,不计雨滴重力,雨水的密度为1×103kg /m 3,据此估算芭蕉叶面单位面积上的平均受力约为 A .0.25N B .0.5NC .1.5ND .2.5N【答案】A 【解析】 【分析】 【详解】由于是估算压强,所以不计雨滴的重力.设雨滴受到支持面的平均作用力为F .设在△t 时间内有质量为△m 的雨水的速度由v =10m/s 减为零.以向上为正方向,对这部分雨水应用动量定理:F △t =0-(-△mv )=△mv .得:F =mvt;设水杯横截面积为S ,对水杯里的雨水,在△t 时间内水面上升△h ,则有:△m =ρS △h ;F =ρSvht.压强为:3322151011010/0.25/1060F h P v N m N m S t ρ-⨯===⨯⨯⨯=⨯,故A 正确,BCD 错误.2.估算池中睡莲叶面承受雨滴撞击产生的平均压强,小明在雨天将一圆柱形水杯置于露台,测得1小时内杯中水上升了45mm 。
查询得知,当时雨滴竖直下落速度约为12m/s 。
据此估算该压强约为( )(设雨滴撞击唾莲后无反弹,不计雨滴重力,雨水的密度为1×103kg/m 3) A .0.15Pa B .0.54PaC .1.5PaD .5.1Pa【答案】A 【解析】 【分析】 【详解】由于是估算压强,所以不计雨滴的重力。
设雨滴受到支持面的平均作用力为F 。
设在△t 时间内有质量为△m 的雨水的速度由v =12m/s 减为零。
以向上为正方向,对这部分雨水应用动量定理有()0F t mv mv ∆=--∆=∆得到mF v t∆=∆ 设水杯横截面积为S ,对水杯里的雨水,在△t 时间内水面上升△h ,则有m S h ρ∆=∆=h F Svtρ∆∆ 所以有压强3345101012Pa 0.15Pa 3600F h P v S t ρ-∆⨯===⨯⨯=∆即睡莲叶面承受雨滴撞击产生的平均压强为0.15Pa 。
物理解题方法:微元法习题知识点及练习题附答案解析一、高中物理解题方法:微元法1.如图甲所示,静止于光滑水平面上的小物块,在水平拉力F 的作用下从坐标原点O 开始沿x 轴正方向运动,F 随物块所在位置坐标x 的变化关系如图乙所示,图线右半部分为四分之一圆弧,则小物块运动到2x 0处时的动能可表示为( )A .0B .12F m x 0(1+π) C .12F m x 0(1+2π) D .F m x 0【答案】C 【解析】 【详解】F -x 图线围成的面积表示拉力F 做功的大小,可知F 做功的大小W =12F m x 0+14πx 02,根据动能定理得,E k =W =12F m x 0+14πx 02 =01122m F x π⎛⎫+ ⎪⎝⎭,故C 正确,ABD 错误。
故选C 。
2.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量,为简化问题,我们假定粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力f 与mn 、和v 的关系正确的是( )A .216nsmv B .213nmvC .216nmv D .213nmv t ∆【答案】B 【解析】 【详解】一个粒子每与器壁碰撞一次给器壁的冲量2I mv ∆=,如图所示,以器壁上面积为S 的部分为底、v t ∆为高构成柱体,由题设可知,其内有16的粒子在t ∆时间内与器壁上面积为S 的部分发生碰撞,碰撞粒子总数16N n Sv t =⋅∆,t ∆时间内粒子给器壁的冲量21·3I N I nSmv t =∆=∆,由I F t =∆可得213I F nSmv t ==∆,213F f nmv S ==,故选B .3.如图所示,半径为R 的1/8光滑圆弧轨道左端有一质量为m 的小球,在大小恒为F 、方向始终与轨道相切的拉力作用下,小球在竖直平面内由静止开始运动,轨道左端切线水平,当小球运动到轨道的末端时,此时小球的速率为v ,已知重力加速度为g ,则( )A .此过程拉力做功为22FR B .此过程拉力做功为4FR πC .小球运动到轨道的末端时,拉力的功率为12Fv D .小球运动到轨道的末端时,拉力的功率为22Fv 【答案】B 【解析】 【详解】AB 、将该段曲线分成无数段小段,每一段可以看成恒力,可知此过程中拉力做功为1144W F R FR ππ=•=,故选项B 正确,A 错误;CD 、因为F 的方向沿切线方向,与速度方向平行,则拉力的功率P Fv =,故选项C 、D 错误。
高中物理竞赛专题一:微元法求速度微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。
用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。
在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。
使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。
1.如图所示,当小车B 以恒定的速度v 向下运动时,求当绳子与水平方向成θ时,A 的速度为多少?3.如图3—1所示,一个身高为h 的人在灯以悟空速度v 沿水平直线行走。
设灯距地面高为H ,求人影的顶端C 点速度。
4..如图所示,一平面内有两根细杆 l 1 和 l 2 ,夹角为 θ,各自以垂直于自己的速度 v 1 和 v 2在该平面内运动,试求交点相对于纸平面的速率及交点相对于每根杆的速率。
5.如图3—11所示,小环O 和O ′分别套在不动的竖直杆AB 和A ′B ′上,一根不可伸长的绳子穿过环O ′,绳的两端分别系在A ′点和O 环上,设环O ′以恒定速度v 向下运动,求当∠AOO ′= α时,环O 的速度。
6.某行星围绕太阳C 沿圆弧轨道运行,它的近日点A 离太阳的距离为a ,行星经过近日点A 时的速度为v A ,行星的远日点B 离开太阳的距离为b ,如图3—3所示,求它经过远日点B 时的速度v B 的大小。
2二.微元法在动力学中的应用1.某游乐园入口旁有一喷泉,喷出的水柱将一质量为M的卡通玩具稳定地悬停在空中.为计算方便起见,假设水柱从横截面积为S的喷口持续以速度v0竖直向上喷出;玩具底部为平板(面积略大于S);水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g.求:(i)喷泉单位时间内喷出的水的质量;(ii)玩具在空中悬停时,其底面相对于喷口的高度.2.激光束可以看作是粒子流,其中的粒子以相同的动量沿光传播方向运动.激光照射到物体上,在发生反射、折射和吸收现象的同时,也会对物体产生作用.光镊效应就是一个实例,激光束可以像镊子一样抓住细胞等微小颗粒.一束激光经S点后被分成若干细光束,若不考虑光的反射和吸收,其中光束①和②穿过介质小球的光路如图②所示,图中O点是介质小球的球心,入射时光束①和②与SO的夹角均为θ,出射时光束均与SO平行.请在下面两种情况下,分析说明两光束因折射对小球产生的合力的方向.a.光束①和②强度相同;b.光束①比②强度大.3.半径为R的光滑球固定在水平桌面上,有一质量为M的圆环状均匀弹性绳圈,原长为πR ,且弹性绳圈的劲度系数为k ,将弹性绳圈从球的正上方轻放到球上,使弹性绳圈水平停留在平衡位置上,如图3—5R ,求弹性绳圈的劲度系数k 。
练习题二:微元法A1、如图所示,一个身高为h 的人在灯下以均匀速度v 沿水平直线行走,设灯距地面高为H ,求证人影的顶端C 点是做匀速直线运动。
解析:该题不能用速度分解求解,考虑采用“微元法”。
设某一时间人经过AB 处,再经过一微小过程 △t (△t →0),则人由AB 到达A ′B ′,人影顶端 C 点到达C ′点,由于△X AA ′=v △t 则人影顶端的移动速度hH Hvt S h H HtS v A A t C C t C -=∆∆-=∆∆='→∆'→∆00lim lim可见v c 与所取时间△t 的长短无关,所以人影的顶端C 点做匀速直线运动。
(本题也可用相似三角形的知识解)。
A 2、 如图14—2所示,岸高为h ,人用绳经滑轮拉船靠岸,若当绳与水平方向为θ时,收绳速率为υ,则该位置船的速率为多大?解析 要求船在该位置的速率即为瞬时速率,需从该时刻起取一小段时间求它的平均速率,当这一小段时间趋于零时,该平均速率就为所求速率.设船在θ角位置经t ∆时间向左行驶x ∆距离,滑轮右侧的绳长缩短L ∆,如图14—2—甲所示,当绳与水平方向的角度变化很小时,△ABC 可近似看做是一直角三角形,因而有L ∆=θcos x ∆两边同除以t ∆得:θcos txt L ∆∆=∆∆,即收绳速率θυυcos 船=因此船的速率为θυυcos =船A3、如图2所示,在绳的C 端以速度v 匀速收绳从而拉动低处的物体M 水平前进,当绳AO 段与水平恰成α角时,物体M 的速度多大?v/(1+cosa)A4、一只狐狸以不变的速度1υ沿着直线AB 逃跑,一只猎犬 以不变的速率2υ追击,其运动方向始终对准狐狸.某时刻狐狸在F 处,MAO vCα图14—2 图14—2—甲猎犬在D 处,FD ⊥AB ,且FD=L ,如图14—1所示,求猎犬的加速 度的大小. 解析:猎犬的运动方向始终对准狐狸且速度大小不变, 故猎犬做匀速率曲线运动,根据向心加速度r ra ,22υ=为猎犬所在处的曲率半径,因为r 不断变化,故猎犬的加速度 的大小、方向都在不断变化,题目要求猎犬在D 处的加 速度大小,由于2υ大小不变,如果求出D 点的曲率半径,此时猎犬的加速度大小也就求得了. 猎犬做匀速率曲线运动,其加速度的大小和方向都在不断改变.在所求时刻开始的一段很短的时间t ∆内,猎犬运动的轨迹可近似看做是一段圆弧,设其半径为R ,则加速度 =a R22υ其方向与速度方向垂直,如图14—1—甲所示.在t ∆时间内,设狐狸与猎犬分别 到达D F ''与,猎犬的速度方向转过的角度为=α2υt ∆/R而狐狸跑过的距离是:1υt ∆≈L α 因而2υt ∆/R ≈1υt ∆/L ,R=L 2υ/1υ所以猎犬的加速度大小为=a R22υ=1υ2υ/LA5、电量Q 均匀分布在半径为R 的圆环上(如图3—14所示),求在圆环轴线上距圆心O 点为x 处的P 点的电场强度.解析:带电圆环产生的电场不能看做点电荷产生的电场, 故采用微元法,用点电荷形成的电场结合对称性求解. 选电荷元 ,2RQR q πθ∆=∆它在P 点产生的电场的场强的x 分量为: 22222)(2cos xR x x R R Q R k r q kE x ++∆=∆=∆πθα根据对称性 322322322)(2)(2)(2x R kQx x R kQx x R kQx E E x +=+=∆+=∆=∑∑ππθπ由此可见,此带电圆环在轴线P 点产生的场强大小相当于带电圆环带电量集中在圆环的某一点时在轴线P 点产生的场强大小,方向是沿轴线的方向.图14—2—甲图14—1B3、一个原来不带电的半径为r的空心金属球放在绝缘支架上,右侧放置一个电荷量为+Q的点电荷,点电荷到金属球表面的最近距离为r,则金属球上的感应电荷在球心处激发的电场强度大小为kQ4r2,方向向右解:点电荷Q在球心处产生的场强E=kQ4r2,方向水平向左,则球面上感应电荷在球心O处的场强大小E′=E=kQ4r2,方向水平向右.B4、一只老鼠从老鼠洞沿直线爬出,已知爬出速度v的大小与距老鼠洞中心的距离s 成反比,当老鼠到达距老鼠洞中心距离s1 = 1m的A点时,速度大小为v1 = 20cm/s ,问当老鼠到达距老鼠洞中心s2 = 2m的B点时,其速度大小v2 = ? 老鼠从A点到达B点所用的时间t =?解析:因为老鼠从老鼠洞沿直线爬出,已知爬出的速度与通过的距离成反比,则不能通过匀速运动、匀变速运动公式直接求解,但可以通过图象法求解,因为在1v—s图象中,所围面积即为所求的时间。
物理解题方法:微元法压轴难题提高题专题附答案解析一、高中物理解题方法:微元法1.如图甲所示,静止于光滑水平面上的小物块,在水平拉力F的作用下从坐标原点O开始沿x轴正方向运动,F随物块所在位置坐标x的变化关系如图乙所示,图线右半部分为四分之一圆弧,则小物块运动到2x0处时的动能可表示为()A.0 B.12F m x0(1+π)C.12F m x0(1+2π)D.F m x0【答案】C 【解析】【详解】F-x图线围成的面积表示拉力F做功的大小,可知F做功的大小W=12F m x0+14πx02,根据动能定理得,E k=W=12F m x0+14πx02 =01122mF xπ⎛⎫+⎪⎝⎭,故C正确,ABD错误。
故选C。
2.一条长为L、质量为m的均匀链条放在光滑水平桌面上,其中有三分之一悬在桌边,如图所示,在链条的另一端用水平力缓慢地拉动链条,当把链条全部拉到桌面上时,需要做多少功()A.16mgL B.19mgL C.118mgL D.136mgL【答案】C 【解析】【分析】【详解】悬在桌边的13l长的链条重心在其中点处,离桌面的高度:111236h l l=⨯=它的质量是13m m '= 当把它拉到桌面时,增加的重力势能就是外力需要做的功,故有1113618P W E mg l mgl =∆=⨯= A .16mgL ,与结论不相符,选项A 错误; B .19mgL ,与结论不相符,选项B 错误; C .118mgL ,与结论相符,选项C 正确; D .136mgL ,与结论不相符,选项D 错误; 故选C .【点睛】 如果应用机械能守恒定律解决本题,首先应规定零势能面,确定初末位置,列公式时要注意系统中心的变化,可以把整体分成两段来分析.3.守恒定律是自然界中某种物理量的值恒定不变的规律,它为我们解决许多实际问题提供了依据.在物理学中这样的守恒定律有很多,例如:电荷守恒定律、质量守恒定律、能量守恒定律等等.(1)根据电荷守恒定律可知:一段导体中通有恒定电流时,在相等时间内通过导体不同截面的电荷量都是相同的.a .己知带电粒子电荷量均为g ,粒子定向移动所形成的电流强度为,求在时间t 内通过某一截面的粒子数N .b .直线加速器是一种通过高压电场使带电粒子加速的装置.带电粒子从粒子源处持续发出,假定带电粒子的初速度为零,加速过程中做的匀加速直线运动.如图l 所示,在距粒子源l 1、l 2两处分别取一小段长度相等的粒子流I ∆.已知l l :l 2=1:4,这两小段粒子流中所含的粒子数分别为n 1和n 2,求:n 1:n 2.(2)在实际生活中经常看到这种现象:适当调整开关,可以看到从水龙头中流出的水柱越来越细,如图2所示,垂 直于水柱的横截面可视为圆.在水柱上取两个横截面A 、B ,经过A 、B 的水流速度大小分别为v I 、v 2;A 、B 直径分别为d 1、d 2,且d 1:d 2=2:1.求:水流的速度大小之 比v 1:v 2.(3)如图3所示:一盛有水的大容器,其侧面有一个水平的短细管,水能够从细管中喷出;容器中水面的面积S l 远远大于细管内的横截面积S 2;重力加速度为g .假设 水不可压缩,而且没有粘滞性.a .推理说明:容器中液面下降的速度比细管中的水流速度小很多,可以忽略不计:b .在上述基础上,求:当液面距离细管的高度为h 时, 细管中的水流速度v .【答案】(1)a. Q It N q q== ;b. 21:2:1n n =;(2)221221::1:4v v d d ==;(3)a.设:水面下降速度为1v ,细管内的水流速度为v .按照水不可压缩的条件,可知水的体积守恒或流量守恒,即:12Sv Sv =,由12S S >>,可得12v v <<.所以:液体面下降的速度1v 比细管中的水流速度可以忽略不计. b. 2v gh 【解析】【分析】【详解】(1)a.电流Q I t=, 电量Q Nq = 粒子数Q It N q q == b.根据2v ax = 可知在距粒子源1l 、2l 两处粒子的速度之比:12:1:2v v =极短长度内可认为速度不变,根据x v t∆=∆, 得12:2:1t t = 根据电荷守恒,这两段粒子流中所含粒子数之比:12:2:1n n =(2)根据能量守恒,相等时间通过任一截面的质量相等,即水的质量相等. 也即:2··4v d π处处相等 故这两个截面处的水流的流速之比:221221::1:4v v d d == (3)a .设:水面下降速度为1v ,细管内的水流速度为v .按照水不可压缩的条件,可知水的体积守恒或流量守恒,即:12Sv Sv =由12S S >>,可得:12v v <<.所以液体面下降的速度1v 比细管中的水流速度可以忽略不计.b.根据能量守恒和机械能守恒定律分析可知:液面上质量为m 的薄层水的机械能等于细管中质量为m 的小水柱的机械能.又根据上述推理:液面薄层水下降的速度1v 忽略不计,即10v =. 设细管处为零势面,所以有:21002mgh mv +=+解得:v =4.根据量子理论,光子具有动量.光子的动量等于光子的能量除以光速,即P=E/c .光照射到物体表面并被反射时,会对物体产生压强,这就是“光压”.光压是光的粒子性的典型表现.光压的产生机理如同气体压强:由大量气体分子与器壁的频繁碰撞产生了持续均匀的压力,器壁在单位面积上受到的压力就是气体的压强.(1)激光器发出的一束激光的功率为P ,光束的横截面积为S .当该激光束垂直照射在物体表面时,试计算单位时间内到达物体表面的光子的总动量.(2)若该激光束被物体表面完全反射,试求出其在物体表面引起的光压表达式.(3)设想利用太阳的光压将物体送到太阳系以外的空间去,当然这只须当太阳对物体的光压超过了太阳对物体的引力才行.现如果用一种密度为1.0×103kg/m 3的物体做成的平板,它的刚性足够大,则当这种平板厚度较小时,它将能被太阳的光压送出太阳系.试估算这种平板的厚度应小于多少(计算结果保留二位有效数字)?设平板处于地球绕太阳运动的公转轨道上,且平板表面所受的光压处于最大值,不考虑太阳系内各行星对平板的影响.已知地球公转轨道上的太阳常量为1.4×103J/m2•s (即在单位时间内垂直辐射在单位面积上的太阳光能量),地球绕太阳公转的加速度为5.9×10-3m/s 2)【答案】(1)P/C (2)p 压强=F/S=2P/Cs (3)1.6×10-6m【解析】试题分析:(1)设单位时间内激光器发出的光子数为n ,每个光子能量为E ,动量为p ,则激光器的功率为P=nE所以单位时间内到达物体表面的光子的总动量为(2)激光束被物体表面反射时,其单位时间内的动量改变量为△p="2" p 总=2P/c . 根据动量定理可知,物体表面对激光束的作用力 F=△p =2P/c .由牛顿第三定律可知,激光束对物体表面的作用力为F=2P/c ,在物体表面引起的光压表达式为:p 压强=F/S=2P/cS .(3)设平板的质量为m ,密度为ρ,厚度为d ,面积为S 1,太阳常量为J ,地球绕太阳公转的加速度为a ,利用太阳的光压将平板送到太阳系以外的空间去必须满足条件:太阳光对平板的压力大于太阳对其的万有引力.由(2)得出的结论可得,太阳光对平板的压力F=2JS 1/c .太阳对平板的万有引力可表示为f=ma ,所以,2JS 1/c .> ma ,平板质量m=ρdS 1,所以 ,2JS 1/c .> ρdS 1a ,解得:d<2J c aρ=1.6×10-6m . 即:平板的厚度应小于1.6×10-6m .考点:动量定理、万有引力定律【名师点睛】5.如图所示,一质量为 2.0kg m =的物体从半径为0.5m R =的圆弧轨道的A 端,在拉力作用下沿圆弧缓慢运动到B 端(圆弧AB 在竖直平面内)。
高中物理高考必备物理微元法解决物理试题技巧全解及练习题一、微元法解决物理试题1.如图所示,某个力F =10 N 作用在半径为R =1 m 的转盘的边缘上,力F 的大小保持不变,但方向保持在任何时刻均与作用点的切线一致,则转动一周这个力F 做的总功为( )A .0B .20π JC .10 JD .10π J【答案】B 【解析】本题中力F 的大小不变,但方向时刻都在变化,属于变力做功问题,可以考虑把圆周分割为很多的小段来研究.当各小段的弧长足够小时,可以认为力的方向与弧长代表的位移方向一致,故所求的总功为W =F ·Δs 1+F ·Δs 2+F ·Δs 3+…=F (Δs 1+Δs 2+Δs 3+…)=F ·2πR =20πJ ,选项B 符合题意.故答案为B .【点睛】本题应注意,力虽然是变力,但是由于力一直与速度方向相同,故可以直接由W =FL 求出.2.如图所示,长为l 均匀铁链对称挂在一轻质小滑轮上,由于某一微小扰动使铁链向一侧滑动,则铁链完全离开滑轮时速度大小为( )A 2glB glC 2gl D 12gl 【答案】C 【解析】 【分析】 【详解】铁链从开始到刚脱离滑轮的过程中,链条重心下降的高度为244l l l H =-= 链条下落过程,由机械能守恒定律,得:2142l mg mv ⋅= 解得:2gl v =A. 2gl 与分析不相符,故A 项与题意不相符;B. gl 与分析不相符,故B 项与题意不相符;C. 2gl与分析相符,故C 项与题意相符; D.12gl 与分析不相符,故D 项与题意不相符.3.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量,为简化问题,我们假定粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力f 与mn 、和v 的关系正确的是( )A .216nsmv B .213nmvC .216nmv D .213nmv t ∆【答案】B 【解析】 【详解】一个粒子每与器壁碰撞一次给器壁的冲量2I mv ∆=,如图所示,以器壁上面积为S 的部分为底、v t ∆为高构成柱体,由题设可知,其内有16的粒子在t ∆时间内与器壁上面积为S 的部分发生碰撞,碰撞粒子总数16N n Sv t =⋅∆,t ∆时间内粒子给器壁的冲量21·3I N I nSmv t =∆=∆,由I F t =∆可得213I F nSmv t ==∆,213F f nmv S ==,故选B .4.生活中我们经常用水龙头来接水,假设水龙头的出水是静止开始的自由下落,那么水流在下落过程中,可能会出现的现象是( )A .水流柱的粗细保持不变B .水流柱的粗细逐渐变粗C .水流柱的粗细逐渐变细D .水流柱的粗细有时粗有时细 【答案】C 【解析】 【详解】水流在下落过程中由于重力作用,则速度逐渐变大,而单位时间内流过某截面的水的体积是一定的,根据Q=Sv可知水流柱的截面积会减小,即水流柱的粗细逐渐变细,故C 正确,ABD 错误。
高中物理物理解题方法:微元法压轴难题复习题含答案解析一、高中物理解题方法:微元法1.我国自主研制的绞吸挖泥船“天鲲号”达到世界先进水平.若某段工作时间内,“天鲲号”的泥泵输出功率恒为4110kW ⨯,排泥量为31.4m /s ,排泥管的横截面积为20.7 m ,则泥泵对排泥管内泥浆的推力为( )A .6510N ⨯B .7210N ⨯C .9210N ⨯D .9510N ⨯【答案】A【解析】【分析】【详解】设排泥的流量为Q ,t 时间内排泥的长度为: 1.420.7V Qt x t t S S ==== 输出的功: W Pt =排泥的功:W Fx =输出的功都用于排泥,则解得:6510N F =⨯故A 正确,BCD 错误.2.水刀切割具有精度高、无热变形、无毛刺、无需二次加工以及节约材料等特点,得到广泛应用.某水刀切割机床如图所示,若横截面直径为d 的水流以速度v 垂直射到要切割的钢板上,碰到钢板后水的速度减为零,已知水的密度为ρ,则钢板受到水的冲力大小为A .2d v πρB .22d v πρC .214d v πρD .2214d v πρ 【答案】D【解析】【分析】【详解】 设t 时间内有V 体积的水打在钢板上,则这些水的质量为:214m V Svt d vt ρρπρ=== 以这部分水为研究对象,它受到钢板的作用力为F ,以水运动的方向为正方向,由动量定理有:Ft =0-mv解得:2214mv F d v t πρ=-=- A. 2d v πρ与分析不符,故A 错误.B. 22d v πρ与分析不符,故B 错误.C. 214d v πρ与分析不符,故C 错误.D. 2214d v πρ与分析相符,故D 正确.3.如图所示,有两根足够长的平行光滑导轨水平放置,右侧用一小段光滑圆弧和另一对竖直光滑导轨平滑连接,导轨间距L =1m 。
细金属棒ab 和c d 垂直于导轨静止放置,它们的质量m 均为1kg ,电阻R 均为0.5Ω。
三、微元法方法简介微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。
用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。
在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。
使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。
赛题精讲例1:如图3—1所示,一个身高为h 的人在灯以悟空速度v 沿水平直线行走。
设灯距地面高为H ,求证人影的顶端C 点是做匀速直线运动。
解析:该题不能用速度分解求解,考虑采用“微元法”。
设某一时间人经过AB 处,再经过一微小过程Δt (Δt →0),则人由AB 到达A ′B ′,人影顶端C 点到达C ′点,由于ΔS AA ′= v Δt 则人影顶端的移动速度:v C =C C t 0S limt'∆→∆∆=AA t 0HS H h lim t'∆→∆-∆=H H h-v可见v c 与所取时间Δt 的长短无关,所以人影的顶端C 点做匀速直线运动。
例2:如图3—2所示,一个半径为R 的四分之一光滑球面放在水平桌面上,球面上放置一光滑均匀铁链,其A 端固定在球面的顶点,B 端恰与桌面不接触,铁链单位长度的质量为ρ 。
试求铁链A 端受的拉力T 。
解析:以铁链为研究对象,由由于整条铁链的长度不能忽略不计,所以整条铁链不能看成质点,要分析铁链的受力情况,须考虑将铁链分割,使每一小段铁链可以看成质点,分析每一小段铁边的受力,根据物体的平衡条件得出整条铁链的受力情况。
在铁链上任取长为ΔL 的一小段(微元)为研究对象,其受力分析如图3—2—甲所示。
由于该元处于静止状态,所以受力平衡,在切线方向上应满足:T θ + ΔT θ = ΔGcos θ + T θ ,ΔT θ = ΔGcos θ = ρg ΔLcos θ由于每段铁链沿切线向上的拉力比沿切线向下的拉力大ΔT θ ,所以整个铁链对A 端的拉力是各段上ΔT θ的和,即:T = ΣΔT θ = Σρg ΔLcos θ = ρg ΣΔLcos θ观察ΔLcos θ的意义,见图3—2—乙,由于Δθ很小,所以CD ⊥OC ,∠OCE = θΔLcosθ表示ΔL 在竖直方向上的投影ΔR ,所以ΣΔLcos θ = R ,可得铁链A 端受的拉力:T = ρg ΣΔLcos θ = ρgR例3:某行星围绕太阳C 沿圆弧轨道运行,它的近日点A 离太阳的距离为a ,行星经过近日点A 时的速度为v A ,行星的远日点B 离开太阳的距离为b ,如图3—3所示,求它经过远日点B 时的速度v B 的大小。
解析:此题可根据万有引力提供行星的向心力求解。
也可根据开普勒第二定律,用微元法求解。
设行星在近日点A 时又向前运动了极短的时间Δt ,由于时间极短可以认为行星在Δt 时间内做匀速圆周运动,线速度为v A ,半径为a ,可以得到行星在Δt 时间内扫过的面积:S a =12v A Δt ⋅a同理,设行星在经过远日点B 时也运动了相同的极短时间Δt ,则也有: S b =12v B Δt ⋅b由开普勒第二定律可知:S a = S b 。
即得:v B =a bv A(此题也可用对称法求解。
)例4:如图3—4所示,长为L 的船静止在平静的水面上,立于船头的人质量为m ,船的质量为M ,不计水的阻力,人从船头走到船尾的过程中,问:船的位移为多大?解析:取人和船整体作为研究系统,人在走动过程中,系统所受合外力为零,可知系统动量守恒。
设人在走动过程中的Δt 时间内为匀速运动,则可计算出船的位移。
设v 1 、v 2分别是人和船在任何一时刻的速率,则有:mv 1 = Mv 2 ①两边同时乘以一个极短的时间Δt , 有:mv 1Δt = Mv 2Δt ②由于时间极短,可以认为在这极短的时间内人和船的速率是不变的,所以人和船位移大小分别为Δs 1 = v 1Δt ,Δs 2 = v 2Δt由此将②式化为:m Δs 1 = M Δs 2 ③ 把所有的元位移分别相加有:m ΣΔs 1 = M ΣΔs 2 ④ 即:ms 1 = Ms 2 ⑤此式即为质心不变原理。
其中s 1 、s 2分别为全过程中人和船对地位移的大小,又因为: L = s 1 + s 2 ⑥由⑤、⑥两式得船的位移:s 2 =m M m+L例5:半径为R 的光滑球固定在水平桌面上,有一质量为M 的圆环状均匀弹性绳圈,原长为πR ,且弹性绳圈的劲度系数为k ,将弹性绳圈从球的正上方轻放到球上,使弹性绳圈水平停留在平衡位置上,如图3—5所示,若平衡时弹性绳圈长为R,求弹性绳圈的劲度系数k 。
解析:由于整个弹性绳圈的大小不能忽略不计,弹性绳圈不能看成质点,所以应将弹性绳圈分割成许多小段,其中每一小段Δm 两端受的拉力就是弹性绳圈内部的弹力F 。
在弹性绳圈上任取一小段质量为Δm 作为研究对象,进行受力分析。
但是Δm 受的力不在同一平面内,可以从一个合适的角度观察。
选取一个合适的平面进行受力分析,这样可以看清楚各个力之间的关系。
从正面和上面观察,分别画出正视图的俯视图,如图3—5—甲和2—3—5—乙。
先看俯视图3—5—甲,设在弹性绳圈的平面上,Δm 所对的圆心角是Δθ ,则每一小段的质量:Δm =2∆θπMΔm 在该平面上受拉力F 的作用,合力为: T = 2Fcos2π-∆θ= 2Fsin2∆θ因为当θ很小时,sin θ≈θ ,所以:T = 2F 2∆θ= F Δθ ①再看正视图3—5—乙,Δm 受重力Δmg ,支持力N ,二力的合力与T 平衡。
即:T = Δmg ⋅tan θ现在弹性绳圈的半径为:2π2R所以:sin θ =r R=2θ = 45°,tan θ = 1因此:T = Δmg =2∆θπMg ②将①、②联立,有:2∆θπMg = F Δθ ,解得弹性绳圈的张力为:F =M g 2π设弹性绳圈的伸长量为x ,则:R -π1) πR 所以绳圈的劲度系数为:k =F x2Rπ例6:一质量为M 、均匀分布的圆环,其半径为r ,几何轴与水平面垂直,若它能经受的最大张力为T ,求此圆环可以绕几何轴旋转的最大角速度。
解析:因为向心力F = mr ω2 ,当ω一定时,r 越大,向心力越大,所以要想求最大张力T 所对应的角速度ω ,r 应取最大值。
如图3—6所示,在圆环上取一小段ΔL ,对应的圆心角为Δθ ,其质量可表示为Δm =2∆θπM ,受圆环对它的张力为T ,则同上例分析可得:2Tsin2∆θ= Δmr ω2因为Δθ很小,所以:sin 2∆θ≈2∆θ,即:2T ⋅2∆θ=2∆θπM r ω2解得最大角速度:ω=例7:一根质量为M ,长度为L 的铁链条,被竖直地悬挂起来,其最低端刚好与水平接触,今将链条由静止释放,让它落到地面上,如图3—7所示,求链条下落了长度x 时,链条对地面的压力为多大?解析:在下落过程中链条作用于地面的压力实质就是链条对地面的“冲力”加上落在地面上那部分链条的重力。
根据牛顿第三定律,这个冲力也就等于同一时刻地面对链条的反作用力,这个力的冲量,使得链条落至地面时的动量发生变化。
由于各质元原来的高度不同,落到地面的速度不同,动量改变也不相同。
我们取某一时刻一小段链条(微元)作为研究对象,就可以将变速冲击变为恒速冲击。
设开始下落的时刻t = 0 ,在t 时刻落在地面上的链条长为x ,未到达地面部分链条的速度为v ,并设链条的线密度为ρ 。
由题意可知,链条落至地面后,速度立即变为零。
从t 时刻起取很小一段时间Δt ,在Δt 内又有ΔM = ρΔx 落到地面上静止。
地面对ΔM 作用的冲量为:(F -ΔMg) Δt = ΔI因为ΔMg ⋅Δt ≈0 ,所以:F Δt = ΔM ⋅v -0 = ρv Δx ,解得冲力: F = ρvx t∆∆,其中x t∆∆就是t 时刻链条的速度v ,故F = ρv 2 ,链条在t 时刻的速度v即为链条下落长为x 时的即时速度,即:v 2 = 2gx代入F 的表达式中,得:F = 2ρgx此即t 时刻链对地面的作用力,也就是t 时刻链条对地面的冲力。
所以在t 时刻链条对地面的总压力为:N = 2ρgx + ρgx = 3ρgx =3M gx L例8:一根均匀柔软的绳长为L ,质量为m ,对折后两端固定在一个钉子上,其中一端突然从钉子上滑落,试求滑落的绳端点离钉子的距离为x时,钉子对绳子另一端的作用力是多大?解析:钉子对绳子另一端的作用力随滑落绳的长短而变化,由此可用微元法求解。
如图3—8所示,当左边绳端离钉子的距离为x 时,左边绳长为12(l -x) ,速度12(l+x)又经过一段很短的时间Δt 以后,左边绳子又有长度12v Δt的一小段转移到右边去了,我们就分析这一小段绳子,这一小段绳子受到两力:上面绳子对它的拉力T 和它本身的重力12v Δt λg (λ =m l为绳子的线密度)根据动量定理,设向上方向为正,有:(T -12v Δt λg ) Δt = 0-(-12v Δt λ⋅v)由于Δt 取得很小,因此这一小段绳子的重力相对于T 来说是很小的,可以忽略,所以有:T =12v 2λ = gx λ因此钉子对右边绳端的作用力为:F =12(l + x)λg + T =12mg(1 +3x l)例9:图3—9中,半径为R 的圆盘固定不可转动,细绳不可伸长但质量可忽略,绳下悬挂的两物体质量分别为M 、m 。
设圆盘与绳间光滑接触,试求盘对绳的法向支持力线密度。
解析:求盘对绳的法向支持力线密度也就是求盘对绳的法向单位长度所受的支持力。
因为盘与绳间光滑接触,则任取一小段绳,其两端受的张力大小相等,又因为绳上各点受的支持力方向不同,故不能以整条绳为研究对象,只能以一小段绳为研究对象分析求解。
在与圆盘接触的半圆形中取一小段绳元ΔL ,ΔL 所对应的圆心角为Δθ ,如图3—9—甲所示,绳元ΔL 两端的张力均为T ,绳元所受圆盘法向支持力为ΔN ,因细绳质量可忽略,法向合力为零,则由平衡条件得:ΔN = Tsin2∆θ+ Tsin 2∆θ= 2T2∆θ当Δθ很小时,sin2∆θ≈2∆θ,故ΔN = TΔθ 。
又因为 ΔL = RΔθ ,则绳所受法向支持力线密度为:n =N L∆∆=T R ∆θ∆θ=T R①以M 、m 分别为研究对象,根据牛顿定律有: Mg -T = Ma ② T -mg = m a ③由②、③解得:T =2M mg M m+将④式代入①式得:n =2M m g(M m )R+例10:粗细均匀质量分布也均匀的半径为分别为R 和r 的两圆环相切。