2018年南京航空航天大学916材料力学
- 格式:pptx
- 大小:473.46 KB
- 文档页数:30
航空航天工程中的材料力学航空航天工程是现代科技领域的重要分支,其中材料力学是航空航天工程中的重要组成部分。
材料力学是以材料的力学性能为研究对象,应用物理力学、力学、热力学、材料科学等多个学科的知识,对材料的本构关系、疲劳、断裂、裂纹扩展等问题进行分析研究,为航空航天工程的设计与制造提供技术支持。
一、材料力学在航空航天工程中的应用航空航天工程中需要使用高强度、轻量化、高温抗氧化等特殊性能的材料。
材料力学的研究可以为选取最优材料提供依据,同时也可以为确定材料合理的制造工艺提供指导。
在航空航天工程中,材料力学的应用涉及到多个领域,如:湍流传热、波浪加载、静态分析等。
其中,疲劳与断裂分析是航空航天工程中的重要研究方向之一。
在航空器飞行过程中,飞行器受到复杂的机械载荷作用,如温度、风压、载荷等等,这些载荷的作用会对飞行器上的各个部位造成不同程度的损伤。
材料力学的研究可以预测飞行器在疲劳和断裂方面的性能,为飞行器设计提供技术支持。
二、航空航天工程中材料力学的发展历史航空航天工程的发展趋势逐渐从自重减轻转向使用高强度、高刚性、防高温、抗腐蚀等特殊要求的材料。
这一转变使得航空航天工程对材料力学研究的要求愈加严格。
早期的航空航天工程中,木材、钢材等相对简单的材料被广泛使用,并不需要较高的技术水平。
但随着科技的发展,航空航天工程需求更加严格的材料,并要求高水平的技术研发能力。
在这个背景下,材料力学得到了飞速的发展。
20世纪50年代,美国出现了材料力学专业,并提出了材料力学的基本理论。
20世纪60年代,材料力学的研究逐渐发展到了断裂和疲劳方面。
20世纪70年代,航空航天工程进入了高速发展期,材料力学开始广泛应用于航空航天领域,并在空间技术和航空技术中扮演着至关重要的角色。
三、未来材料力学技术的趋势作为航空航天工程的重要组成部分,材料力学的发展趋势可以反映航空航天工程的发展方向。
未来的材料力学技术将展现出以下趋势:1、数字材料科学的兴起。
第一章 弹性力学基础1-1 上端悬挂、下端自由的等厚度薄板,其厚度为1,容重为ρ。
试求在自重作用下的位移分量表达式。
解:如图1-1建立坐标系.利用x σ沿y 方向均匀分布及x 方向的力平衡条件0=∑x 可得,⎪⎩⎪⎨⎧==-= x l xyy x 00)(τσρσ 又因为1()()x y u u l x x E Eρσσ∂=-=-∂ )()(1x l Eu u E y vx y --=-=∂∂ρσσ 积分得)()21(12y f x lx u +-=Eρ)()(2x f y x l uv +--=Eρ又由对称性 0)(020=⇒==x f v y 由 2110()2xy u v f y uy y x Eτρ∂∂=+=⇒=-∂∂ 综上所述有2221)21(uy Ex lx u ρρ--=Ey x l uv )(--=Eρ1-2 写出图1-2所示平面问题的应力边界条件。
解:上表面为力边界,100=,=,=,m l q lxl X --=Y 。
代入x xy xy y l m Xl m Yσττσ⎧+=⎪⎨+=⎪⎩ 中得到上表面的边界条件为00=--=xy y x q lxl τσσ;=;下表面为自由边,边界条件为000==xy y x τσσ;=;侧面为位移边界。
1-3 矩形板厚为1。
试用应力函数22A xy ϕ=求解。
(并画出面力分布图)解:应力函数22A xy ϕ=满足应力函数表示的变形协调方程,可以作为解。
在无体力的情况下,矩形板的应力为22x Ax yϕσ∂==∂220y x ϕσ∂==∂2xy Ay x yϕτ∂=-=-∂∂根据应力边界条件公式x xy xy y l m X l m Yσττσ+=+=各边的应力边界为a d 边: 0,1l m == 20A X A y h Y ⎧=-=-⎪⎨⎪=⎩ c b 边: 0,1l m ==- 20A X A y hY ⎧==-⎪⎨⎪=⎩a b 边: 1,0l m =-= 0X Y A y⎧=⎪⎨=⎪⎩c d 边: 1,0l m == X A x A lY A y⎧==⎪⎨=-⎪⎩根据以上各边的应力边界条件,可画出矩形板的面力分布图如图1-3a 。
南京航空航天大学2011年硕士研究生入学考试初试试题 A卷 科目代码: 916满分: 150 分科目名称: 材料力学(专业学位)注意: ①认真阅读答题纸上的注意事项;②所有答案必须写在答题纸上,写在本试题纸或草稿纸上均无效;③本试题纸须随答题纸一起装入试题袋中交回!1.承受单向拉伸应力σx的单元体,初始体积为V。
材料的弹性模量为E,泊松系数为ν,求应力引起的体积变化。
(15分)2.一端固支一端自由的受扭圆截面杆,直径为D,杆长为L,材料的弹性模量为E,剪切弹性模量为G,泊松系数为ν,承受未知大小的外力偶矩T作用。
两端面产生了相对扭转角φ。
求(1)杆内最大切应力;(2)杆内最大线应变。
(15分)3.求图示梁的约束反力,作梁的剪力图和弯矩图。
(15分)4 矩形截面梁高h=80mm ,宽b=30mm 。
在梁的B 处联接拉杆BC ,其直径d=20mm , 梁和杆的许用应力均为[σ]=160MPa ,试求许可载荷q 。
(15分)5. 根据图示点的应力情况,求该点的主应力和最大剪应力。
(15分)6.图示薄壁圆筒的壁厚为δ,平均直径为D ,材料的弹性模量为E ,泊松比为ν,承受内压强p 和轴向拉力F 作用。
试求其外表面周向应变t ε与轴向应变m ε。
(15分)7. 图示重量为P 的物体自由落下冲击于梁上C 点,试求:当梁内最大动应力、静应力之比max st max d /σσ= 4时的h 值。
(15分)C P B 2l /3A EIh l /38. 设有一托架如图所示,在横杆端点D 处受到一力20 kN F =的作用。
已知斜撑杆AB 两端为柱形约束(柱形铰销钉垂直于托架平面),其截面为环形,外径45 mm D =,内径36 mm d =,材料的弹性模量200 GPa E =,比例极限p 200 MPa σ=。
若杆的稳定安全因数st []2n =,试校核杆AB 的稳定性。
(15分)9. 图示悬臂梁ABC 由AB 段和BC 段在B 处焊接而成,A 端固支,受均布载荷q 作用。
南京航空航天大学硕士研究生入学考试试题考试科目: 材 料 力 学一、图示为一矩形截面梁,尺寸与载荷如图所示,C 点处有一Φ=140mm 的管道从梁截面中间通过,已知材料许用应力[σ]=120MPa 。
(12分)(1)作梁的弯矩图;(2)校核梁的强度。
二、已知空心圆截面杆外径D ,长度为2l ,剪切弹性模量为G ,分布力偶为t ,要使C 截面转角为 ,试问内径d 应为多少?(12分)三、一个90°曲拐受垂直向下力P 作用,已知实心圆轴直径d ,弹性模量E ,泊松比μ,并在B 截面顶部与轴线呈45°角方向(见图)测得线应变为ε,(12分)(1)求P 值;(2)求主应力及最大剪应力。
四、如图所示,两杆的横截面积均为A ,材料的弹性模量均为E ,试验测得杆1和杆2的轴向线应变分别为ε1和ε2,试求载荷P 及其方位角θ。
(12分)五、图示结构中梁ABC 的抗弯刚度为EI ,杆AD 和CD 的抗拉压刚度均为EA ,试求D 点水平位移和铅垂位移。
(12分)六、图示AB 杆在点B 受到水平运动物体的冲击,设已知物体的重量Q ,与杆件接触时的速度v 、杆件的抗弯刚度EI 和抗弯截面系数W 、弹簧的刚度k ,且kl 3=3EI ,试求AB 杆的最大应力。
(13分)七、图示受载结构中,AB 为T 字形截面铸铁梁,I Z =5312cm 4 ,许用拉应力[σt ]=50MPa ,许用压应力[ σc ]=200MPa ,CD 杆为两端铰支圆截面杆,直径d =40mm ,材料为A3钢,σp =200 MPa ,E =200 GPa ,稳定安全系数为n st =2.5,校核梁AB 的强度和杆CD 的稳定性。
(13分)八、两简支梁AB 和GH 用长为(a+b )的CD 杆相连,在CD 杆的F 处作用集中力P ,已知E 1I 1、E 2I 2、EA 、l 、a 和b ;求支座B 和支座H 处和支反力。
(14分)。
2019年南京航空航天大学参考书目2019年南京航空航天大学参考书目2019年南京航空航天大学参考书目考试科目参考书目811普通物理1. 《普通物理学》(第六版),程守洙、江之永主编,高等教育出版社。
2. 《物理学》(第五版),东南大学等七所工科院校编,马文蔚等改编,高等教育出版社。
815理论力学《理论力学》,范钦珊、陈建平主编,高等教育出版社,2010年816材料力学《材料力学(上、下册)》(第五版),刘鸿文.高等教育出版社510力学基础综合1、《飞行器结构力学》史治宇等编,国防工业出版社,2013年2、《机械振动基础》胡海岩主编,北京航空航天大学出版社,2004年511机械基础综合1. 《机械原理》郑文纬,高等教育出版社,1997年2. 《机械振动基础》胡海岩主编,北京航空航天大学出版社,2004年512振动基础综合 1.《机械工程材料应用基础》张代东主编机械工业出版社,2004年2.《机械振动基础》胡海岩主编,北京航空航天大学出版社,2004年513测试技术基础综合1. 单片机原理及应用分层教程,陈仁文编著,南京大学出版社,2015.122. 传感器与检测技术(第2版)),陈杰、黄鸿,高等教育出版社,2010.11813无机化学2004 《无机化学》[第五版],大连理工大学无机化学教研室编,高等教育出版社,2006823电工电子学秦曾煌《电工学》第七版,高等教育出版社,2009年刘海春《电子技术》第二版,科学出版社,2017年561材料工程基础 1. 机械工程材料应用基础张代东主编机械工业出版社,2004年2.《材料成形工艺基础》翟封祥等哈尔滨工业大学出版社,2008年817工程热力学《工程热力学》沈维道,高等教育出版社,2007年;《工程热力学》曾丹苓,高等教育出版社,2003年518 流体力学基础综合1、《空气动力学》陆志良等编著,北京航空航天大学出版社,2009年及以后修订版596电动力学《电动力学》,郭硕鸿,高等教育出版社,2008。
2018江苏南京航空航天大学金属材料学考研真题一、名词解释(20 分,每对 5 分)1. 合金渗碳体与合金碳化物2. 原位析出与离位析出3. 晶间腐蚀与应力腐蚀4. 铸铁石墨化与白口化二、填空题(20 分,每空 1 分)1. 碳钢的性能与含碳量密切相关,碳钢中含碳量越高,则_________、_________越高,但_________、_________越低。
2. 从周期表中的位置来看,碳化物形成元素均位于 Fe 的_________ ,如_________、_________;而非碳化物形成元素等均处于周期表 Fe 的_________,如_________ 、_________ 。
3. S 在固态 Fe 中的溶解度很小,它在钢中以_________ 的形式存在,和 Fe 易形成熔点较低(仅有 985℃)的共晶体。
当钢在 1100~1200℃进行热加工时,分布于晶界的低熔点的共晶体熔化而导致开裂,这就是通常所说的_________现象。
4. 铁和碳形成的稳定系二元相图是_________,亚稳系二元相图是_________。
5. 耐热合金钢或高温合金中常出现的两类重要的金属间化合物强化相是_________和_________。
6. 合金结构钢中,随着合金元素含量的增加,淬火后残余奥氏体的数量也会明显增加,减少残余奥氏体数量的处理方法有_________、_________ 、_________ 。
7. 可锻铸铁中,石墨呈_________ 状。
三、选择题(20 分,每个 1 分)1. 引起钢中产生白点的元素是()。
(a)S (b)P(c)N (d)H2. 下列碳钢属于碳素工具钢的是()。
(a)Q235 (b)08F (c)T12 (d)ZG200-4003. 铁基固溶体中 Cr 的含量达 12.5%原子比(即 1/8)时,电极电位有一个突跃升高;当 Cr 的含量提高到 25%原子比(即 2/8)时,铁基固溶体的电极电位又有一个突跃的升高。
一、填空题:请将正确答案写在划线内 每空1分,计16分 ⒈ 工程构件正常工作的条件是 ――――――――――――、、――――――――――――、―――――――――――――。
⒉ 工程上将延伸律------- δ的材料称为脆性材料。
⒊ 矩形截面梁横截面上最大剪应力max τ出现在―――――――――――各点,其值=τmax -------------。
4.平面弯曲梁的q 、F s 、M 微分关系的表达式分别为--------------、、-------------、、 ----------------。
5.四个常用的古典强度理论的表达式分别为―――――――――――――――――、―――――――――――――――――――――、 ――――――――――――――、―――――――――――――――――――――――――――――――――。
6.用主应力表示的广义虎克定律为 ――――――――――――――――――――― ;――――――――――――――――――――――;-―――――――――――――――――――――――。
二、单项选择题⒈ 没有明显屈服平台的塑性材料,其破坏应力取材料的――――――――――――。
⑴ 比例极限p σ; ⑵ 名义屈服极限2.0σ; ⑶ 强度极限b σ; ⑷ 根据需要确定。
2. 矩形截面的核心形状为----------------------------------------------。
⑴ 矩形; ⑵ 菱形; ⑶ 正方形; ⑷三角形。
3. 杆件的刚度是指――――――――――――――-。
⑴ 杆件的软硬程度; ⑵ 杆件的承载能力; ⑶ 杆件对弯曲变形的抵抗能力; ⑷ 杆件对弹性变形的抵抗能力;4. 图示二向应力单元体,如剪应力改变方向,则―――――――――――――。
⑴ 主应力的大小和主平面的方位都将改变;⑵ 主应力的大小和主平面的方位都不会改变; ⑶ 主应力的大小不变,主平面的方位改变; ⑷ 主应力的大小改变,主平面的方位不变。
南京航空航天大学2014年硕士研究生入学考试初试试题(A卷)科目代码: 916满分: 150 分科目名称: 材料力学(专业学位)注意: ①认真阅读答题纸上的注意事项;②所有答案必须写在答题纸上,写在本试题纸或草稿纸上均无效;③本试题纸须随答题纸一起装入试题袋中交回!第一题(15分)使用扭力扳手可以大致控制紧固螺栓的紧固力大小。
当施加于扳手上的紧固力矩超过设定值时,扳手内部即会滑动,使力矩不再增加。
某螺栓连接件如图,M20的螺栓牙根直径(称为小径)按18mm计算,螺距2mm,材料为钢材,弹性模量210GPa,屈服强度360MPa。
(1)要求紧固力为60kN,不计摩擦力矩,不计被紧固件的变形,问应施加多大的扭转力矩?(提示:扭转力矩所作的功等于螺栓的弹性应变能)。
(2)安全因数取1.5,螺栓的强度是否满足要求?(3)求这时螺栓在120mm长度内的伸长量。
第一题图第二题图第二题(15分)两级齿轮减速箱如图所示。
输入功率5kW,输入轴转速1350转/分。
每一级的速比均为4:1,实心轴材料的许用切应力为40MPa。
(1)不考虑轴的弯曲强度,初步设计输入轴和输出轴的直径。
(2)如果输入轴连接的是960转/分的电机,则电机的允许功率有多大?第三题(15分)试作图示梁的剪力图和弯矩图。
第三题图第四题(15分)在图示铸铁槽形截面梁上作用均布载荷q ,在A 截面作用集中力偶20.1M ql =,5m l =。
其截面形心位置如图所示,截面对形心轴的惯性矩为84110mm z I =×。
材料的许用拉应力为[]30MPa t σ=,许用压应力[]150MPa c σ=。
试由梁的强度条件确定许可外力q 。
第四题图第五题(15分)某点应力单元体如图所示,100MPa x y xy σστ===,0z σ=。
设材料的弹性模量200GPa E =,泊松比0.3μ=,30α=°。
试计算:(1)该点的3个主应力和最大剪应力。
航空航天工程中的材料力学研究与应用随着科技的不断发展,航空航天工程已经成为了一个重要的领域。
在这个领域中,材料力学是一个非常重要的研究方向。
材料力学研究与应用已经成为了航空航天工程发展的关键,它不仅决定着飞机的安全性和性能,也关系到整个航空航天工程的进步和发展。
一、材料力学的概念材料力学是研究材料在外部作用下产生变形和破坏的力学学科。
它主要研究的是力学问题,如材料的强度、刚度、变形、断裂、疲劳等问题。
同时,材料力学还和材料科学、工程力学、工业技术等学科密切相关。
二、航空航天工程中的材料力学研究航空航天工程中的材料力学研究主要涉及到以下方面:1、材料的物性测试材料的物性测试涉及到材料的强度、韧度、硬度、撞击韧性、疲劳寿命等多种测试,这些测试都是为了确定材料的物理性质,但都需要依托于材料力学的基础理论。
2、构件的应力计算构件的应力计算是材料力学在航空航天工程中的主要应用,其主要目标是保证航空航天工程的安全性和可靠性。
在航空航天工程中,构件的应力计算需要考虑交变载荷、高温、低温、气压等多种因素,并且这些因素的影响是相互关联的。
3、材料的寿命分析材料的寿命分析是材料力学在航空航天工程中的一个重要研究方向。
在航空航天工程中,材料的使用寿命通常受到多种因素的影响,如载荷历史、飞行时段、材料损伤等,因此需要进行材料寿命分析。
4、复合材料的设计与优化材料力学在复合材料的设计与优化方面也发挥着重要作用。
复合材料不仅具备轻质、高强的特性,而且还具备良好的耐疲劳性、耐腐蚀性和耐高温性,因此在航空航天工程中的应用越来越广泛。
材料力学的研究可以为复合材料的应用提供理论基础和参考依据。
三、材料力学在航空航天工程中的应用航空航天工程中的材料力学研究不仅能为材料的测试和分析提供理论框架和方法,而且还能为航空航天工程的发展和进步提供支持。
一方面,材料力学的研究可以为材料的设计、制造和应用提供可靠的科学依据。
例如,可以通过材料力学的研究对复合材料的组成和结构进行优化,进而提高飞机的整体性能;同时,材料力学的研究也可以帮助飞机设计师们选用合适的材料和加工工艺,降低飞机制造成本,提高生产效率。