塑料的冲击性能及增韧剂
- 格式:doc
- 大小:50.00 KB
- 文档页数:3
POE在塑料改性工业中的应用POE(聚乙烯醇)是一种塑料改性剂,具有高弹性、耐热、耐寒、耐腐蚀等特性,因此在塑料改性工业中有广泛的应用。
首先,POE可以用作柔性PVC材料的增塑剂。
在柔性PVC生产过程中,POE可以通过与PVC树脂混合并加热熔融来增塑,降低材料的硬度和脆性,从而提高其柔韧性和可加工性。
此外,POE还可以改善PVC材料的热稳定性和耐候性能,延长其使用寿命。
其次,POE可以用作改善聚丙烯韧性的韧化剂。
聚丙烯是一种常用的塑料材料,但其易脆性和低抗冲击性限制了其在一些应用领域中的使用。
通过添加适量的POE,可以改善聚丙烯材料的韧性,并提高其抗冲击性能。
此外,POE还可以改善聚丙烯材料的耐热性能和耐寒性能,使其适用于更广泛的环境条件下。
此外,POE还可以用作改善聚苯乙烯保护性能的增韧剂。
聚苯乙烯是一种透明、硬度高的塑料材料,但其易脆性和低抗冲击性也限制了其在一些应用领域的使用。
通过添加适量的POE,可以明显改善聚苯乙烯材料的韧性,并提高其抗冲击性能。
此外,POE还可以提高聚苯乙烯材料的耐寒性能和耐腐蚀性能,增加其在户外环境下的使用寿命。
此外,POE还可以用作改善聚碳酸酯透明性能的增韧剂。
聚碳酸酯是一种透明、高强度的塑料材料,但其易脆性和低韧性也限制了其在一些应用领域的使用。
通过添加适量的POE,可以提高聚碳酸酯材料的柔韧性和韧性,使其更具有抗冲击性能。
此外,POE还可以改善聚碳酸酯材料的耐热性能和耐候性能,延长其使用寿命。
综上所述,POE在塑料改性工业中有广泛的应用。
其作为增塑剂、韧化剂和增韧剂,可以提高塑料材料的柔韧性、韧性、抗冲击性能以及耐热性能、耐寒性能、耐腐蚀性能和耐候性能,从而满足不同应用领域对塑料材料性能的要求。
随着塑料改性技术的不断发展和应用需求的不断增加,POE在塑料改性工业中的应用前景将更加广阔。
塑料的强度和韧性塑料是一种重要的工程材料,具有良好的强度和韧性。
本文将介绍塑料的强度和韧性,并讨论其在不同领域的应用。
一、塑料的强度塑料的强度是指其抵抗外力破坏的能力。
强度受到多种因素影响,包括塑料的种类、结构以及外部环境条件等。
1. 塑料种类对强度的影响不同种类的塑料具有不同的强度特点。
一般而言,增韧剂的添加可以提高塑料的强度。
比如,在聚丙烯中添加玻璃纤维增韧剂,可以显著提高聚丙烯的强度和硬度。
此外,聚碳酸酯等工程塑料也具有较高的强度,常用于制造耐用的零件和结构件。
2. 结构对强度的影响塑料制品的结构设计也对其强度起到重要作用。
增加塑料制品的壁厚、加强连接方式以及改变形状等措施都可以提高塑料制品的强度。
例如,汽车的车身结构中使用了大量的塑料材料,并通过合理的结构设计来提高整体强度,以确保驾驶过程中的安全性。
3. 外部环境条件对强度的影响环境条件对塑料的强度也具有一定的影响。
例如,低温会使大部分塑料变脆,降低其强度。
因此,在低温环境下应选择具有较高韧性和抗冲击性的塑料材料,以确保其可靠性。
二、塑料的韧性塑料的韧性是指其在承受外力时能够延展、变形而不破裂的能力。
韧性主要受到塑料分子链的结构和分子间相互作用力的影响。
1. 分子链结构对韧性的影响长分子链的塑料通常具有较好的韧性。
例如,聚乙烯是一种具有较高韧性的塑料,常用于制作塑料袋和塑料瓶等柔软的包装材料。
聚苯乙烯等硬塑料则因其分子链结构较短而较脆。
2. 分子间相互作用力对韧性的影响分子间相互作用力也会影响塑料的韧性。
聚氨酯等弹性塑料通过增加分子链之间的氢键相互作用力,提高塑料的韧性。
此外,巯基硫化物的引入也可以增加硫化的塑料的韧性。
三、塑料的应用塑料材料由于其强度和韧性的优势,在各个领域得到了广泛的应用。
1. 建筑领域塑料材料在建筑领域发挥着重要作用。
例如,聚氯乙烯(PVC)管道广泛用于建筑工程中的给排水系统,其强度和耐腐蚀性能使其成为首选材料。
2. 电子领域塑料材料在电子产品中的应用也非常广泛。
PC/ABS合金的增韧研究PC/ABS合金是由聚碳酸酯(PC)和丙烯腈丁二烯苯乙烯共聚物(ABS)混合制成的一种工程塑料。
由于其优异的力学性能和耐用性,PC/ABS合金被广泛应用于汽车、电子、家电等领域。
然而,由于PC与ABS之间的相溶性较差,合金的韧性常常成为其需要改善的一项性能。
在研究PC/ABS合金的增韧过程中,许多学者通过改变合金中PC和ABS的配比、添加改性剂和填充剂等方法来提升其韧性。
以下将针对不同增韧方式进行详细探讨:1.物理增韧:通过添加填充剂来增加PC/ABS合金的韧性。
例如,添加纤维增韧剂(如玻璃纤维、碳纤维)可以提高合金的强度、刚度和冲击-弯曲性能。
此外,添加颗粒状增韧剂(如纳米硅酸盐、纳米粘土)可以增加合金的固态冷却性能和力学性能。
2.化学增韧:将改性剂与PC/ABS混合,通过化学反应或改性作用,使合金的韧性得到提升。
例如,添加丙烯酸酯共聚物可以提高合金的冲击韧性和拉伸强度。
添加丁二烯-丙烯腈共聚物可以提高合金的低温韧性和冲击韧性。
3.结构调控增韧:通过调节合金的微观组织来提高其韧性。
例如,通过热处理或共混改性方法,可以在PC/ABS合金中形成细小的相分散结构,提高合金的韧性和断裂韧性。
此外,添加物表面修饰技术(如改性硅烷偶联剂处理)也可以改善合金的相容性和韧性。
综上所述,PC/ABS合金的增韧研究主要包括物理增韧、化学增韧和结构调控增韧等方面。
通过改变合金的配比、添加改性剂和填充剂,可以提高其韧性,满足不同领域对于工程塑料的要求。
未来的研究还可以进一步探索新的增韧方式,提高PC/ABS合金的综合性能。
聚甲醛塑料具有耐磨、表面硬度高、成本低廉的优异性能,还具有很低的摩擦系数和很好的几何稳定性,特别适合于制作齿轮和轴承、汽车配件(卡扣、紧固件、铆钉、螺丝座)。
由于它还具有耐高温特性,因此还用于管道器件(管道阀门、泵壳体),,还经常应用于电子、建材、扣具、按具、管件、卷轴、开关等零件
但POM聚甲醛产品在生产和使用过程中容易开裂,不耐弯曲,延伸率低,没有回弹性,严重影响了该产品的使用。
如塑料卡扣、塑料紧固件需要有比较好的回弹性和韧性,塑料铆钉、螺丝座需要比较高的延伸率和韧性,不使用增韧剂(抗冲击剂)就无法达到使用功能的要求。
现在很多用户逐渐开始使用增韧剂,提高了产品的使用寿命,受到良好的效果。
我公司生产的POM增韧剂产品不影响POM产品的耐磨性能,可以在注塑或挤出前直接添加搅拌均匀即可,使用方便。
在添加15%比例的情况下,抗冲击性能一般提高二倍以上;同时提高塑料制品的延
伸率60%以上;改善了回弹性;提高了耐低温性能。
添加了POM增韧剂以后也极大地改善了高收缩率的问题,不论改善何种牌号的POM,其收缩率都为零。
即模具的尺寸决定了成型制品的尺寸。
优点是模具的尺寸精度很容易做得精确,这样就能确保POM制品的高精密度,同时避免各种牌号之间收缩率不同而造成POM塑料制品的尺寸误差。
所以,在采用POM增韧剂注塑时有可能要修正原来的模具,敬请留意!。
塑料的冲击性能和塑料的韧性Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998塑料的冲击性能和塑料的韧性在某些塑料中,冲击强度低是一个很大的弱点,例如PVC、PS、PP等。
尤其是PVC性脆,在光照下降解,加工温度下发生热降解,几乎成为一种无用的材料。
但是,在PVC中加入改性剂,就可变成为可以接受的材料。
通过在PVC中加入大量的增塑剂就可以获得极广泛的用途。
随着科学技术的发展,出现了软质塑料和硬质塑料,当时的塑料要么柔而软,要么硬而脆。
软质塑料使用寿命短,由于增塑剂的挥发和材料在大气中老化降解而变脆成为硬质塑料。
而硬质塑料因为缺乏足够的韧性给塑料工业带来毁灭性的威胁,塑料工业就要开始发展革新性的产品。
开发高分子量和低挥发量、或低抽取性的增塑剂挽救了软质和硬质塑料制品,主要是苯乙烯类的产品开发。
它们因开发在聚合物结构中引入橡胶组分的技术获新生。
塑料添加剂的开发,可改善塑料生产工艺和提高产品性能。
其中增塑剂、稳定剂、冲击改性剂是有利于塑料冲击性能的改善。
以下就材料的韧性和刚性及反映材料韧性的冲击性能的测试作一些叙述。
1.韧性和刚性韧性和刚性是对立的概念。
在力学中有刚度和柔度两个物理量。
“刚度”是指物体发生单位形变时所需要的力的大小;“柔度”则指物体在单位力下所发生的形变大小。
可以看出, “刚度”越大的物体,越不容易发生变形(表现在伸长率很小); “柔度”越大的物体越容易发生变形(表现在伸长率较大)。
一种理想状态,物体的刚度趋近于无穷大(或者物体受力作用其变形小到可以忽略的程度),我们就称该物体为刚体。
在力学分析时,可以不考虑其自身形变。
因此,刚性是反映物体形变难易程度的一个属性。
韧性的材料比较柔软,它的拉伸断裂伸长率、抗冲击强度较大;硬度、拉伸强度和拉伸弹性模量相对较小。
而刚性材料它的硬度、拉伸强度较大;断裂伸长率和冲击强度就可能低一些;拉伸弹性模量就较大。
PP-R增韧剂功能及应用PP-R增韧剂功能及应用无规共聚:无规共聚所得的产物称为无规共聚物。
由两种(或两种以上)单体单元规则排列连接形成。
两种单体羊元序列长度分布各自均无规分布。
组成不均一的混合物。
无规共聚物都具有很好的性能。
抗蠕变性:材料在恒载下(外界载荷不变)的情况下,变形程度随时间增加的现象,蠕变不仅出现在塑料(高分子材料中),还出现在金属材料中.蠕变反映的是材料在载荷下的流变性质,即受载后的流动;对于塑料和其他高分子材料而言反映了其内在的粘弹性.蠕变性还反映了塑料在温度变化下,自身的稳定情况温度梯度:是自然界中气温、水温或土壤温度随陆地高度或水域及土壤深度变化而出现的阶梯式递增或递减的现象。
通常把温度增加的方向作为正方向。
结晶取向:聚合物以结晶态存在,取向为化学结构的取向排布温度是塑料结晶过程中最敏感的因素,温度相差1℃,则结晶的速度可相差几倍。
塑料熔体从Tm以上冷却到Tg以下,这一过程的速度称为冷却速度,它是晶核存在或生长的决定性条件。
PP-R存在的问题1、PPR材料天然缺陷:低温(0℃以下)韧性不好即会产生低温脆裂,特别是在北方低温水管会脆裂,施工的过程中还要轻拿轻放。
2、产生一定的废品率(20-40%):管材在加工过程中管拉出来后会冷却,管材冷却即为结晶的过程,要求结晶取向、结晶粒越多越小,晶粒之间有许多连接点,表现为良好的韧性、抗压强度高且抗蠕变开裂,要求管材加工企业需要有严格的加工条件,精确的施工工艺控制和冷却定型温度梯度场值(受到环境、天气、温度、湿度、工艺等因素的影响)。
这对于绝大多数企业来说是一个难以逾越的挑战。
产生的废品需要破碎回炉。
3、PPR冷水管目前主要采用POE或EPDM等软性材料进行增韧处理,)这种增韧方法除了导致成本上升,另使管材使用寿命大幅下降(PPR 管材设计寿命为50年,此种增韧方式降到5年)这些增韧剂无法用在热水管,耐压强度不过关,因为这些增韧剂热变形温度在50℃,PPR热水管要求长期使用温度为70℃,短期使用温度为90℃。
本文摘自再生资源回收-变宝网()塑料韧性的性能表征一、刚性越大材料越不容易发生形变,韧性越大则越容易发生形变。
韧性与刚性相对,是反映物体形变难易程度的一个属性,刚性越大材料越不容易发生形变,韧性越大则越容易发生形变。
通常,刚性越大,材料的硬度、拉伸强度、拉伸模量(杨氏模量)、弯曲强度、弯曲模量均较大;反之,韧性越大,断裂伸长率和冲击强度就越大。
冲击强度表现为样条或制件承受冲击的强度,通常泛指样条在产生破裂前所吸收的能量。
冲击强度随样条形态、试验方法及试样条件表现不同的值,因此不能归为材料的基本性质。
二、不同的冲击试验方法所得到的结果是不能进行比较的冲击试验的方法很多,依据试验温度分:有常温冲击、低温冲击和高温冲击三种;依据试样受力状态,可分为弯曲冲击-简支梁和悬臂梁冲击、拉伸冲击、扭转冲击和剪切冲击;依据采用的能量和冲击次数,可分为大能量的一次冲击和小能量的多次冲击试验。
不同材料或不同用途可选择不同的冲击试验方法,并得到不同的结果,这些结果是不能进行比较的。
塑料增韧机理及影响因素一、银纹-剪切带理论在橡胶增韧塑料的共混体系中,橡胶颗粒的作用主要有两个方面:一方面,作为应力集中的中心,诱发基体产生大量的银纹和剪切带;另一方面,控制银纹的发展使银纹及时终止而不致发展成破坏性的裂纹。
银纹末端的应力场可以诱发剪切带而使银纹终止。
当银纹扩展到剪切带时也会阻止银纹的发展。
在材料受到应力作用时大量的银纹和剪切带的产生和发展要消耗大量的能量,从而使得材料的韧性提高。
银纹化宏观表现为应力白发现象,而剪切带则与细颈产生相关,其在不同塑料基体中表现不同。
例如,HIPS基体韧性较小,银纹化,应力发白,银纹化体积增加,横向尺寸基本不变,拉伸无细颈;增韧PVC,基体韧性大,屈服主要由剪切带造成,有细颈,无应力发白;HIPS/PPO,银纹、剪切带都占有相当比例,细颈和应力发白现象同时产生。
二、影响塑料增韧效果的因素1、基体树脂的特性研究表明,提高基体树脂的韧性有利于提高增韧塑料的增韧效果,提高基体树脂的韧性可通过以下途径实现:增大基体树脂的分子量,使分子量分布变得窄小;通过控制是否结晶以及结晶度、晶体尺寸和晶型等提高韧性。
液体聚醚增韧剂
液体聚醚增韧剂是一种常用的材料添加剂,主要用于提高材料的韧性和耐冲击
性能。
液体聚醚增韧剂通常是一种具有低粘度的液体,能够在材料中较为均匀地分散,有效地增加材料的韧性和抗冲击性能。
液体聚醚增韧剂的作用机理主要包括以下几个方面:
1.增加材料的韧性:液体聚醚增韧剂能够与材料基体发生相互作用,形成一种
柔韧的网状结构,从而有效地提高材料的韧性。
这种网状结构能够有效地吸收和分散外部冲击力,防止材料发生断裂或破损。
2.提高材料的耐冲击性能:液体聚醚增韧剂能够有效地增加材料的韧性和韧性,从而提高材料的耐冲击性能。
在受到外部冲击时,液体聚醚增韧剂能够吸收部分冲击能量,减轻材料的受力情况,从而有效地提高材料的耐冲击性能。
3.改善材料的加工性能:液体聚醚增韧剂能够改善材料的加工性能,使材料更
加易于成型和加工。
液体聚醚增韧剂能够提高材料的流动性和延展性,从而使材料更加易于加工成各种形状和结构。
总的来说,液体聚醚增韧剂是一种重要的材料添加剂,能够有效地提高材料的
韧性和耐冲击性能,改善材料的加工性能,广泛应用于各种材料的制备和加工过程中。
通过合理的使用液体聚醚增韧剂,可以有效地提高材料的性能和品质,满足不同领域的应用需求。