六年级数学数与代数
- 格式:pptx
- 大小:762.34 KB
- 文档页数:4
人教版小学数学六年级数与代数知识梳理一知识点一:整数1、整数的范围整数包括自然数和负整数,或者说整数由正整数、零、负整数组成。
(1)自然数自然数的意义:我们在数物体的时候,用来表示物体的个数0,1,2,3,4,5,…..叫做自然数。
自然数的个数是无限的,没有最大的自然数。
自然数的基本单位:任何非“0”的自然数都是假设干个“1”组成,所以“1”是自然数的基本单位。
1也是最小的一位数。
“0”的含义:“0”表示一个物体也没有,在计数中起占位作用,表示该数位上没有计数单位。
“0”还可以表示起点、分界点等。
“0”是最小的自然数。
自然数的两种意义:如果一个自然数用来表示物体的个数就叫基数;如果一个自然数用来表示物体排列的次序就叫序数。
〔2〕正数正数的定义以前学过的8、16、200……..这样的数叫做正数。
正数的写法和读法正数前面也可以加“+”号,例如:+8读作:正八。
“+”号一般可以省略不写。
〔2〕负数负数的定义像-1、-5、-132……这样的数叫做负数。
“一”叫负号。
负数的写法和读法负数前面加“一”号,例如:-15读作:负十五。
数字越大的负数反而越小。
“0”既不是正数,也不是负数。
〔4〕整数与自然数的联系及区别自然数全是整数,整数不全是自然数,还包括负整数。
2、整数的读法和写法数的分级按照我国的计数习惯,整数从个位起,每四个数位是一级。
个位、十位、百位、千位是个级,表示多少个一;万位、十万位、百万位、千万位是万级,表示多少个万位;亿位、十亿位、百亿位、千亿位是亿级,表示多少个亿。
计数单位整数、小数都是按照十进制写出的数,其中一〔个〕、十、百…….是整数的计数单位。
计数单位是按一定顺序排列的。
数位各个计数单位所占的位置叫数位。
如9357中的“5”在右起第二位,即“5”所在的数位是十位。
位数指一个数是由几个数字组成,是含有数位个数,如1234占有四个数位,就是四位数。
十进制计数法十进制是指满十进一,十个一进为十,十个十进位百,十个百进为千……每相邻两个计数单位间的进率都是“十”,这样的计数法叫做十进制计数法。
The shortest way to do many things is to only one thin 数与代数知识点一整数1、整数的定义:像-3,-2,-1,0,1,2……这样的数称为整数。
在整数中大于零的数称为正整数,小于零的数称为负整数。
正整数、零与负整数统称为整数。
2、整数的范围:除自然数外,整数还包括负整数。
但在小学阶段里,整数通常指的是自然数。
知识点二自然数1、自然数的定义:我们在数物体的时候,用来表示物体个数的0,1,2,3,……叫作自然数。
2、自然数的基本单位:任何非“0”的自然数都是由若干个“1”组成,所以“1”是自然数的基本单位。
3、“0”的含义:一个物体也没有,用“0”表示,但并不是说“0”只表示没有物体。
知识点三比较整数大小的方法知识点四整数的改写把大数改写成用“万”或“亿”作单位的数:一个比较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。
改写有两种情况:一种是把较大的多位数直接改写成用“万”或“亿”作单位的数,不满万、亿的尾数直接改写成小数;另一种是根据需要省略万位或亿位的尾数,把原来的多位数按照“四舍五入”法写成它的近似数。
知识点五倍数和因数1、倍数和因数的定义:自然数a(a≠0)乘自然数b(b≠0),所得的积c就是a和b的倍数,a和b就是c的因数。
2、倍数的特征:一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
因数的特征:一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
知识点六最大公因数、最小公倍数和互质数1、最大公因数的定义:几个数公有的因数,叫作这几个数的公因数;其中最大的一个,叫作这几个数的最大公因数。
2、最小公倍数的定义:几个数公有的倍数,叫作这几个数的公倍数,其中最小的一个,叫作这几个数的最小公倍数。
3、互质数:公因数只有1的两个数,叫作互质数。
知识点七 2、3、5倍数的特征2的倍数的特征:个位上是0、2、4、6、8 的数是2的倍数。
六年级数学数与代数试题答案及解析1.解方程.5x﹣20%x="19.2"2.5:x=﹣2x=.【答案】4;4;.【解析】(1)先化简方程,再根据等式的性质,方程两边同时除以4.8求解;(2)根据比例的基本性质,原式化成5x=2.5×8,再根据等式的性质,方程两边同时除以5求解;(3)根据等式的性质,方程两边同时加上2x,再两边同时减去,然后再两边同时除以2求解.解:(1)5x﹣20%x=19.24.8x=19.24.8x÷4.8=19.2÷4.8x=4;(2)2.5:x=5x=2.5×85x÷5=20÷5x=4;(3)﹣2x=﹣2x+2x=+2x=+2x﹣=+2x﹣=2x÷2=2x÷2x=.【点评】本题主要考查解方程和解比例,根据比例的基本性质和等式的性质进行解答即可.2.脱式计算。
(能简便计算的要简便计算)0.25×32×12.5% 36×75%+63×+0.75[120%—(65%-0.35 )]÷ 79 ÷ 150 -29 ×【答案】1;75;12;36×75%+63×+0.75=36×0.75+63×0.75+0.75×1=(36+63+1)×0.75=100×0.75=75[120%—(65%-0.35 )]÷=[1.2—0.3] ÷=0.9÷=1279 ÷ 150 -29 ×= 79×-29 ×=(79-29)×=50×=【解析】观察算式特点,没有简便方法,直接脱式计算即可。
先算小括号里的减法,再算中括号里的减法,最后算括号外的除法。
先仔细观察数字特点,题目中有0.25,12.5%,32,其中12.5%=0.125,与8相乘是1,0.25与4相乘是1,可以把32写成4×8,然后用乘法结合律,让4与0.25相乘,8与0.125相乘,再进行下一步计算。
小学六年级数学知识点归纳第一部分数与代数一、数的认识知识点一:数的意义及分类1.整数是无限的,没有最小或最大的整数。
2.自然数是无限的,最小的自然数是1,没有最大的自然数。
3.既不是正数也不是负数的数称为零。
4.分数有真分数、假分数、带分数和最简分数。
5.百分数是百分数和分数的对比。
6.小数是有限小数和无限小数(无限不循环小数和无限循环小数)。
知识点二:计数单位和数位1.个、十、百……以及十分之一、百分之一……都是计数单位。
2.各个计数单位所占的位置称为数位。
3.十进制计数法。
4.数的分级。
知识点三:数的读、写法1.整数、小数、分数、百分数、正数和负数的读写法。
知识点四:数的改写1.把多位数改写成以“万”或“亿”为单位的数,可直接改写或省略尾数。
2.求小数的近似数。
3.假分数和带分数、整数之间的互化。
4.分数、小数与百分数之间的互化。
知识点五:数的大小比较1.整数、小数、分数、正数和负数的大小比较。
2.比较小数、分数和百分数的大小时,可把分数和百分数化成小数,把各小数的相同数位上下对齐进行比较,最后排序结果一定要排列原数。
知识点六:数的性质1.分数的基本性质。
2.小数的基本性质。
3.移动小数点的位置可引起小数大小变化,需要补位。
知识点七:因数倍数质数合数1.因数和倍数的意义。
2.因数和倍数的特征,一个数的因数个数有限,最小因数为1,最大因数为本身;一个数的倍数个数无限,最小倍数为本身,没有最大倍数;一个数既是它本身的因数,也是它本身的倍数。
3.2、3、5的倍数的特征。
4.奇数和偶数的意义,自然数不是奇数就是偶数,最小奇数为1,最小偶数为2.5.质数和合数的意义,最小质数为2,2是唯一的偶质数,没有最大质数;最小合数为4,没有最大合数。
6.判断一个数是质数还是合数的方法。
7、质因数、分解质因数、分解质因数的方法质因数是指能整除一个数的质数,分解质因数是将一个数分解成若干个质因数的乘积。
分解质因数的方法有多种,常用的有试除法和分解质因数法。
小学六年级下册数学新苏教版《数与代数》教学设计第一部分:数与代数数的认识第一课时:整数、小数的认识与复习教学内容:苏教版六下P68~70“与反思”、“练习与实践”第1~9题教学目标:1.学生回顾整数与小数的相关知识,加深理解整数与小数的意义,沟通各种数之间的关系,进一步弄清相关概念间的联系与区别,构建整数、小数认识的知识网络。
2.学生通过复习,进一步了解整数、小数的相关知识,掌握数的知识之间的联系;增强用数表达和交流信息的意识和能力,进一步发展数感。
3.学生进一步体会数在日常生活中的广泛应用;感受认数的作用,产生对数的学习兴趣,提高学好数学的自觉性。
教学重点:整数(自然数)和小数的意义、组成及读写。
教学难点:理解数的相关知识间的联系。
教学过程:一、揭示课题谈话:小学阶段的数学内容我们已经全部学完了,从今天开始我们要对所学内容进行总复习。
这节课我们进行整数和小数的与复习。
(板书课题)通过复习,进一步认识整数、小数的意义,掌握整数、小数的有关知识,提高数的应用能力。
二、回顾1.讨论。
提问:首先请同学们回忆一下,你了解整数和小数的哪些知识?请你结合小面的问题先自已思考、,再与同学说一说。
出示问题:(1)你能举例说说怎样的数是整数,怎样的数是负数,怎样的数是小数吗?小数的基本性质是什么?(2)你能说出整数和小数的计数单位吗?相邻计数单位间的进率都是几?举例说一说。
(3)你能举例说说读、写整数和小数要注意什么吗?怎样比较整数和小数的大小?怎样求一个数的近似数?让学生围绕上面三个问题思考,并在小组里讨论、交流。
2.组织交流。
(1)提问:你能举例说说怎样的数是整数,怎样的数是负数,怎样的数是小数吗?小数的基本性质是什么?结合学生回答,相机板书。
(2)提问:你能说出整数和小数的计数单位吗?相邻计数单位间的进率都有是几?举例说一说。
根据学生回答呈现数位顺序表。
提问:整数部分计数单位排列有什么规律?每个数级上的数表示什么?小数部分的计数单位按怎样的顺序排列的?一个数在不同数位上表示的意义有什么不同?请举个例子说一说。
六年级上册数学教案总复习数与代数|北师大版教案:六年级上册数学教案总复习数与代数|北师大版一、教学内容本节课是六年级上册的数与代数总复习,教材的章节包括:数的认识、数的运算、代数式、方程和不等式。
具体内容包括:整数的概念及其分类,分数、小数的四则运算,有理数的混合运算,代数式的基本概念,一元一次方程的解法,不等式的基本性质和解法。
二、教学目标通过本节课的学习,使学生掌握数与代数的基本概念、运算规律和解题方法,提高学生的数学思维能力和解决问题的能力。
三、教学难点与重点重点:数的认识,分数、小数的四则运算,有理数的混合运算,一元一次方程的解法,不等式的基本性质和解法。
难点:分数、小数的混合运算,一元一次方程和不等式的解法。
四、教具与学具准备教具:黑板、粉笔、PPT学具:练习本、尺子、圆规五、教学过程1. 实践情景引入:让学生观察教室里的物品,找出可以用数与代数知识描述的数量关系。
2. 数的认识:回顾整数的分类,分数、小数的四则运算,通过例题讲解和随堂练习,巩固基础知识。
3. 代数式:介绍代数式的基本概念,通过例题讲解和随堂练习,使学生掌握代数式的运算规律。
4. 方程和不等式:回顾一元一次方程的解法,不等式的基本性质和解法,通过例题讲解和随堂练习,提高学生解决问题的能力。
5. 教学难点与重点的巩固:针对本节课的重点和难点,进行专门的讲解和练习,帮助学生突破思维障碍。
六、板书设计数的认识:整数、分数、小数代数式:代数式的基本概念,代数式的运算规律方程和不等式:一元一次方程的解法,不等式的基本性质和解法七、作业设计1. 完成教材上的相关练习题。
2. 请举例说明生活中应用数与代数知识解决实际问题的例子,并写在练习本上。
八、课后反思及拓展延伸课后反思:通过本节课的教学,发现部分学生在代数式的运算和方程、不等式的解法上还存在困难,需要在今后的教学中加强对这部分学生的个别辅导。
拓展延伸:鼓励学生参加数学竞赛和实践活动,提高学生的数学素养。
六年级上册数学教案数与代数北师大版教案:六年级上册数学数与代数北师大版一、教学内容本节课的教学内容来自于北师大版六年级上册数学教材的第五章《数与代数》。
本章主要内容包括有理数的乘方、分数的加减法、整数的乘法法则以及整数的除法法则。
二、教学目标通过本节课的学习,学生能够掌握有理数的乘方,理解分数的加减法运算规则,熟练运用整数的乘除法法则进行计算。
三、教学难点与重点教学难点:有理数的乘方运算,分数的加减法运算。
教学重点:整数的乘除法法则。
四、教具与学具准备教具:黑板、粉笔、多媒体教学设备。
学具:练习本、笔、计算器。
五、教学过程1. 情景引入:通过一个实际问题,引入有理数的乘方概念。
例如,计算一个长方形的面积,其中长和宽分别是3米和4米。
2. 概念讲解:讲解有理数的乘方运算规则,通过示例解释乘方的意义。
例如,2^3表示2乘以自己3次,即2 2 2 = 8。
3. 练习巩固:给学生发放练习本,要求完成一些有理数的乘方运算题目,并提供解答。
例如:计算2^3、3^2、(2)^4的结果。
4. 引入分数的加减法:通过实际问题,引入分数的加减法运算。
例如,计算1/4加上1/2的结果。
5. 讲解分数的加减法规则:讲解同分母分数的加减法运算规则,以及异分母分数的加减法运算规则。
通过示例解释运算过程。
6. 练习巩固:给学生发放练习本,要求完成一些分数的加减法运算题目,并提供解答。
例如:计算1/4 + 1/2、3/4 1/2的结果。
计算2/5 + 1/3、4/7 1/7的结果。
7. 引入整数的乘法法则:通过实际问题,引入整数的乘法法则。
例如,计算3乘以4的结果。
8. 讲解整数的乘法法则:讲解整数的乘法法则,包括乘法表的运用。
通过示例解释运算过程。
9. 练习巩固:给学生发放练习本,要求完成一些整数的乘法题目,并提供解答。
例如:计算3 4、5 6的结果。
计算7 8、9 10的结果。
10. 引入整数的除法法则:通过实际问题,引入整数的除法法则。
六年级数学数与代数试题答案及解析1.陈老师出版了一本《小学数学解答100问》,获得稿费50000元,按规定,超出10000元的部分应缴纳14%的个人所得税。
陈老师应交税()元。
【答案】5600【解析】由题意可知,超出10000元的部分是(50000-10000),这部分的14%就是陈老师应交的税,即(50000-10000)×14%=5600(元)。
2.先在数轴上表示出下列各数,再把它们按从大到小的顺序排列出来。
-2 -3 1.5 -50%【答案】-50% 1.5-3 -2 0> 1.5 >> -50%> -2 >-3【解析】略3.下面是学校舞蹈队6名女同学的身高。
请以她们的平均身高为标准,把平均身高记为0cm,超过的身高记为正,不足的身高记为负,用正负数表示出她们的身高。
(7分)用正负数表示【解析】略4.棱长1分米的正方体,体积是()立方分米;它又是棱长()厘米的正方体,体积是()立方厘米。
【答案】1 10 1000【解析】本题考查正方体体积的计算方法及单位换算。
正方体体积的计算方法是:正方体的体积=棱长×棱长×棱长。
棱长1分米的正方体,体积是1×1×1=1立方分米;它又是棱长10厘米的正方体,体积是10×10×10=1000立方厘米。
5.长方形的周长是112米,长是宽的3倍。
如果设长方形的宽是x米,则正确的方程是()。
A.x+3x=112B.x+x=112÷2C.2(x+3x)=112D.(x+3x)=112【答案】C【解析】本题考查解方程的知识。
长方形的周长=(长+宽)×2,如果设长方形的宽是x米,长就是3x米,根据周长公式就可以直接列出方程。
如果设长方形的宽是x米,长就是3x米,根据周长公式“长方形的周长=(长+宽)×2”就得2(x+3x)=112。
6.出下列式子所运用的运算定律。
4.8+9.9+2.2﹦4.8+2.2+9.9 ()【答案】加法交换律【解析】本题考查加法交换律。
小学六年级上册数学知识点归纳第一部分数与代数一、分数乘法(一)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(三)分数混合运算的运算顺序和整数的运算顺序相同。
(四)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bc ac+bc=(a+b)×c二、分数乘法的解决问题(详细见重难点分解)(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、找单位“1”:在分率句中分率的前面; 或“占”、“是”、“比”的后面2、求一个数的几倍:一个数×几倍; 求一个数的几分之几是多少:一个数× 。
3、写数量关系式技巧:(1)“的”相当于“×”(乘号)“占”、“是”、“比”“相当于”相当于“=”(等号)(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1±分率)=分率的对应量二、分数除法(一)倒数1、倒数的意义:乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:(原数与倒数之间不要写等号哦)(1)求分数的倒数:交换分子分母的位置。
(2)求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
小学六年级上册数学各单元知识点小学六年级上册数学共有十一个单元,每个单元的知识点如下:1. 第一单元:数与代数- 数的认识:数的读法、数的大小比较- 数的加法和减法:竖式计算、交换律和结合律- 乘法口诀表:认识并背诵乘法口诀表2. 第二单元:整数- 正数、负数:了解正数和负数的概念- 整数的加法和减法:正数相加、正数和负数相加、负数相加- 整数的乘法:相乘的规律3. 第三单元:图形与坐标- 点、线、面:了解图形的基本概念- 线段的长度:如何测量线段的长度- 坐标系:认识平面直角坐标系4. 第四单元:图形的变换- 平移、翻转、旋转:了解图形的基本变换操作- 关于对称轴的对称:认识图形的对称性5. 第五单元:小数- 小数的认识:了解小数的概念和读法- 小数的加法和减法:竖式计算- 小数的乘法和除法:带小数点的乘法和除法计算6. 第六单元:百分数- 百分数的认识:了解百分数的概念和读法- 百分数的表示和转化:将百分数转化为小数、将小数转化为百分数- 百分数的加法和减法:竖式计算7. 第七单元:平方与平方根- 平方数:认识平方数和平方根的概念- 计算平方:计算一个数的平方- 开平方:计算一个数的平方根8. 第八单元:长方体的面积和体积- 长方体的面积:计算长方体各个面的面积、计算总面积- 长方体的体积:计算长方体的体积9. 第九单元:圆- 圆的认识:了解圆的概念和相关术语- 圆的面积和周长:计算圆的面积和周长10. 第十单元:时间- 时钟的认识:了解时、分、秒的概念- 时钟的读法:读时、读分、读秒- 时钟的计算:计算时间差、计算时间段11. 第十一单元:数据的处理- 统计图表:了解柱状图和折线图的制作和分析- 数据的整理和处理:收集数据、整理数据、分析数据以上是小学六年级上册数学各单元的知识点,希望对你有帮助!。
六年级上册数学数与代数
六年级上册数学数与代数部分主要包括以下内容:
1.数的认识:包括正数、负数、整数、小数和百分数的认识。
2.数的运算:包括加法、减法、乘法和除法的基本运算,以及加法和乘法的运算律。
3.代数式:包括代数式的定义、书写规则和代数式的计算方法。
4.方程:包括方程的定义、方程的解和解方程的方法。
5.分数:包括分数的定义、分数的计算方法,以及分数的基本性质。
在数与代数部分,学生需要掌握基本的数学概念和运算方法,能够运用所学知识解决简单的实际问题,为进一步学习数学和其他学科打下基础。
数与代数一~六年级知识整理
数与代数是数学的基本分支,也是初中数学的重要内容。
以下是数与代数的一些知识点,适用于六年级学生:1.自然数:0、1、2、3、4、5、6、7、8、9……是自然数的前几个,自然数是指人们在日常生活中所使用的正整数。
2.整数:自然数及其相反数和零的集合。
例如:-3、-2、-1、0、1、2、3 都是整数。
3.分数:由一个整数分子和一个不为零的正整数分母组成的数。
例如:1/2、3/4、5/6 等都是分数。
4.小数:带有小数点的数。
例如:0.5、1.23、3.14159 等都是小数。
5.运算符号:加(+)、减(-)、乘(×)、除(÷)。
6.算式:由数字和运算符号组成的式子,例如:3+4、5×6、12÷3 等都是算式。
7.等式:左右两边相等的算式,例如:3+4=7、6×2=12 等都是等式。
8.代数式:由变量和常数以及运算符号组成的式子,例如:3x+2、y-5 等都是代数式。
9.方程:含有一个或者多个未知数的等式,例如:2x+3=7、5y-4=16 等都是方程。
10.函数:一组输入与输出的对应关系,通常用公式表示,例如:y=2x+1 就是一个函数式子。
以上是六年级数与代数的一些基础知识点,希望对你有所帮助。