自动控制原理3卢京潮
- 格式:doc
- 大小:1.77 MB
- 文档页数:33
第二章:控制系统的数学模型§ 引言·系统数学模型-描述系统输入、输出及系统内部变量之间关系的数学表达式。
·建模方法⎩⎨⎧实验法(辩识法)机理分析法·本章所讲的模型形式⎩⎨⎧复域:传递函数时域:微分方程§控制系统时域数学模型1、 线性元部件、系统微分方程的建立 (1)L-R-C 网络11cc c r Ru u u u LLC LC'''∴++= ── 2阶线性定常微分方程 (2)弹簧—阻尼器机械位移系统 分析A 、B 点受力情况 由 A 1A i 1x k )x x (k =- 解出012i A x k k x x -= 代入B 等式:020012i x k )x x k k x f(=--&&& 得:()i 1021021x fk x k k x k k f &&=++ ── 一阶线性定常微分方程(3)电枢控制式直流电动机 电枢回路:b a E i R u +⋅=┈克希霍夫 电枢及电势:m e b C E ω⋅=┈楞次 电磁力矩:i C M m m ⋅=┈安培力矩方程:m m m m m M f J =+⋅ωω& ┈牛顿变量关系:m mb a M E i u ω----消去中间变量有:(4)X-Y 记录仪(不加内电路)消去中间变量得:a m 321m 4321m u k k k k k k k k k T =++l l l &&&─二阶线性定常微分方程即:a mm 321m m 4321m u T k k k k l T k k k k k l T 1l =++&&&2、 线性系统特性──满足齐次性、可加性 ● 线性系统便于分析研究。
● 在实际工程问题中,应尽量将问题化到线性系统范围内研究。
● 非线性元部件微分方程的线性化。
例:某元件输入输出关系如下,导出在工作点0α处的线性化增量方程解:在0αα=处线性化展开,只取线性项: 令 ()()0y -y y αα=∆ 得 αα∆⋅-=∆00sin E y 3、 用拉氏变换解微分方程 a u l l l 222=++&&& (初条件为0)复习拉普拉斯变换的有关内容1 复数有关概念 (1)复数、复函数 复数 ωσj s += 复函数 ()y x jF F s F += 例:()ωσj 22s s F ++=+= (2)复数模、相角 (3)复数的共轭(4)解析:若F(s)在s 点的各阶导数都存在,称F(s)在s 点解析。
5.6 利用开环频率特性分析系统的性能在频域中对系统进行分析、设计时,通常是以频域指标作为依据的,但是不如时域指标来得直接、准确。
因此,须进一步探讨频域指标与时域指标之间的关系。
考虑到对数频率特性在控制工程中应用的广泛性,本节将以Bode 图为基点,首先讨论开环对数幅频特性)(ωL 的形状与性能指标的关系,然后根据频域指标与时域指标的关系估算出系统的时域响应性能。
实际系统的开环对数幅频特性)(ωL 一般都符合如图5-49所示的特征:左端(频率较低的部分)高;右端(频率较高的部分)低。
将)(ωL 人为地分为三个频段:低频段、中频段和高频段。
低频段主要指第一个转折点以前的频段;中频段是指穿越频率(或截止频率)c ω附近的频段;高频段指频率远大于c ω的频段。
这三个频段包含了闭环系统性能不同方面的信息,需要分别进行讨论。
需要指出,开环对数频率特性三频段的划分是相对的,各频段之间没有严格的界限。
一般控制系统的频段范围在Hz 100~01.0之间。
这里所述的“高频段”与无线电学科里的“超高频”、“甚高频”不是一个概念。
5.6.1 )(ωL 低频渐近线与系统稳态误差的关系系统开环传递函数中含积分环节的数目(系统型别)确定了开环对数幅频特性低频渐近线的斜率,而低频渐近线的高度则取决于开环增益的大小。
因此,)(ωL 低频段渐近线集中反映了系统跟踪控制信号的稳态精度信息。
根据)(ωL 低图5-49 对数频率特性三频段的划分频段可以确定系统型别υ和开环增益K ,利用第3章中介绍的静态误差系数法可以确定系统在给定输入下的稳态误差。
5.6.2 )(ωL 中频段特性与系统动态性能的关系开环对数幅频特性的中频段是指穿越(或截止)频率c ω附近的频段。
设开环部分纯粹由积分环节构成,图5-50(a )所示的对数幅频特性对应一个积分环节,斜率为dec dB /20-,相角 90)(-=ωϕ,因而相角裕度 90=γ;图5-50(b )的对数幅频特性对应两个积分环节,斜率为dec dB /40-,相角 180)(-=ωϕ,因而相角裕度 0=γ。
卢京潮自动控制原理
1.什么是卢京潮自动控制?
卢京潮自动控制(Lugal surge automatic control)是一种现代化控制原理,它将所有沿桥涉及到的潮汐流量作为控制变量进行控制,以实现潮汐流量的最佳运行效果。
该原理采用复杂的计算机算法和图像处理技术,对潮汐流动进行连续的测量、监测和控制,从而实现潮汐的有效利用和环境保护。
2.卢京潮自动控制技术的应用
(1)海流控制:通过考虑桥涵水和海流等外部影响因素,有效地控制潮流,保持桥涵安全。
(2)沉积物控制:通过有效控制潮流,减少沉积物的积存,减少对航行的影响。
(3)防洪:结合潮汐与人工干涸技术,有效控制潮汐水位,减轻洪灾危害。
(4)节能:采用卢京潮自动控制能够有效地节省人工的运行成本,减少电能消耗。
3.卢京潮自动控制原理的优势
(1)实现高效控制:通过对潮汐流动的封闭式控制,有效地达到节能和安全的自动控制。
(2)提高可靠性:采用可靠的信息通信和网络系统,保证了潮汐流动的准确监测和精确控制。
(3)减少维护成本:卢京潮自动控制原理采用复杂的模型,可以避免人工的运行成本。
(4)绿色可持续发展:卢京潮自动控制技术可以实现有效的节能与环境保护控制,从而达到可持续发展的目的。
第五章 线性系统的频域分析与校正习题与解答5-1 试求题5-75图(a)、(b)网络的频率特性。
(a) (b)图5-75 R-C 网络解 (a)依图:⎪⎪⎪⎩⎪⎪⎪⎨⎧+==+=++=++=2121111212111111221)1(11)()(R R C R R T C R RR R K s T s K sC R sC R R R s U s U r c ττ (b)依图:⎩⎨⎧+==++=+++=C R R T CR s T s sCR R sC R s U s U r c)(1111)()(2122222212ττ 5-2 某系统结构图如题5-76图所示,试根据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出)(t c s 和稳态误差)(t e s(1) t t r 2sin )(=(2) )452cos(2)30sin()(︒--︒+=t t t r 解 系统闭环传递函数为: 21)(+=Φs s 图5-76 系统结构图 频率特性: 2244221)(ωωωωω+-++=+=Φj j j 幅频特性: 241)(ωω+=Φj相频特性: )2arctan()(ωωϕ-=系统误差传递函数: ,21)(11)(++=+=Φs s s G s e 则 )2arctan(arctan )(,41)(22ωωωϕωωω-=++=Φj j e e(1)当t t r 2sin )(=时, 2=ω,r m =1 则 ,35.081)(2==Φ=ωωj ο45)22arctan()2(-=-=j ϕ(2) 当 )452cos(2)30sin()(︒--︒+=t t t r 时: ⎩⎨⎧====2,21,12211m m r r ωω5-3 若系统单位阶跃响应 试求系统频率特性。
解 ss R s s s s s ss C 1)(,)9)(4(3698.048.11)(=++=+++-= 则 )9)(4(36)()()(++=Φ=s s s s R s C 频率特性为 )9)(4(36)(++=Φωωωj j j5-4 绘制下列传递函数的幅相曲线:解 ()()()12G j K j K e j ==-+ωωπ幅频特性如图解5-4(a)。
自动控制原理卢京潮主编课后习题答案西北工业大学出版社SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第五章 线性系统的频域分析与校正习题与解答5-1 试求题5-75图(a)、(b)网络的频率特性。
(a) (b)图5-75 R-C 网络解 (a)依图:⎪⎪⎪⎩⎪⎪⎪⎨⎧+==+=++=++=2121111212111111221)1(11)()(R R C R R T C R RR R K s T s K sC R sC R R R s U s U r c ττ (b)依图:⎩⎨⎧+==++=+++=C R R T CR s T s sCR R sC R s U s U r c)(1111)()(2122222212ττ 5-2 某系统结构图如题5-76图所示,试根据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出)(t c s 和稳态误差)(t e s(1) t t r 2sin )(=(2) )452cos(2)30sin()(︒--︒+=t t t r 解 系统闭环传递函数为: 21)(+=Φs s 图5-76 系统结构图 频率特性: 2244221)(ωωωωω+-++=+=Φj j j 幅频特性: 241)(ωω+=Φj相频特性: )2arctan()(ωωϕ-=系统误差传递函数: ,21)(11)(++=+=Φs s s G s e 则 )2arctan(arctan )(,41)(22ωωωϕωωω-=++=Φj j e e(1)当t t r 2sin )(=时, 2=ω,r m =1则 ,35.081)(2==Φ=ωωj 45)22arctan()2(-=-=j ϕ (2) 当 )452cos(2)30sin()(︒--︒+=t t t r 时: ⎩⎨⎧====2,21,12211m m r r ωω5-3 若系统单位阶跃响应 试求系统频率特性。
自动控制原理_卢京潮_二阶系统的时间响应及动态性能3.3 二阶系统的时间响应及动态性能3.3.1 二阶系统传递函数标准形式及分类常见二阶系统结构图如图3-,所示其中,为环节参数。
系统闭环传递函数为 KT K ,s, ()2Ts,s,K1化成标准形式2,n (首1型) (3-5) ,(s),22s,2,,s,,nn1,(s), (尾1型) (3-6) 22Ts,2T,s,111T1K1式中,,,。
,,,,,,Tn2KTTTK11、分别称为系统的阻尼比和无阻尼自然频率,是二阶系统重要的特征参数。
二阶系统的首,,n1标准型传递函数常用于时域分析中,频域分析时则常用尾1标准型。
二阶系统闭环特征方程为22 D(s),s,2,,s,,,0nn其特征特征根为2,,,,,,,,,1 nn1,2若系统阻尼比取值范围不同,则特征根形式不同,响应特性也不同,由此可将二阶系统分类,见,表3-3。
表3-3 二阶系统(按阻尼比)分类表 ,分类特征根特征根分布模态,t1e ,,12,,,,,,,,,1 nn 1,2,t2e过阻尼,,tn ,,1e,,,, 1,2n,,tnte临界阻尼,,t,2n,,esin1,t0,,,1 n2,,,,,,j,1,, nn1,2t,,,2necos1,,,t欠阻尼 n57,sint ,,0n ,,,j, 1,2ncos,tn零阻尼数学上,线性微分方程的解由特解和齐次微分方程的通解组成。
通解由微分方程的特征根决定,,t,t,tn12代表自由响应运动。
如果微分方程的特征根是,,且无重根,则把函数,,eee,,,?,?,12n称为该微分方程所描述运动的模态,也叫振型。
,t2,t,如果特征根中有多重根,则模态是具有,形式的函数。
tete,?(,,j,)t(,,j,)t如果特征根中有共轭复根,则其共轭复模态与可写成实函数模态ee,,,,j,,t,t与。
esin,tecos,t每一种模态可以看成是线性系统自由响应最基本的运动形态,线性系统自由响应则是其相应模态的线性组合。
一、习题及解答第1 章习题及解答1-1根据图1-15 所示的电动机速度控制系统工作原理图,完成:(1) 将a,b 与c,d 用线连接成负反馈状态;(2) 画出系统方框图。
解(1)负反馈连接方式为:a↔d,b↔c;(2)系统方框图如图解1-1 所示。
1-2图1-16 是仓库大门自动控制系统原理示意图。
试说明系统自动控制大门开、闭的工作原理,并画出系统方框图。
图1-16 仓库大门自动开闭控制系统解当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,1偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。
与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。
反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。
系统方框图如图解1-2 所示。
1-3 图1-17 为工业炉温自动控制系统的工作原理图。
分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。
图1-17 炉温自动控制系统原理图解加热炉采用电加热方式运行,加热器所产生的热量与调压器电压u的平方成正比,cu增高,炉温就上升,u的高低由调压器滑动触点的位置,该触点由可逆转的直所控制c c流电动机驱动。
炉子的实际温度用热电偶测量,输出电压u。
u作为系统的反馈电压与f f给定电压偏差电压,经电压放大器、功率放大器放大成后,作为u进行比较,得出u ur e a控制电动机的电枢电压。
在正常情T°C,热电偶的输出电压u正好等于给定电压况下,炉温等于某个期望值fu。
此时,e=u−u=0u,故u=u=0 ,可逆电动机不转动,调压器的滑动触点r r f 1 a停留在某个合适的位置上,使的热u保持一定的数值。
这时,炉子散失量正好等于从加热c器吸取的热量,形成稳定的热平衡状态,温度保持恒定。
当炉膛温度T°C 由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以2下的控制过程:控制的结果是使炉膛温度回升,直至T°C 的实际值等于期望值为止。
第五章频率响应法5.1 频率特性的基本概念5.1.1 频率特性的定义5.1.2 频率特性和传递函数的关系5.1.3 频率特性的图形表示方法5.2 幅相频率特性(Nyquist图)5.2.1 典型环节的幅相特性曲线5.2.2 开环系统的幅相特性曲线5.3 对数频率特性(Bode图)5.3.1 典型环节的Bode图5.3.2 开环系统的Bode图5.3.3 最小相角系统和非最小相角系统5.4 频域稳定判据5.4.1 奈奎斯特稳定判据5.4.2 奈奎斯特稳定判据的应用5.4.3 对数稳定判据5.5 稳定裕度5.5.1 稳定裕度的定义5.5.2 稳定裕度的计算5.6 利用开环频率特性分析系统的性能L低频渐近线与系统稳态误差的关系5.6.1 )(ωL中频段特性与系统动态性能的关系5.6.2 )(ωL高频段对系统性能的影响5.6.3 )(ω5.7 闭环频率特性曲线的绘制5.7.1 用向量法求闭环频率特性5.7.2 尼柯尔斯图线5.8 利用闭环频率特性分析系统的性能5.8.1 闭环频率特性的几个特征量5.8.2 闭环频域指标与时域指标的关系5.9 频率法串联校正引言频率响应法的特点1)由开环频率特性→闭环系统稳定性及性能2)二阶系统频率特性↔时域性能指标高阶系统频率特性↔时域性能指标3)物理意义明确许多元部件此特性都可用实验法确定工程上广泛应用4)在校正方法中,频率法校正最为方便§5.1频率特性 1.定义1: 2. 3.ss r t A t c t r t G s s j G j c t r t ωωω=⎧⎪=⎨⎪⎩时,与的幅值比,相角差构成的复数中,令得出为频率特性的富氏变换与的富氏变换之比一、 地位:三大分析方法之一二、 特点:1)2)()3)⎧⎪→⎨⎪⎩图解法,简单不直接解闭环根,从开环闭环特征特别适用于校正,设计近似法,不完全精确以右图R -C 网络为例:r cc r c cu iR u i Cu q u Cu R u =+↓===+ ()(1)r c U s CRs U =+⋅()1()()1T CR c r U s G s U s Ts ===+ 设()sin r u t A t ω= 求()c u t22()1t Tc A Tu t e t t T ωωωω-⎡⎤∴=+⎥+⎦ 2222)11tTA T e t arctg t T T ωωωωω-=+-++瞬态响应稳态响应网络频率特性()()()()()ss ss c r c t G j G j r t G j arctgT ωωωϕϕω⎧⎪⎪===⎨⎪⎪∠=-=-⎩幅频特性:相频特性频率特性定义一:——频率特性物理意义:频率特性()G jω是当输入为正弦信号时,系统稳态输出(也是一个与输入同频率的正弦信号)与输入信号的幅值比,相角差。
自动控制原理1~3章测验题一、 单项选择题 (在每小题的四个备选答案中,选出一个正确的答案,将其题号写入题干的○内,每小题1分,共10分)1.适合于应用传递函数描述的系统是○A .非线性定常系统;B .线性时变系统;C .线性定常系统;D .非线性时变系统; 2.某0型单位反馈系统的开环增益为K ,则在 221)(t t r = 输入下, 系统的稳态误差为○A .0;B .∞ ;C .K 1;D .*K A 。
3.动态系统0初始条件是指t<0时系统的○ A .输入为0; B .输入、输出以及它们的各阶导数为0;C .输入、输出为0;D .输出及其各阶导数为0。
4.若二阶系统处于无阻尼状态,则系统的阻尼比ξ应为○A .0<ξ<1;B .ξ=1 ;C .ξ>1;D .ξ=0 。
5.在典型二阶系统传递函数2222)(n n n s s s ωξωω++=Φ中 , 再串入一个闭环零点,则○A .对系统动态性能没有影响;B .超调量减小 ;C .超调量增大;D .峰值时间增大。
6.讨论系统的动态性能时,通常选用的典型输入信号为○A .单位阶跃函数 ;B .单位速度函数 ;C .单位脉冲函数 ;D .单位加速度函数。
7.某I 型单位反馈系统,其开环增益为K ,则在t t r 21)(=输入下, 系统的稳态误差为:○A.0; B.K 2; C.∞; D.K 21。
8.典型欠阻尼二阶系统的超调量σ%5>%,则其阻尼比的范围为○ A.1>ξ; B.10<<ξ;C.1707.0<<ξ; D.707.00<<ξ。
9.二阶系统的闭环增益加大○ A.快速性越好; B.超调量越大;C.峰值时间提前; D.对动态性能无影响。
10.欠阻尼二阶系统的ξ,n ω都与 ○A.σ%有关; B.σ%无关; C.P t 有关 D.P t 无关。
11. 典型欠阻尼二阶系统若n ω不变,ξ变化时○ A.当707.0>ξ时,↓→↑s t ξ;B.当707.0>ξ时,↑→↑s t ξ;C.当707.0<ξ时,↑→↑s t ξ;D .当707.0<ξ时,s t →↑ξ不变。
第一章自动控制的一般概念习题及答案1-1 根据题1-15图所示的电动机速度控制系统工作原理图,完成:(1)将a,b与c,d用线连接成负反馈状态;(2)画出系统方框图。
解(1)负反馈连接方式为:a↔d,b↔c;(2)系统方框图如图解1-1所示。
1-2 题1-16图是仓库大门自动控制系统原理示意图。
试说明系统自动控制大门开、闭的工作原理,并画出系统方框图。
图1-16仓库大门自动开闭控制系统1解当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。
与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。
反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。
系统方框图如图解1-2所示。
1-3 图1-17为工业炉温自动控制系统的工作原理图。
分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。
图1-17 炉温自动控制系统原理图解加热炉采用电加热方式运行,加热器所产生的热量与调压器电压u c的平方成正比,u c 增高,炉温就上升,u c的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。
炉子的实际温度用热电偶测量,输出电压u f。
u f作为系统的反馈电压与给定电压u r进行比较,得出偏差电压u e,经电压放大器、功率放大器放大成u a后,作为控制电动机的电枢电压。
在正常情况下,炉温等于某个期望值T°C,热电偶的输出电压u f正好等于给定电压u r。
此时,u e=u r−u f=0,故u1=u a=0,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使u c保持一定的数值。
这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。
当炉膛温度T°C由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下2的控制过程:控制的结果是使炉膛温度回升,直至T°C的实际值等于期望值为止。
⾃动控制原理复习资料——卢京潮版第⼆章第⼆章:控制系统的数学模型§2.1 引⾔·系统数学模型-描述系统输⼊、输出及系统内部变量之间关系的数学表达式。
·建模⽅法?实验法(辩识法)机理分析法·本章所讲的模型形式??复域:传递函数时域:微分⽅程§2.2控制系统时域数学模型1、线性元部件、系统微分⽅程的建⽴(1)L-R-C ⽹络 C r u R i dtdiL u +?+?=↓ci C u =?&c c c u u C R u C L +'??+''??=11cc c r R u u u u LLC LC'''∴++= ── 2阶线性定常微分⽅程(2)弹簧—阻尼器机械位移系统分析A 、B 点受⼒情况02B0A AA i 1x k )x x f()x x (k =-=-∴&&由 A 1A i 1x k )x x (k =- 解出012i A x k k x x -=代⼊B 等式:020012i x k )x x k k x f(=--i x k x )k k 1f(x f ++=?&& 得:()i 1021021x fk x k k x k k f &&=++ ──⼀阶线性定常微分⽅程(3)电枢控制式直流电动机电枢回路:b a E i R u +?=┈克希霍夫电枢及电势:m e b C E ω?=┈楞次电磁⼒矩:i C M m m ? =┈安培⼒矩⽅程:m m m m m M f J =+?ωω& ┈⽜顿变量关系:m mb a M E i u ω----消去中间变量有:a m m m m u k T =+ωω& [][]??+=+=传递函数时间函数 C C f R C k C C f R RJ T m e m mm m e m m m(4)X-Y 记录仪(不加内电路)=?===+??==?ll 4p 3m2am m m m 1a p r k u :k :k :u k T :u k u :u -u u :电桥电路绳轮减速器电动机放⼤器⽐较点θθθθθ&&& a m rp u u u u l θθ?----------- 消去中间变量得:a m 321m 4321m u k k k k k k k k k T =++l l l &&&─⼆阶线性定常微分⽅程即:a mm 321m m 4321m u T kk k k l T k k k k k l T 1l =++&&&2、线性系统特性──满⾜齐次性、可加性●线性系统便于分析研究。
第三章 线性系统的时域分析法●时域分析法在经典控制理论中的地位和作用时域分析法是三大分析方法之一,在时域中研究问题,重点讨论过渡过程的响应形式。
时域分析法的特点:1).直观、精确。
2).比较烦琐。
§3.1 概述 1. 典型输入 2. 性能指标∙稳→基本要求 ∙准→稳态要求↓ss e :∙快→过渡过程要求⎪⎩⎪⎨⎧↓↓⨯∞∞-=sp t h h t h %)()()(%σ§3.2 一阶系统的时域响应及动态性能 设系统结构图如右所示开环传递函数sKs G =)(闭环传递函数)1(11111)(T Ts Ts T K s K s K s K s -=+=+=+=+=Φλ :)(1)(时t t r =Ts sTs s T s R s s C 111)1(1)()()(+-=+=Φ=1)(,0)0( 1)(1=∞=-=∴-c c et c t TTc e T t c t T 1)0( 1)(1='='-依)(t h 特点及s t 定义有:95.01)(1=-=-s t Ts et h05.095.011=-=-s t Te305.0ln 1-==-s t TT t s 3=∴一阶系统特征根T1-=λ分布与时域响应的关系:t t h s s s s R s s C ===Φ==∙)( 11.1)().()( 02时λat e t h as s a s s a s C a +-=-+-=-==∙1)( 11)()( 时λ 例1 已知系统结构图如右其中:12.010)(+=s s G加上H K K ,0环节,使s t 减小为原来的0.1倍,且总放大倍数不变,求H K K ,0解:依题意,要使闭环系统02.00.21.0*=⨯=s t ,且闭环增益=10。
1101)101(10 1012.01012.0112.010.)(1)(.(s)0000+++=++=+++=+=Φs K K K K s K s s K s G K s G K H H H H H令 101011002.01012.00⎪⎪⎩⎪⎪⎨⎧=+==+=H H K K K K T 联立解出⎩⎨⎧==109.00K K H例2 已知某单位反馈系统的单位阶跃响应为at e t h --=1)(求(1).闭环传递函数)(s Φ;(2).单位脉冲响应;(3).开环传递函数。
自动控制原理_卢京潮_利用开环频率特性分析系统的性能自动控制原理是指通过对系统采集的输入与输出信号进行比较,利用控制器对系统进行调节,实现对所控对象的自动调整的一种技术。
其中,开环控制是一种最基本的控制方式,其通过直接将控制量输入到被控对象中,实现对系统的控制。
而开环频率特性分析则是通过对开环控制系统进行频率特性分析,来评估系统的性能。
开环频率特性分析主要包括幅频特性分析和相频特性分析。
首先,幅频特性分析是指通过改变输入信号的频率,观察输出信号的幅值变化,从而分析系统的频率响应。
在开环控制系统中,通过改变输入信号的频率,可以得到系统的频率特性曲线,即Bode图。
Bode图包括幅频特性曲线和相频特性曲线两部分。
幅频特性曲线反映了系统对不同频率的输入信号的放大或衰减程度。
它是由系统的增益裕度和截止频率决定的。
增益裕度表示系统对输入信号幅值的放大倍数,而截止频率则表示系统能够传递的最高频率。
通过幅频特性曲线的分析,可以判断系统的稳定性和频率特性,以及对各个频率成分的衰减程度。
相频特性分析是指通过改变输入信号的频率,观察输出信号与输入信号之间的相位差,从而分析系统的相位特性。
相频特性曲线反映了系统对不同频率输入信号的相位差变化。
通过相频特性曲线的分析,可以得出系统响应的相位裕度和相角裕度。
相位裕度表示系统对输入信号相位变化的响应程度,相角裕度则表示系统能够承受的相位变化范围。
通过对开环控制系统的幅频特性和相频特性进行分析,可以对系统的性能进行评估。
常用的评估指标包括频率响应曲线的特征参数,如增益裕度、相位裕度、截止频率等。
增益裕度和相位裕度越大,说明系统对干扰和变化的抑制能力越强,系统的稳定性越好。
截止频率则表示了系统对高频信号的响应能力。
通过频率特性分析,可以对系统进行合理的调整和优化,确保系统具有足够的控制能力和稳定性。
总之,利用开环频率特性分析系统的性能,可以为控制系统的设计和调整提供指导。
通过分析系统的幅频特性和相频特性,可以评估系统的稳定性、频率响应特性和抑制能力,从而实现对系统的优化和改进。
第三章 线性系统的时域分析与校正习题及答案3-1 已知系统脉冲响应t e t k 25.10125.0)(-=试求系统闭环传递函数)(s Φ。
解 Φ()()./(.)s L k t s ==+00125125 3-2 设某高阶系统可用下列一阶微分方程T c t c t r t r t ••+=+()()()()τ近似描述,其中,1)(0<-<τT 。
试证系统的动态性能指标为 T T T t d ⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=τln 693.0t T r =22. T T T t s ⎥⎦⎤⎢⎣⎡-+=)ln(3τ 解 设单位阶跃输入ss R 1)(= 当初始条件为0时有:11)()(++=Ts s s R s C τ 11111)(+--=⋅++=∴Ts T s s Ts s s C ττC t h t T Te t T()()/==---1τ 1) 当 t t d = 时h t T Te t td ()./==---051τ12=--T T e t T d τ/ ; Tt TT d-⎪⎭⎫ ⎝⎛-=-τln 2ln ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=∴T T T t d τln 2ln2) 求t r (即)(t c 从1.0到9.0所需时间)当 Tt eTT t h /219.0)(---==τ; t T T T 201=--[ln()ln .]τ 当 Tt eTT t h /111.0)(---==τ; t T T T 109=--[ln()ln .]τ 则 t t t T T r =-==21090122ln ... 3) 求 t sTt s s eTT t h /195.0)(---==τ ]ln 3[]20ln [ln ]05.0ln [ln TT T T T T T T T t s τττ-+=+-=--=∴3-3 一阶系统结构图如图3-45所示。
要求系统闭环增益2=ΦK ,调节时间4.0≤s t s ,试确定参数21,K K 的值。
第二章:控制系统的数学模型§ 2.1 引言-系统数学模型一描述系统输入、输出及系统内部变量之间关系的数学表达式-建模方法机理分析法 实验法(辩识法)§ 2.2控制系统时域数学模型1、线性元部件、系统微分方程的建立(1) L-R-C 网络-本章所讲的模型形式时域:微分方程 复域:传递函数1 LC Uc1 LC Ur2阶线性定常微分方程(2)弹簧一阻尼器机械位移系统分析A 、B 点受力情况由 k 1(X i X A )&X A解出 X A X i k -2X 0k 1代入B 等式:f (X ik 2k 1X o X o )k 2X得:f k 1 k 2 X 0 k 1k 2X 0 fk 1X i一阶线性定常微分方程T m l I k 1k 2k 3k 4k m l k 1k 2k 3k m u a —二阶线性定常微分方程2、线性系统特性——满足齐次性、可加性线性系统便于分析研究。
在实际工程问题中,应尽量将问题化到线性系统范围内研究。
(3)电枢控制式直流电动机电枢回路:u a R i E b —克希霍夫电枢及电势:E b C em-…楞次电磁力矩: M m C m i - -安培力矩方程:J m m f mmM m —牛顿变量关系:iM mUaE bm消去中间变量有:即:Ik 1k 2k 3k 4k k 1k 2k 3k T mT m消去中间变 量得:非线性元部件微分方程的线性化例:某元件输入输出关系如下,导出在工作点0处的线性化增量方程解:在0处线性化展开,只取线性项:令y y -y o得y E o sin o3、用拉氏变换解微分方程I 21 21 2u a(初条件为0)复习拉普拉斯变换的有关内容1复数有关概念(1)复数、复函数复数s j复函数 F s F x jF y例:Fs s 2 2 j(2)复数模、相角(3)复数的共轭(4)解析:若F(s)在s点的各阶导数都存在,称F(s)在s点解析。
第三章 线性系统的时域分析与校正习题与答案3-1系统脉冲响应t e t k 25.10125.0)(-=试求系统闭环传递函数)(s Φ。
解 Φ()()./(.)s L k t s ==+00125125 3-2 设某高阶系统可用如下一阶微分方程T c t c t r t r t ••+=+()()()()τ近似描述,其中,1)(0<-<τT 。
试证系统的动态性能指标为T T T t d ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=τln 693.0t T r =22.T T T t s ⎥⎦⎤⎢⎣⎡-+=)ln(3τ解 设单位阶跃输入ss R 1)(=当初始条件为0时有:11)()(++=Ts s s R s C τ 11111)(+--=⋅++=∴Ts T s s Ts s s C ττ C t h t T Te t T()()/==---1τ1) 当 t t d = 时h t T Te t td ()./==---051τ12=--T T e t T d τ/ ; T t T T d -⎪⎭⎫ ⎝⎛-=-τln 2ln ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=∴T T T t d τln 2ln2) 求t r 〔即)(t c 从1.0到9.0所需时间)当 Tt e TT t h /219.0)(---==τ; t T T T 201=--[ln()ln .]τ 当 Tt e TT t h /111.0)(---==τ; t T T T 109=--[ln()ln .]τ 如此 t t t T T r =-==21090122ln ... 3) 求 t sTt s s e T T t h /195.0)(---==τ]ln 3[]20ln [ln ]05.0ln [ln TT T T T T T T T t s τττ-+=+-=--=∴3-3 一阶系统结构图如图3-45所示。
要求系统闭环增益2=ΦK ,调节时间4.0≤s t s ,试确定参数21,K K 的值。
第三章 线性系统的时域分析与校正习题及答案3-1 已知系统脉冲响应t e t k 25.10125.0)(-=试求系统闭环传递函数)(s Φ。
解 Φ()()./(.)s L k t s ==+00125125 3-2 设某高阶系统可用下列一阶微分方程T c t c t r t r t ••+=+()()()()τ近似描述,其中,1)(0<-<τT 。
试证系统的动态性能指标为 T T T t d ⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=τln 693.0t T r =22. T T T t s ⎥⎦⎤⎢⎣⎡-+=)ln(3τ 解 设单位阶跃输入ss R 1)(= 当初始条件为0时有:11)()(++=Ts s s R s C τ 11111)(+--=⋅++=∴Ts T s s Ts s s C ττC t h t T Te t T()()/==---1τ 1) 当 t t d = 时 h t T Te t td ()./==---051τ12=--T T e t T d τ/ ; T t T T d -⎪⎭⎫ ⎝⎛-=-τln 2ln ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=∴T T T t d τln 2ln2) 求t r (即)(t c 从1.0到9.0所需时间)当 Tt eTT t h /219.0)(---==τ; t T T T 201=--[ln()ln .]τ 当 Tt eTT t h /111.0)(---==τ; t T T T 109=--[ln()ln .]τ 则 t t t T T r =-==21090122ln ... 3) 求 t sTt s s eTT t h /195.0)(---==τ ]ln 3[]20ln [ln ]05.0ln [lnTT T T T T T T T t s τττ-+=+-=--=∴3-3 一阶系统结构图如图3-45所示。
要求系统闭环增益2=ΦK ,调节时间4.0≤s t s ,试确定参数21,K K 的值。
解 由结构图写出闭环系统传递函数111)(212211211+=+=+=ΦK K sK K K s K s K K s K s令闭环增益212==ΦK K , 得:5.02=K 令调节时间4.03321≤==K K T t s ,得:151≥K 。
3-4 在许多化学过程中,反应槽内的温度要保持恒定, 图3-46(a )和(b )分别为开环和闭环温度控制系统结构图,两种系统正常的K 值为1。
(1) 若)(1)(t t r =,0)(=t n 两种系统从响应开始达到稳态温度值的63.2%各需多长时间?(2) 当有阶跃扰动1.0)(=t n 时,求扰动对两种系统的温度的影响。
解 (1)对(a )系统: 1101110)(+=+=s s K s G a , 时间常数 10=T Θ 632.0)(=T h (a )系统达到稳态温度值的63.2%需要10个单位时间;对(a )系统:11011010110010110100)(+=+=Φs s s b , 时间常数 10110=T Θ 632.0)(=T h (b )系统达到稳态温度值的63.2%需要0.099个单位时间。
(2)对(a )系统: 1)()()(==s N s C s G n 1.0)(=t n 时,该扰动影响将一直保持。
对(b )系统: 1011011011010011)()()(++=++==Φs s s s N s C s n 1.0)(=t n 时,最终扰动影响为001.010111.0≈⨯。
3-5 一种测定直流电机传递函数的方法是给电枢加一定的电压,保持励磁电流不变,测出电机的稳态转速;另外要记录电动机从静止到速度为稳态值的50%或63.2%所需的时间,利用转速时间曲线(如图3-47)和所测数据,并假设传递函数为)()()()(a s s Ks V s s G +=Θ=可求得K 和a 的值。
若实测结果是:加10V 电压可得1200m in r 的稳态转速,而达到该值50%的时间为1.2s ,试求电机传递函数。
提示:注意a s K s V s +=Ω)()(,其中dtd t θω=)(,单位是s rad解 依题意有: 10)(=t v (伏) ππω406021200)(=⨯=∞ (弧度/秒) (1)πωω20)(5.0)2.1(=∞= (弧度/秒) (2) 设系统传递函数 as Ks V s s G +=Ω=)()()(0 应有 πω401010lim )()(lim )(000==+⋅⋅=⋅=∞→→aK a s K s s s V s G s s s (3) [][]at e a Ka s s L a K a s s K L s V s G L t -----=⎥⎦⎤⎢⎣⎡+-=⎥⎦⎤⎢⎣⎡+=⋅=1101110)(10)()()(1101ω 由式(2),(3) [][]ππω20140110)2.1(2.12.1=-=-=--a a e e aK得 5.012.1=--ae解出 5776.02.15.0ln =-=a (4) 将式(4)代入式(3)得 2586.74==a K π3-6 单位反馈系统的开环传递函数)5(4)(+=s s s G ,求单位阶跃响应)(t h 和调节时间t s 。
解:依题,系统闭环传递函数)1)(1(4)4)(1(4454)(212T s T s s s s s s ++=++=++=Φ ⎩⎨⎧==25.0121T T41)4)(1(4)()()(210++++=++=Φ=s C s C s C s s s s R s s C1)4)(1(4lim)()(lim 000=++=Φ=→→s s s R s s C s s34)4(4lim)()()1(lim 011-=+=Φ+=→-→s s s R s s C s s31)1(4lim)()()4(lim 042=+=Φ+=→-→s s s R s s C s st t e e t h 431341)(--+-=Θ421=T T , ∴3.33.3111==⎪⎪⎭⎫ ⎝⎛=T T T t t s s 。
3-7 设角速度指示随动系统结构图如图3-48所示。
若要求系统单位阶跃响应无超调,且调节时间尽可能短,问开环增益K 应取何值,调节时间s t 是多少?解 依题意应取 1=ξ,这时可设闭环极点为02,11T -=λ。
写出系统闭环传递函数Ks s Ks 101010)(2++=Φ闭环特征多项式20022021211010)(⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛+=++=T s T s T s K s s s D比较系数有⎪⎪⎩⎪⎪⎨⎧=⎪⎪⎭⎫⎝⎛=KTT10110220联立求解得⎩⎨⎧==5.22.0KT因此有159.075.4''<''==Tts3-8 给定典型二阶系统的设计指标:超调量%5%≤σ,调节时间sts3<,峰值时间stp1<,试确定系统极点配置的区域,以获得预期的响应特性。
解依题%5%≤σ,)45(707.0︒≤≥⇒βξ;35.3<=nstωξ,17.1>⇒nωξ;nptωξπ21-=1<,14.312>-⇒nωξ综合以上条件可画出满足要求的特征根区域如图解3-8所示。
3-9 电子心脏起博器心律控制系统结构图如题3-49图所示,其中模仿心脏的传递函数相当于一纯积分环节。
(1)若5.0=ξ对应最佳响应,问起博器增益K应取多大?(2)若期望心速为60次/min,并突然接通起博器,问1s钟后实际心速为多少?瞬时最大心速多大?解 依题,系统传递函数为2222205.005.0105.0)(n n n s s K s s Ks ωξωω++=++=Φ ⎪⎪⎩⎪⎪⎨⎧⨯==n n Kωξω205.0105.0 令 5.0=ξ可解出 ⎩⎨⎧==2020n K ω将 s t 1=代入二阶系统阶跃响应公式()βωξξξω+---=-t e t h n t n 221sin 11)(可得 m in 00145.60000024.1)1(次次==s h5.0=ξ时,系统超调量 %3.16%=σ,最大心速为m in 78.69163.1163.01(次次)==+=s t h p3-10 机器人控制系统结构图如图3-50所示。
试确定参数21,K K 值,使系统阶跃响应的峰值时间5.0=p t s ,超调量%2%=σ。
解 依题,系统传递函数为222121212112)1()1()1(1)1()(n n n s s K K s K K s K s s s K K s s K s ωξωωΦΦ++=+++=++++= 由 ⎪⎩⎪⎨⎧=-=≤=--5.0102.0212np oo t e ωξπσξπξ 联立求解得⎩⎨⎧==1078.0n ωξ比较)(s Φ分母系数得⎪⎩⎪⎨⎧=-===146.0121001221K K K n n ξωω 3-11 某典型二阶系统的单位阶跃响应如图3-51所示。
试确定系统的闭环传递函数。
解 依题,系统闭环传递函数形式应为2222.)(nn ns s K s ωξωω++=ΦΦ 由阶跃响应曲线有:21)(lim )()(lim (0==⋅Φ=Φ=∞Φ→→K ss s s R s s h s s ) ⎪⎪⎩⎪⎪⎨⎧=-===-=--o o o o n p e t 25225.221212ξξπσξωπ 联立求解得 ⎩⎨⎧==717.1404.0n ωξ所以有 95.239.19.5717.1717.1404.02717.12)(2222++=+⨯⨯+⨯=Φs s s s s 3-12 设单位反馈系统的开环传递函数为)12.0(5.12)(+=s s s G试求系统在误差初条件1)0(,10)0(==e e &作用下的时间响应。
解 依题意,系统闭环传递函数为 5.6255.62)(1)()()()(2++=+==Φs s s G s G s R s C s 当0)(=t r 时,系统微分方程为 0)(5.62)(5)(=+'+''t c t c t c 考虑初始条件,对微分方程进行拉氏变换[][]0)(5.62)0()(5)0()0()(2=+-+'--s C c s C s c c s s C s整理得 ()())0()0(5)(5.6252c c s s C s s'++=++ (1)对单位反馈系统有 )()()(t c t r t e -=, 所以110)0()0()0(101000()0()0(-=-='-'='-=-=-=e r c e r c )将初始条件代入式(1)得 2225.7)5.2(26)5.2(105.6255110)(++++-=++--=s s s s s s C 22225.7)5.2(5.747.35.7)5.2()5.2(10++-+++-=s s s)8.705.7sin(6.105.7sin 47.35.7cos 10)(5.25.25.2︒+-=--=---t e t e t et c t t t3-13 设图3-52(a )所示系统的单位阶跃响应如图3-52(b )所示。