以太网的技术
- 格式:doc
- 大小:72.00 KB
- 文档页数:4
2.2 以太网技术以太网是最早使用的局域网,也是目前使用最广泛的网络。
本节内容包括以太网的诞生及标准系列、命名规则、10Mbps、100Mbps、千兆以太网、层次结构及其功能模块、帧结构、媒体访问控制方式、共享式以太网、交换式以太网。
2.2.1 以太网的发展1.以太网的起源以太网(Ethernet)技术于1973年由施乐公司研发,而后由Xerox、Digital Equipment 和Intel三家公司开发成为局域网组网规范,并于80年代初首次出版,称为DIX1.0。
1982年修改后的版本为DIX2.0。
这三家公司将此规范提交给IEEE(电子电气工程师协会)802委员会,经过IEEE成员的修改并通过,变成了IEEE的正式标准,并编号为IEEE802.3。
Ethernet和IEEE802.3虽然有很多规定不同,但术语Ethernet通常认为与802.3是兼容的。
1983年,IEEE将802.3标准提交给国际标准化组织(ISO)第一联合技术委员会(JTC1),再次经过修订变成了国际标准ISO802.3。
2.几个主要以太网标准1982年10BASE5(DIX)802.3 粗同轴电缆1985年10BASE2 802.3a 细同轴电缆1990年10BASET 802.3j 双绞线1993年10BASEF 802.3j 光纤1995年100BASET 802.3u 双绞线1997年全双工以太网802.3x 双绞线、光纤1998年1000BASEX 802.3z 双绞线、光纤2000年1000BASET 802.3ab 双绞线3.IEEE 802.3命名规则– IEEE 802.3 X TYPE-Y NAME– X表示传输速率<1> 10表示10Mbps<2> 100表示100Mbps<3> 1000表示1000Mbps– TYPE表示信号传输方式<1> Base指基带传输<2> Broad指宽带传输– Y表示传输媒体<1> 5指粗同轴电缆<2> 2指细同轴电缆<3> T指双绞线<4> F指光纤举例:10BASE-5,表示该以太网的带宽为10Mb/s,以基带传输,最大传输距离为500m;10BASE-TX,表示该以太网的带宽为100Mb/s,以基带传输,传输介质(媒体)为双绞线。
以太网简要教程一、概述通常我们所说的以太网主要是指以下三种不同的局域网技术:以太网/IEEE 802.3—采用同轴电缆作为网络媒体,传输速率达到10Mbps;100Mbps以太网—又称为快速以太网,采用双绞线作为网络媒体,传输速率达到100Mbps;1000Mbps以太网—又称为千兆以太网,采用光缆或双绞线作为网络媒体,传输速率达到1000Mbps(1Gbps)以太网以其高度灵活,相对简单,易于实现的特点,成为当今最重要的一种局域网建网技术。
虽然其它网络技术也曾经被认为可以取代以太网的地位,但是绝大多数的网络管理人员仍然把将以太网作为首选的网络解决方案。
为了使以太网更加完善,解决所面临的各种问题和局限,一些业界主导厂商和标准制定组织不断的对以太网规范做出修订和改进。
也许,有的人会认为以太网的扩展性能相对较差,但是以太网所采用的传输机制仍然是目前网络数据传输的重要基础。
二、以太网工作原理以太网是由Xeros公司开发的一种基带局域网技术,使用同轴电缆作为网络媒体,采用载波多路访问和碰撞检测(CSMA/CD)机制,数据传输速率达到10Mbps。
虽然以太网是由Xeros公司早在70年代最先研制成功,但是如今以太网一词更多的被用来指各种采用CSMA/CD技术的局域网。
以太网被设计用来满足非持续性网络数据传输的需要,而IEEE802.3规范则是基于最初的以太网技术于1980年制定。
以太网版本2.0由Digital Equipment Corporation、Intel、和Xeros三家公司联合开发,与IEEE 802.3规范相互兼容。
太网结构示意图如下:以太网/IEEE 802.3通常使用专门的网络接口卡或通过系统主电路板上的电路实现。
以太网使用收发器与网络媒体进行连接。
收发器可以完成多种物理层功能,其中包括对网络碰撞进行检测。
收发器可以作为独立的设备通过电缆与终端站连接,也可以直接被集成到终端站的网卡当中。
以太网技术基本原理以太网是一种局域网技术,其基本原理是基于CSMA/CD(载波监听多路访问/冲突检测)协议,采用共享介质的方式实现各个终端设备之间的数据通信。
以下是以太网技术的基本原理的详细介绍。
1.CSMA/CD协议:CSMA/CD协议是以太网的核心协议,用于解决多个终端设备同时访问共享介质时产生的冲突问题。
其工作原理是,在发送数据之前,终端设备会先监听共享介质上是否有信号传输,如果没有,则可以开始发送自己的数据。
如果检测到有信号传输,表示介质正在被占用,终端设备会等待一段随机的时间后再次进行监听,以便选择合适的时机进行数据发送。
如果在发送数据的过程中,终端设备检测到介质上有冲突,就会终止发送并等待一段时间,再次检测介质是否被占用,然后重新开始发送数据。
通过这种方式,CSMA/CD协议可以有效地解决冲突问题,实现数据的可靠传输。
2.介质访问控制:以太网采用的是共享介质的方式,多个终端设备共享同一根传输介质。
为了保证每个终端设备的公平性和均衡性,以太网采用了介质访问控制机制。
具体来说,以太网将共享介质分割为多个时隙,并将每个时隙划分为一个最小的数据传输单元(称为“帧”)。
终端设备在进行数据传输之前,需要等待一个空闲的时隙,然后按照时隙进行数据发送。
这种介质访问控制机制能够有效地保证每个终端设备的公平访问权,并避免了数据传输的混乱和冲突。
3.MAC地址:以太网使用MAC(媒体访问控制)地址来唯一标识网络中的每个终端设备。
MAC地址是一个48位的全球唯一标识符,由6个字节组成。
其中前3个字节是由IEEE管理的组织唯一标识符(OUI),用于标识设备的生产厂商,后3个字节由设备厂商自行分配。
每个终端设备在生产时都会被分配一个唯一的MAC地址,以太网通过这个地址来确定数据应该发送到哪个设备。
4.帧格式:以太网的数据传输通过帧来进行,每个帧是一个完整的数据包。
以太网的帧格式包括了源MAC地址、目标MAC地址、协议类型和数据部分。
以太网的三种以太网标准以太网是一种局域网技术,它使用双绞线或光纤作为传输介质,采用CSMA/CD(载波监听多路访问/冲突检测)协议来实现数据的传输。
在以太网的发展历程中,出现了多种不同的标准,其中最为常见的有以太网、快速以太网和千兆以太网。
本文将对这三种以太网标准进行介绍和比较。
首先,以太网是最早的以太网标准,它使用10Mbps的传输速率,采用基带传输技术,传输距离最远为100米。
在以太网中,数据帧的最小长度为64字节,最大长度为1518字节。
以太网使用CSMA/CD协议来解决数据冲突问题,但随着网络规模的扩大,以太网的传输速率已经无法满足需求,因此出现了更高速的以太网标准。
其次,快速以太网是在以太网的基础上进行改进的,它使用100Mbps的传输速率,采用基带传输技术,传输距离最远为100米。
快速以太网在数据帧的最小长度和最大长度上与以太网保持一致,但由于传输速率的提升,快速以太网能够更快地传输数据,适用于对传输速度要求较高的场景。
快速以太网的出现,使得局域网的传输速度得到了显著提升,大大改善了网络性能。
最后,千兆以太网是目前应用最为广泛的以太网标准,它使用1Gbps的传输速率,采用基带传输技术,传输距离最远为100米。
千兆以太网在数据帧的最小长度和最大长度上与以太网和快速以太网保持一致,但由于传输速率的进一步提升,千兆以太网能够更快地传输大容量数据,适用于对传输带宽要求较高的场景。
千兆以太网的出现,进一步提升了局域网的传输速度和带宽,满足了现代网络应用对高速数据传输的需求。
综上所述,以太网的发展经历了以太网、快速以太网和千兆以太网三种不同的标准,它们分别采用了不同的传输速率和技术,适用于不同的网络场景。
随着网络应用的不断发展,以太网标准也在不断演进,未来可能会出现更高速的以太网标准,以满足日益增长的网络传输需求。
在选择以太网标准时,需要根据实际需求和网络环境来进行合理的选择,以实现最佳的网络性能和传输效果。
以太网技术的发展与应用以太网技术是一种通用局域网技术,它以一种高效、安全的方式传输数据。
它的发展和应用对于我们的生活和工作都产生了深远的影响。
在未来,以太网技术的重要性将会越来越突出。
本文将会探讨以太网技术从诞生到发展及其应用,以及一些未来的趋势和发展方向。
1. 以太网的诞生和发展以太网技术最早是由Xerox公司的研究人员研制出来的,该技术最初是为了在局域网内传输数据而设计的。
在20世纪80年代初,以太网技术经过不断的发展,逐渐得到了广泛的应用。
之后,该技术开始支持多种协议,包括TCP/IP等协议,进一步提高了其适用性。
当然,与传统的以太网相比,以太网技术在过去几年中也经历了一些变化。
在过去几年中,以太网技术已经迅速发展成为了高速以太网,以支持更高的传输速度。
在2000年左右,10G以太网技术已经成为了一种行业标准,这需要更高的性能和更高的带宽。
2. 以太网技术的应用在当前的互联网环境下,以太网技术被广泛应用于各种场合。
现在, 以太网技术已经广泛应用于办公网、校园内部网、工业生产网络、交通运输网络等各种领域。
它已经成为了数百万个网络的标准,支持着各种应用。
可以说,以太网技术的广泛应用对于我们的生活和工作都产生了深远的影响。
它可以支持我们的办公、娱乐、交流等各种活动,并且还可以在数据中心、云计算等领域发挥极大的作用。
3. 未来的趋势和发展将来,以太网技术将会继续取得重大突破。
其中一个趋势是由于数据传输量的不断增长,以太网技术需要提供更高的带宽。
因此,研究团队正在不断研究一些更高速的以太网技术,这些技术可能会支持更高的传输速度,并能够更好地应对未来的数据传输需求。
另一个趋势是以太网技术的智能化。
近年来,人工智能技术的快速发展已经深刻影响着各个行业和领域。
在未来,以太网技术将会和人工智能技术相结合,以提高其自动化和智能化水平,以满足不同场合的需求。
此外,以太网技术还将与其他技术相结合,以进一步提高其适应性和运营效率,例如与5G技术的结合,以实现实时数据的更快传输和更低时延等。
以太网技术分析及应用随着互联网的快速发展,以太网技术已经成为人们日常生活中不可或缺的一部分。
它是将计算机网络连接起来的一种通用技术,不受制于特定的硬件设备。
本文将对以太网技术进行深入分析,并探讨其在实际应用中的作用和优势。
一、以太网技术的特点以太网技术是一种基于局域网的计算机通信技术,它的特点主要有以下几点:1. 数据传输速度快以太网技术传输速度非常快,普通的以太网传输速度可以达到10Mbps、100Mbps、1Gbps等多种速度等级。
现在以太网技术所支持的速度已经提高到数十Gbps,并且随着技术的不断革新,速度还将不断提升。
2. 使用成本低以太网技术的硬件和软件的成本都很低,相对于其他网络技术而言,以太网的使用成本要低得多。
因此,它可以提供更加经济的网络方案。
3. 高可靠性以太网技术还具有高可靠性,即使在网络拓扑结构发生变化时,以太网仍然可以保持正常的运行。
因此,以太网技术可以为用户提供更稳定的服务。
4. 灵活性强以太网技术可以同时支持多种不同的应用程序和协议,因此,用户可以根据自己的具体需求来进行设置和优化。
同时,在应用层面上,以太网技术也可以满足用户多样化的需求。
二、以太网技术的实际应用以太网技术已经在众多领域得到广泛应用。
下面,将介绍一些以太网技术在实际应用中的具体作用和应用场景。
1. 工业自动化控制系统以太网技术在工业自动化控制系统中的应用非常广泛。
它可以帮助企业建立起高效、可靠的生产控制系统,提高工作效率和工作质量。
通过互联网,工业设备与设备之间可以快速传输数据,实现物理设备的联网互通和自主智能化。
2. 云计算和数据中心云计算和数据中心是现代企业进行互联网和网络技术应用的重要场景。
通过以太网技术,企业可以实现更加高效的计算资源管理和数据中心管理,帮助企业提高业务效率和服务质量。
同时,以太网技术也可以帮助企业建立起高速、高可靠的数据传输网络,支持企业的网络应用。
3. 传媒和影视行业以太网技术在传媒和影视行业中的应用也非常广泛。
以太网工作原理
以太网是一种常用的局域网通信技术,它基于CSMA/CD(载
波监听多路访问/冲突检测)的协议来实现多台计算机之间的
数据传输。
在以太网中,通信的数据被分割成称为帧的小块,并通过物理介质传输。
以太网的工作原理如下:
1. 帧的传输:以太网将要传输的数据分割成固定长度的帧。
每个帧包括帧起始符、目的地址、源地址、数据、校验和等字段。
帧的传输是通过物理介质(如双绞线、光纤等)进行的。
2. 帧的发送:发送数据的计算机将数据封装成帧,并通过物理介质发送。
在发送之前,计算机会监听物理介质上的信号,确保没有其他计算机正在发送数据。
3. 帧的接收:接收数据的计算机会监听物理介质上的信号,一旦检测到帧的起始信号,就开始接收数据。
计算机通过解析帧中的目的地址,判断是否是自己需要接收的数据。
4. 冲突检测:如果多台计算机同时发送数据,就会发生冲突。
以太网使用CSMA/CD协议来解决冲突。
当检测到冲突时,发送数据的计算机会停止发送,并根据一定的算法重新发送数据。
5. 重发机制:一旦发生冲突并成功解决,发送数据的计算机会进行重发,确保数据的完整性。
6. 碰撞域和广播域:以太网将网络划分为碰撞域和广播域。
碰撞域指的是一组可以相互影响和冲突的设备,而广播域指的是可以直接通信的设备。
通过交换机等网络设备能够扩展广播域。
总结来说,以太网利用CSMA/CD协议实现多台计算机之间的数据传输。
通过分割成帧、监听信号、冲突检测等机制,确保数据的传输效率和可靠性。
以太网技术的现状及应用趋势统计数字表明,目前全球85%的网络采用以太网技术。
以太网技术的优势是成本低、灵活,在接入领域使用以太网技术作为产品开发平台已经成为一个必然的发展趋势,有一统天下之势。
以前用以太网技术开发的相关产品,比如以太网交换机和无线局域网等设备,主要应用于企业环境,不能很好地满足商业应用领域或企业客户业务与网络融合更加紧密的需要,比如管理性不强、对业务的识别控制能力不强,无论是在企业网还是在电信网中,以太网产品都需要加以变革才能真正地适应用户的需求。
一、以太网技术的发展趋势1.端到端QoS是未来的发展方向经过十几年的发展,以太网的新业务和新应用不断涌现,这意味着更多的网络资源耗费,仅仅保证高带宽已经无法满足要求。
如何保证网络应用的端到端QoS已经成为以太网面临的最大挑战。
传统的建网模式无法满足现有业务的QoS要求,网络应用迫切要求设备对QoS的支持向边缘层和接入层发展。
在过去,高QoS意味着高价格,但是ASIC技术的发展使具备强大QoS能力的低端设备成为可能,使网络的QoS从集中保证逐渐向端到端保证过渡。
目前,网络边缘设备已经可以根据端口、MAC地址、VLAN信息、IP地址甚至更高层的信息来识别应用类型,为数据包打上优先级标记(如修改IEEE802.1P、IP DiffServ 域),核心设备不必再对应用进行识别,只需根据IP DiffServ、IEEE802.1P进行交换,提供相应的服务质量即可。
2.可控组播技术基本组播技术,存在以下问题:效率低:二层网络对组播支持不足,网络资源浪费严重。
认证难:组播在协议中没有提供用户认证支持,用户可以随意加入一个组播组,并可以任意离开。
管理难:组播源缺少有效的手段控制组播信息在网络上传送的方向和范围。
计费难:组播协议没有涉及到计费部分。
组播源无法知道用户何时加入,何时退出,无法统计出某个时间网络上共有多少个用户在收看组播节目,难以对用户进行准确计费。
以太网通信技术原理详解随着网络技术的不断发展,以太网已经成为了现今最为常见、最为广泛应用的局域网技术之一。
无论是家庭、学校、企业还是政府机构,都可能会采用以太网技术进行网络搭建与数据传输。
那么,以太网通信技术的原理究竟是什么呢?下面,我们就来一探究竟。
一、物理层在以太网通信技术中,物理层负责实现网路中各个节点之间的数据传输。
无论是传统的双绞线网络还是现在普及的光纤网络,它们都需要物理层的支持才能正常运行。
以太网的物理层使用一种叫做CSMA/CD协议的技术,该协议可以有效避免网络中发生冲突现象。
具体来说,当网络中的多个节点同时发送数据时,会发生冲突,而节点会根据时间随机等待一段时间后重新发送,从而避免相互干扰,使得数据传输更加稳定、可靠。
二、数据链路层数据链路层是以太网通信技术中非常重要的一层。
它主要负责数据的格式化和传输,对数据进行帧的划分和重组,同时还会对传输的数据进行差错检测和纠正。
以太网的数据链路层标准是IEEE802.3协议。
该协议规定了以太网数据帧的格式和传输方式。
数据帧由7个部分组成,分别是前导码、目标地址、源地址、类型/长度、数据、校验和和帧尾。
三、网络层网络层是以太网通信技术中最核心的一层,它负责实现数据的路由和传输。
通过对数据的分组和重组,网络层可以实现不同节点之间的数据传输。
同时,网络层还使用一种叫做IP地址的标识方式来确定节点之间的通信关系。
四、应用层应用层是以太网通信技术中最上层的一层,它主要负责对网络应用进行支持。
无论是我们平时所使用的浏览器、邮件客户端、聊天工具还是文件共享软件,都是在应用层上运行的。
总的来说,以太网通信技术的原理非常复杂,涉及到的层次和技术也非常多。
对于一般用户来说,了解上述关键层次的原理就足够了。
在实际应用中,我们还需要了解其他一些相关的知识,比如如何配置网络设备、如何诊断故障等等。
只有通过全面了解和实践,我们才能更好地掌握以太网通信技术的原理和实践技巧。
以太网组网技术学习本章应掌握:1. 以太网的组网类型和传输速度2. 组网所需的器件、设备和传输介质3. 单一集线器组网配置规则4. 多集线器组网配置规则§1.1 以太网的相关标准1.以太网的传输介质:同轴电缆、双绞线、光缆等。
2.以太网的网络速度:10Mb/s、100Mb/s及1000Mb/s。
3.以太网的介质访问控制方法:CSMA/CD。
4.以太网采用的主要技术包括10BASE5、10BASE2、10BASE-T、100BASE-TX和100BASE-FX,其主要技术参数见表3.1。
10BASE-T标准规定,组装10BASE-T的每条非屏蔽双绞线的长度不能超过100m。
100BASE-TX标准规定,组装100BASE-TX网络中使用的5类或超5类非屏蔽双绞线的最大长度为100m。
§1.2 组网所需的器件和设备100BASE-T和100BASE-TX组网所需要的器件和设备:带有RJ-45连接头的UTP电缆、带有RJ-45接口的以太网卡、10M/100M集线器、网桥等。
1.2.1 10M/100M以太网集线器集线器,如图3.1所示,处于星型物理拓扑结构的中心,是以太网中最重要、最关键的设备之一。
只有通过集线器,网络中节点之间的通信才能完成。
集线器通常具有如下功能和特性:1.作为以太网的集中连接点。
2.放大接收到的信号。
3.通过网络传播信号。
4.无过滤功能。
5.无路径检测或交换功能。
6.不同速率的集线器不能级联。
集线器通常采用RJ-45标准接口,图3.1显示了一个具有多个RJ-45端口的以太网集线器(一般集线器可以拥有2-24个端口)。
计算机或其他终端设备可以通UTP电缆与集线器RJ-45端口相连,成为网络的一部分。
集线器功能:对信号放大。
集线器的主要问题:不能过滤通过的数据流和无路径检测功能。
所谓“过滤”,就是对接收信息进行分析,决定是否将具有一定特征(如具有某一特定源地址或目的地址)的信息转发出去。
以太网传输原理
以太网是一种常用的局域网技术,它基于CSMA/CD(载波侦听多路访问/冲突检测)协议。
它的传输原理如下:
1. 以太网使用一种双绞线或光纤传输数据。
数据通过电信号或光脉冲的形式在物理媒介上进行传输。
2. 在物理层,数据被组织成帧。
每一帧包含了目的地址、源地址、数据等必要的信息。
通过帧的形式,数据可以在局域网中进行传输。
3. 当一台计算机要发送数据时,它首先监听网络上是否有其他计算机正在发送数据。
这是通过载波侦听来实现的。
4. 如果网络空闲,计算机就可以发送数据。
它会将数据作为一系列的比特传输到物理媒介上。
5. 其他计算机也在同时监听网络状态。
如果它们在同一时间内尝试发送数据,就会发生冲突。
这是通过冲突检测来发现的。
6. 当发生冲突时,所有冲突的计算机都会停止发送数据,并等待一个随机的时间间隔后再次尝试发送。
这被称为指数后退算法。
7. 将数据从一个计算机传输到另一个计算机需要经过多个中继设备(如交换机、集线器等)。
这些设备负责将数据帧从一个物理接口转发到另一个物理接口,以实现数据的传输。
总的来说,以太网利用CSMA/CD协议和帧的组织方式,通过物理媒介在局域网中传输数据。
当发生冲突时,采用指数后退算法来解决,以保证数据的正常传输。
以太网技术的使用教程随着科技的发展,以太网技术已经成为现代社会中最常见的网络通信方式之一。
无论是家庭、企业还是学校,几乎每个地方都离不开以太网。
在本文中,我们将探讨以太网技术的基本原理和使用教程,帮助读者更好地了解和应用这一技术。
一、以太网的基本原理以太网是一种局域网技术,它通过使用双绞线或光纤等传输介质,将计算机、服务器、打印机等设备连接起来,实现数据的传输和共享。
以太网采用的是分组交换的方式,将数据拆分成小的数据包,然后通过网络交换机进行传输。
这种方式能够提高网络的传输效率和可靠性。
二、以太网的硬件设备要使用以太网,我们首先需要准备一些硬件设备。
首先是网络交换机,它是连接各个设备的核心设备。
根据网络规模和需求,我们可以选择不同端口数量和速度的交换机。
其次是网线,它是连接设备和交换机的媒介。
常见的网线有Cat5、Cat6等不同规格,根据需要选择合适的网线。
最后是计算机、服务器和其他设备,它们是网络的终端设备,通过网线与交换机相连。
三、以太网的配置和连接在使用以太网之前,我们需要进行一些配置和连接。
首先,将交换机与电源连接,并连接上网线。
然后,将网线的一端插入交换机的端口,另一端插入计算机或其他设备的网口。
确保网线插入牢固,不松动。
接下来,打开计算机或设备的网络设置,选择以太网连接,并通过动态IP或静态IP方式进行配置。
配置完成后,我们就可以开始使用以太网进行数据传输和共享了。
四、以太网的应用以太网技术广泛应用于各个领域。
在家庭中,我们可以通过以太网连接多台计算机,实现文件共享和互联网访问。
在企业中,以太网连接了各个部门的计算机和服务器,实现了内部数据的快速传输和共享。
在学校中,以太网连接了教室、实验室和图书馆等地的计算机,方便师生进行教学和学习。
五、以太网的扩展和升级随着科技的不断进步,以太网技术也在不断发展。
目前,最常见的以太网标准是10/100/1000Mbps,即千兆以太网。
但随着网络需求的增加,千兆以太网已经无法满足高带宽的要求。
以太网的原理
以太网是一种局域网技术,是目前应用最广泛的局域网传输协议之一。
它的原理基于共享式传输介质,采用了CSMA/CD
(载波监听多点接入/碰撞检测)的访问方式。
在以太网中,所有设备都连接到同一个传输介质上,即共享同一根电缆或交换机端口。
传输介质可以是双绞线、同轴电缆或光纤等。
每个设备通过物理地址(MAC地址)来唯一标识自己。
设备之间通过帧来进行通信。
当一个设备要发送数据时,它首先监听传输介质上的状态,以确保没有其他设备在发送数据。
如果检测到传输介质上无信号,设备就可以开始发送数据帧。
在发送数据的过程中,设备会不停地检测是否发生了碰撞(即其他设备同时开始发送数据导致冲突)。
如果发生碰撞,设备会停止发送数据,并发送一个特殊的信号来通知其他设备发生了碰撞,并等待一段随机时间后重新尝试发送。
这种碰撞检测和重新发送的机制保证了在传输介质上只有一个设备在发送数据。
以太网的传输速率可以根据具体的实现而有所不同,常见的有10Mbps、100Mbps、1Gbps甚至更高。
此外,以太网还使用了
一些其他的技术,如双工通信、自动协商等,以提高数据的传输效率和可靠性。
总的来说,以太网的原理是基于共享式传输介质和CSMA/CD
访问方式的局域网技术,通过帧的传输来实现设备之间的通信。
它具有简单、灵活、可扩展的特点,被广泛应用于各种局域网环境中。
以太网的技术1以太网的发展以太网是当今现有局域网采用的最通用的通信协议标准,组建于七十年代早期。
Ethernet(以太网)是一种传输速率为10Mbps的常用局域网(LAN)标准。
在以太网中,所有计算机被连接一条同轴电缆上,采用具有冲突检测的载波感应多处访问(CSMA/CD)方法,采用竞争机制和总线拓朴结构。
基本上,以太网由共享传输媒体,如双绞线电缆或同轴电缆和多端口集线器、网桥或交换机构成。
在星型或总线型配置结构中,集线器/交换机/网桥通过电缆使得计算机、打印机和工作站彼此之间相互连接。
由于其简单、成本低、可扩展性强、与IP网能够很好地结合等特点,以太网技术的应用正从企业内部网络向公用电信网领域迈进。
以太网接入是指将以太网技术与综合布线相结合,作为公用电信网的接入网,直接向用户提供基于IP的多种业务的传送通道。
以太网技术的实质是一种二层的媒质访问控制技术,可以在五类线上传送,也可以与其它接入媒质相结合,形成多种宽带接入技术.以太网与电话铜缆上的VDSL相结合,形成EoVDSL技术;与无源光网络相结合,产生EPON技术;在无线环境中,发展为WLAN技术.以太网技术作为数据链路层的一种简单、高效的技术,以其为核心,与其它物理层技术相结合,形成以太网技术接入体系。
EoVDSL方式结合了以太网技术和VDSL技术的特点,与ADSL和(五类线上的)以太网技术相比,具有一定的潜在优势.WLAN技术的应用不断推广,EPON技术的研究开发正取得积极进展。
随着上述“可运营、可管理”相关关键技术问题的逐步解决,以太网技术接入体系将在宽带接入领域得到更加广泛的应用。
同时,以太网技术的应用正在向城域网领域扩展。
IEEE802.17RPR技术在保持以太网原有优点的基础上,引入或增强了自愈保护、优先级和公平算法、OAM等功能,是以太网技术的重要创新。
对以太网传送的支持,成为新一代SDH设备(MSTP)的主要特征。
10G以太网技术的迅速发展,推动了以太网技术在城域网范围内的广泛应用,WAN接口(10Gbase-W)的引入为其向骨干网领域扩展提供了可能.随着网络的发展,传统标准的以太网技术已难以满足日益增长的网络数据流量速度需求。
以太网的技术1以太网的发展以太网是当今现有局域网采用的最通用的通信协议标准,组建于七十年代早期。
Ethernet(以太网)是一种传输速率为10Mbps的常用局域网(LAN)标准。
在以太网中,所有计算机被连接一条同轴电缆上,采用具有冲突检测的载波感应多处访问(CSMA/CD)方法,采用竞争机制和总线拓朴结构。
基本上,以太网由共享传输媒体,如双绞线电缆或同轴电缆和多端口集线器、网桥或交换机构成。
在星型或总线型配置结构中,集线器/交换机/网桥通过电缆使得计算机、打印机和工作站彼此之间相互连接。
由于其简单、成本低、可扩展性强、与IP网能够很好地结合等特点,以太网技术的应用正从企业内部网络向公用电信网领域迈进。
以太网接入是指将以太网技术与综合布线相结合,作为公用电信网的接入网,直接向用户提供基于IP的多种业务的传送通道。
以太网技术的实质是一种二层的媒质访问控制技术,可以在五类线上传送,也可以与其它接入媒质相结合,形成多种宽带接入技术。
以太网与电话铜缆上的VDSL相结合,形成EoVDSL技术;与无源光网络相结合,产生EPON 技术;在无线环境中,发展为WLAN技术。
以太网技术作为数据链路层的一种简单、高效的技术,以其为核心,与其它物理层技术相结合,形成以太网技术接入体系。
EoVDSL方式结合了以太网技术和VDSL技术的特点,与ADSL和(五类线上的)以太网技术相比,具有一定的潜在优势。
WLAN技术的应用不断推广,EPON技术的研究开发正取得积极进展。
随着上述“可运营、可管理”相关关键技术问题的逐步解决,以太网技术接入体系将在宽带接入领域得到更加广泛的应用。
同时,以太网技术的应用正在向城域网领域扩展。
IEEE802.17RPR技术在保持以太网原有优点的基础上,引入或增强了自愈保护、优先级和公平算法、OAM等功能,是以太网技术的重要创新。
对以太网传送的支持,成为新一代SDH设备(MSTP)的主要特征。
10G以太网技术的迅速发展,推动了以太网技术在城域网范围内的广泛应用,WAN接口(10Gbase-W)的引入为其向骨干网领域扩展提供了可能。
随着网络的发展,传统标准的以太网技术已难以满足日益增长的网络数据流量速度需求。
在1993年10月以前,对于要求10Mbps以上数据流量的LAN应用,只有光纤分布式数据接口(FDDI)可供选择,但它是一种价格非常昂贵的、基于100Mbps光缆的LAN。
1993年10月,Grand Junction公司推出了世界上第一台快速以太网集线器Fastch10/100和网络接口卡FastNIC100,快速以太网技术正式得以应用。
随后Intel、SynOptics、3COM、BayNetworks等公司亦相继推出自己的快速以太网装置。
与此同时,IEEE802工程组亦对100Mbps以太网的各种标准,如100BASE-TX、100BASE-T4、MⅡ、中继器、全双工等标准进行了研究。
1995年3月IEEE宣布了IEEE802.3u 100BASE-T快速以太网标准(Fast Ethernet),就这样开始了快速以太网的时代。
快速以太网与原来在100Mbps带宽下工作的FDDI相比它具有许多的优点,最主要体现在快速以太网技术可以有效的保障用户在布线基础实施上的投资,它支持3、4、5类双绞线以及光纤的连接,能有效的利用现有的设施。
快速以太网的不足其实也是以太网技术的不足,那就是快速以太网仍是基于CSMA/CD技术,当网络负载较重时,会造成效率的降低,当然这可以使用交换技术来弥补。
100Mbps快速以太网标准又分为:100BASE-TX 、100BASE-FX、100BASE-T4三个子类。
千兆以太网技术作为最新的高速以太网技术,给用户带来了提高核心网络的有效解决方案,这种解决方案的最大优点是继承了传统以太技术价格便宜的优点。
千兆技术仍然是以太技术,它采用了与10M以太网相同的帧格式、帧结构、网络协议、全/半双工工作方式、流控模式以及布线系统。
由于该技术不改变传统以太网的桌面应用、操作系统,因此可与10M 或100M的以太网很好地配合工作。
升级到千兆以太网不必改变网络应用程序、网管部件和网络操作系统,能够最大程度地保护投资。
此外,IEEE标准将支持最大距离为550米的多模光纤、最大距离为70千米的单模光纤和最大距离为100米的同轴电缆。
千兆以太网填补了802.3以太网/快速以太网标准的不足。
2以太网技术的优越性以太网技术能在快速发展的通信领域长盛不衰,与目前普遍采用的PDH , SDH ,A TM , FR技术相比,其优越性表现在以下几个方面:(1)结构简单、成本低L利用以太网技术构建宽带接人网可利用已有的光网部分和新建小区的五类线资源,或者对其重新布线,其用户终端设备只需准备一个带有以太网接口的路由器即可,而其交换机设备的价格比ADSL , HFC的价格便宜很多,可使网络的建设成本大幅度下降。
例如,在城域网、广域网建设中,采用10吉比特以太网技术比采用SDH技术费用低25 0;,据有关资料介绍,10吉比特以太网与传统的SDH ,,ATM , FR技术相比,能提供100 :1的价格优势、(2)良好的兼容性)全球企事业单位的以太网用户已达1亿多,目前以每年300万的数目增长目前流行的操作系统,如Windows2000操作系统,与以太网都有很好的兼容性,在这些操作系统上还有大量’。
以太网技术兼容的应用软件可供使用,而有线以太网从1983年制定的IEEE802. 3标准到2000年通过的8043 ae规范标准,在兼容性方面已达到即插即用的水平、(3)网络灵活有线以太网可通过支持软件利用“自动协商”功能,实现不同工作模式、不I司工作速率、不同传输介质之间的转换,而几乎不需更改其硬件设备,这是PDH,}DH,A TM技术所无法比拟的(4)克服了接入网与干线网之间的瓶颈效应当前,接入网采用的技术种类繁多,如xDLS技术、:}'T}i技术等,其速率介于千比特和兆比特之间,与其它网络(传输网)连接时,容易产生窄带接入宽带传输所带来的瓶颈效应。
由于用户需求的提高,传统的PI3H ,ATM ,xDSL技术的实施办法是更换硬件设备,从而需要投人更多的费用,而采用有线以太网作为用户通用服务接口,在升级时可最大限度地保护用户的前期投资。
例如,将当前的以太网升级为千兆以太网,由f千兆以太网采用了和传统的以太网相同的帧长、帧格式和媒体访问层协议,在升级的具体操作过程中,只需将传统以太网的主干设备加插千兆以太网适配模块,将原先的网络主干结构移向下级应用即可,保护了用户在设备和技术方面的投资。
用户接入带宽升级后可以很自然地与干线网对接,消除了所谓的瓶颈效应:以太网具有的一般特征概述如下:共享媒体:所有网络设备依次使用同一通信媒体。
广播域:需要传输的帧被发送到所有节点,但只有寻址到的节点才会接收到帧。
CSMA/CD:以太网中利用载波监听多路访问/冲突检测方法(Carrier Sense Multiple Access/Collision Detection)以防止twp 或更多节点同时发送。
MAC 地址:媒体访问控制层的所有Ethernet 网络接口卡(NIC)都采用48位网络地址。
这种地址全球唯一。
Ethernet 基本网络组成:共享媒体和电缆:10BaseT(双绞线),10Base-2(同轴细缆),10Base-5(同轴粗缆)。
转发器或集线器:集线器或转发器是用来接收网络设备上的大量以太网连接的一类设备。
通过某个连接的接收双方获得的数据被重新使用并发送到传输双方中所有连接设备上,以获得传输型设备。
网桥:网桥属于第二层设备,负责将网络划分为独立的冲突域获分段,达到能在同一个域/分段中维持广播及共享的目标。
网桥中包括一份涵盖所有分段和转发帧的表格,以确保分段内及其周围的通信行为正常进行。
交换机:交换机,与网桥相同,也属于第二层设备,且是一种多端口设备。
交换机所支持的功能类似于网桥,但它比网桥更具有的优势是,它可以临时将任意两个端口连接在一起。
交换机包括一个交换矩阵,通过它可以迅速连接端口或解除端口连接。
与集线器不同,交换机只转发从一个端口到其它连接目标节点且不包含广播的端口的帧。
以太网协议:IEEE 802.3标准中提供了以太帧结构。
当前以太网支持光纤和双绞线媒体支持下的四种传输速率:10 Mbps – 10Base-T Ethernet(802.3)100 Mbps – Fast Ethernet(802.3u)1000 Mbps – Gigabit Ethernet(802.3z))10 Gigabit Ethernet – IEEE 802.3ae以太网的工作原理以太网采用带冲突检测的载波帧听多路访问(CSMA/CD)机制。
以太网中节点都可以看到在网络中发送的所有信息,因此,我们说以太网是一种广播网络。
以太网的工作过程如下:当以太网中的一台主机要传输数据时,它将按如下步骤进行:1、监听信道上是否有信号在传输。
如果有的话,表明信道处于忙状态,就继续监听,直到信道空闲为止。
2、若没有监听到任何信号,就传输数据3、传输的时候继续监听,如发现冲突则执行退避算法,随机等待一段时间后,重新执行步骤1(当冲突发生时,涉及冲突的计算机会发送会返回到监听信道状态。
注意:每台计算机一次只允许发送一个包,一个拥塞序列,以警告所有的节点)4、若未发现冲突则发送成功,所有计算机在试图再一次发送数据之前,必须在最近一次发送后等待9.6微秒(以10Mbps运行)。
4以太网技术的发展方向以太网按其传输介质可分为有线和无线两大类,近年来,在有线以太网中,to吉比特以太网标准的制定已完成,制造厂商已生产出符合标准的设备,to吉比特以太网的实用化以及与光纤技术的有机结合,将使人们研究和开发更高速率的“光以太网”,使以太网帧信号实现长距离传输(达100 km ),以满足对其“高速率”、“长距离”传输的要求。
Internet上业务流量的激增,将导致通信业务的重心由电话业务向数据业务转移,同时也对成本和QoS提出更高的要求,电话网、数据网、视频网三网合一是未来网络发展的必然趋势「‘,TDM over Ethernet技术的不断完善和发展是实现“三网合一”的前提和保证。
但是,由于敷设传输线路需要大量投资和传输线路固定而缺乏灵活性等,使得用户不能随时随地无线上网,更不能移动漫游于世界。
因此,解决上述难题的途径是开发无线以太网。
目前无线以太网用户正以几何级数速度增长,预计到2005年,90% } 95%的便携式计算机将有内置无线接入功能,无线以太网开发的更深远的意义是使人们通过网上各地漫游的电脑随时随地完成单位的任务,而不必再去上班工作,其重要的意义在于将改变人们的生活习惯、社会结构,使人类社会发生巨大变革,为人类迈向美好的“虚拟社会”奠定坚实的基础〕。