以太网技术基础
- 格式:pptx
- 大小:1.47 MB
- 文档页数:66
计算机三级《网络技术》基础知识:以太网2015计算机三级《网络技术》基础知识:以太网1.以太网的发展1976年7月,Bob在ALOHA网络的基础上,提出总线型局域网的设计思想,并提出冲突检测、载波侦听与随机后退延迟算法,将这种局域网命名为以太网(Ethernet)。
以太网的核心技术是:介质访问控制方法CDMA/CD.这种方法解决了多结点共享公用总线的问题。
早期以太网的传输介质是同轴电缆,后用双绞线,再后用光纤。
2.以太网的帧结构与工作流程(1)以太网数据发送流程冲突:多个站点同时利用总线发送数据,导致数据接收不正确。
总线网没有控制中心,如果一个站点发送数据帧,以广播方式通过总线发送,每一个站点都能收到数据帧,其它站点也可以同时发送,因此冲突不可避免。
CSMA/CD发送流程可简单概括为:先听后发,边听边发,冲突停止,延迟重发。
实现公共传输介质的控制策略,需要解决的问题是:载波侦听,冲突检测,冲突后的处理方法。
(a)载波侦听结点利用总线发送数据时,首先侦听总线是否空闲,以太网规定发送数据采用曼彻斯特编码。
判断总线是否空闲可以判断总线上是否有电平跳变。
不发生跳变总线空闲。
此时如果有结点已准备好发送数据,可以启动发送。
(b)冲突检测方法载波侦听不能完全消除冲突,原因是数字信号是以一定的速率传输的。
例如:结点A发送数据帧时,离他1000m距离的结点在一定的时间延迟后才能收到数据帧,此时间段内如果B也发送数据,造成冲突。
从物理层上看,冲突时多个信号叠加,导致波形不同于任何结点的波形信号。
解决方案:结点A发送数据前,先发送侦听信号,如果侦听信号在最大距离传输时间2倍时,没有冲突信号出现,结点A肯定取得总线的访问权。
冲突信号的延迟时间=2*D/V。
其中:D是结点到最远结点的距离,V表示信号传输速度,信号往返的时间为延迟时间。
进行冲突检测的方法有两种:比较法和编码违例法。
比较法:将发送信号波形与从总线上接收的信号比较,如果不同说明有冲突。
以太网基础知识试题解析一、选择题1. 以太网的帧结构中,目的地址和源地址各占多少字节?A. 2字节B. 4字节C. 6字节D. 8字节答案:C解析:以太网帧结构中,目的地址和源地址各占6字节,分别用于标识帧的接收者和发送者。
2. 以太网使用的传输介质是什么?A. 光纤B. 双绞线C. 同轴电缆D. 无线信号答案:B解析:以太网最常用的传输介质是双绞线,它包括了多种类型,如Cat5、Cat6等,适用于不同的速率和距离。
二、填空题1. 以太网的最小帧长为_____字节,最大帧长为_____字节。
答案:64,1518解析:以太网规定最小帧长为64字节,这是为了确保网络的可靠性,防止帧过短导致冲突。
最大帧长为1518字节,这是为了确保网络的有效性,防止帧过长导致传输效率降低。
2. 以太网的冲突检测机制发生在帧的_____阶段。
答案:发送解析:以太网采用CSMA/CD(载波侦听多路访问/冲突检测)机制,冲突检测发生在帧的发送阶段。
当两个或多个设备同时发送数据时,它们会检测到冲突,并停止发送,等待随机时间后再次尝试。
三、简答题1. 以太网的MAC地址是什么?它有什么作用?解析:以太网的MAC地址是网络接口卡(NIC)的唯一标识符,由6个字节组成。
它的作用是确保以太网帧能够正确地在网络中传输,每个设备都有一个全球唯一的MAC地址,用于标识发送和接收帧的设备。
2. 以太网的全双工和半双工有什么区别?解析:全双工是指设备可以在发送数据的同时接收数据,而半双工则是指设备在同一时间内只能发送或接收数据。
全双工模式下,通信效率更高,因为它允许双向同时通信,而半双工模式下,通信效率较低,因为它需要交替进行发送和接收。
四、计算题1. 如果一个以太网帧的数据字段长度为1000字节,计算该帧的总长度。
解析:以太网帧的总长度包括目的地址(6字节)、源地址(6字节)、类型/长度字段(2字节)、数据字段(1000字节)、校验和(4字节)。
工业以太网基础及应用模块三 PROFINET技术任务一 PROFINET 技术概述【学习目标】1、认识PROFINET网络技术。
2、了解PROFINET网络实现实时与等式实时的技术原理。
【相关知识】PROFINET由PROFIBUS国际组织(PROFIBUS International,PI)推出,是新一代基于工业以太网技术的自动化总线标准。
PROFINET为自动化通信领域提供了一个完整的网络解决方案,囊括了诸如实时以太网、运动控制、分布式自动化、故障安全以及网络安全等当前自动化领域的热点话题,并且,作为跨供应商的技术,可以完全兼容工业以太网和现有的现场总线(如PROFIBUS)技术,保护现有投资。
作为一个开发的通讯系统,PROFINET基于国际标准(IEEE 802.3,802.3u标准),并且满足特殊的网络部件的工业要求。
未来借助于PROFINET,以太网将能够完成来自运动控制系统,以及网络上现场设备的硬实时要求。
交换机制PROFINET 使用交换以太网作为访问方式。
它由点对点的连接组成。
全部设备都通过点对点连接直接连接其它设备(只连接一个设备)。
交换机允许在两个方向(发送和接收)同时进行通信。
因此,可以提供200 Mbps 的网络性能,相当于快速以太网带宽(100 Mbps) 的2 倍。
通过强制要求PROFINET 采用交换技术,PROFINET 实现了无冲突数据传输。
SIMATIC 交换机利用两种机制满足PROFINET 的实时性要求:“直通”和“存储转发”。
这些交换机制的优点:无需要帧的节点或网络区域不需处理与它们无关的数据。
其带来的空闲网络性能可供其它设备使用。
与传统解决方案不同的是,该解决方案利用交换机制实现了不同网段内部的并行通信,并因而提高了有效带宽。
基于PROFINET的实时通信实时通信实时通信用于将分布式I/O站点连接到控制器,从而利用总线传递传感器和执行器的信号状态。
PROFINET提供两种等级的实时通讯。
实时以太网POWERLINK技术基础摘要:开源实时通信技术Ethernet POWERLINK是一项在标准以太网介质上,用于解决工业控制及数据采集领域数据传输实时性的最新技术。
本文介绍它的基本原理、相关特性如冗余、直接交叉通信、拓扑结构、安全性设计,并定义其物理层与介质等内容。
关键词:实时性、直接交叉通信、冗余技术、安全技术、时隙管理、多路复用、主从结构、NMT、SDO,PDO1.工业实时以太网技术1.1为什么以太网得到发展?以太网实在上世纪70年代后期就已经被开发的网络通信技术,不像其它系统,从那时到现在以太网的开发从没间断,许多公司进行了大量的投资,以太网技术现在在全世界已经拥有巨大的共享知识积累并在全世界分布。
以太网是一个电缆基础的数据网络技术,它用于本地数据网络LAN,他能够使本地的所有设备数据可以互联,例如,计算机、打印机的数据采用相同的数据帧格式,只是最开始,传统意义的LAN 类型是受制于一个独立的建筑的,以太网技术现在已经可以互联远程单元的设备了。
以太网标准定义了一个电缆和连接器类型,比特信号在传输层的处理细节,以及特定包的格式和协议,参照OSI模型,以太网定义物理层和数据链路层,以太网或多或少包括IEEE802.3,自90年代以来,它逐渐成为了最为广泛使用的LAN技术,并取代其它LAN标准例如令牌环网、以及曾经的工业和工厂网络技术ARCNET,以及在特定应用环境应用的FDDI,以太网可以作为其它网络协议的基础协议如:AppleTalk,DECnet,IPX/SPX,或者TCP/IP。
1.2 CSMA/CD及它带来什么影响?CSMA/CD机制运行原理通俗的讲,以太网是依照共享介质机制来运行的,这意味着,在任意给定时间,所有的网络节点可以向其它节点发送和接收其它节点的信号,每个设备被赋予了一个独立的MAC地址(介质访问控制),它确保了所有网络节点的确定标识,为了防止两个节点同时发送数据而导致数据碰撞,以太网使用CSMA/CD机制(载波侦听访问/碰撞检测),即,每个节点侦听网络,如果它发现网络上没有信号正在传输它就可以发送,然而,某个节点仍然会导致不同节点的并发信号丢失,在这种情况下,碰撞检测阻止该节点的发送,在一个任意的间隔过后,节点尝试一个新的数据发送,数据传输没有数据丢失,但是,这会影响速度。
以太网发展简史:1.1973年,位于加利福尼亚Palo Alto 的Xerox公司提出并实现了最初的以太网。
Robert Metcalfe博士被公认为以太网之父,他研制的实验室原型系统运行速度是 2.94兆比特每秒(3Mb/s)。
2.1980年, Digital Equipment Corporation ,Intel,Xerox三家联合推出10Mbps DIX以太网标准[DIX80]。
IEEE 802.3标准规范则是基于这个最初的以太网技术制定的。
3.1995年,IEEE正式通过了802.3u快速以太网标准。
4.1998年,IEEE802.3z千兆以太网标准正式发布。
5.1999年,发布IEEE802.3ab标准,即1000BASE-T标准。
6.2002年7月18日,IEEE通过了802.3ae,即10Gbit/s以太网,又称为万兆以太网,它包括了10GBASE-R,10GBASE-W,10GBASE-LX4三种物理接口标准。
7.2004年3月,IEEE批准铜缆10G以太网标准802.3ak,新标准将作为10GBASE-CX4实施,提供双轴电缆上的10Gbps的速率。
8.在刚萌芽时期的以太网是共享式以太网,当时存在常见几种传输介质:9.10Base5:粗同轴电缆(5代表电缆的最大传输距离是500米)10.10Base2:细同轴电缆(2代表电缆的最大传输距离是200米)11.但是在共享式以太网之前,使用一种称为抽头的设备建立与同轴电缆的连接。
须用特殊的工具在同轴电缆里挖一个小洞,然后将抽头接入。
此项工作存在一定的风险:因为任何疏忽,都有可能使电缆的中心导体与屏蔽层短接,导致这个网络段的崩溃。
同轴电缆的致命缺陷是:电缆上的设备是串连的,单点的故障可以导致这个网络的崩溃。
12.80年代末期,非屏蔽双绞线(UTP)出现,并迅速得到广泛的应用。
UTP的巨大优势在于:价格低廉、制作简单,收发使用不同的线缆易于实现全双工工作模式。
车载以太网基础知识解析1、以太网常见缩略语1)1TPCE = One (1) T wisted P air 100 Megabit (C = century = 100) E thernet 1对双绞线 100M以太网2)RTPGE= R educed T wisted P air G igabit E thernet简化版双绞线千兆以太网3)GEPOF = G igabit E thernet Over P lastic O ptical F iber基于塑料光纤的千兆以太网4)100BASE-T1 = 100 Megabit Baseband One Pair100M以太网(1对双绞线)5)1000BASE-T1 = 1 Gigabit Baseband One Pair1000M以太网(1对双绞线)6)1000BASE-RH = Gigabit Ethernet Over Plastic Optical Fiber基于塑料光纤的千兆以太网7)OPEN / OPEN Alliance = One Pair Ethernet Network Alliance单对以太网网络联盟8)OABR = (OPEN Alliance) BroadR-Reach100BASE-T1的早期名称,当时IEEE没有参与,开放联盟将Broadcom的BroadR-Reach技术引入汽车领域9)TSN – Time sensitive Network时间敏感网络10)AVB – Audio/Video bridging音视频桥接技术2、什么是100BASE-T1100BASE-T1 是在现有的以太网技术基础上进行的整合。
1)IEEE 100BASE-TX——双单工通讯—— MLT-3(多级传输)- >125Msps(百万抽样/秒)65~80MHz带宽)——两对双绞线——无纠错编码—— DSP中没有回音和串扰消除技术——决策反馈均衡技术(DFE)——全双工通讯—— 4D-PAM5 - >125Msps(百万抽样/秒)65~80MHz带宽)——四对双绞线——部分响应传输滤波器——纠错编码的附加级别—— DSP中有回音和串扰消除技术——决策反馈均衡(DFE)——全双工通讯—— PAM3 - 66.7Msps(百万抽样/秒)27MHz带宽——单对双绞线——回音消除技术——决策反馈均衡(DFE)3、以太网VS传统总线3.1 交换机式网络通信图:CAN与以太网通信方式对比1)传统总线上所有节点都连接到同一个传输媒介中;例如一条CAN总线上就可以挂多个终端节点(ECU),同时该CAN总线上的电信号还会影响到挂在此总线上的所有终端节点,我们一般会把CAN称为CAN Bus 或 CAN Network。
以太网培训教程以太网是当前最常见的网络技术之一,广泛运用于各行各业。
因此,学习以太网技术对于网络从业人员来说至关重要。
本文将为大家介绍以太网培训教程。
一、以太网基础知识首先,了解以太网应具备的基础知识是必要的。
以太网是指一种局域网技术,它能够快速、准确地在网络中传输大量的数据。
以太网最早是由Xerox、Intel和Digital三家公司于20世纪70年代合作开发出的。
关于以太网标准,最初的10BASE-T规格使用了双绞线,最高可传输10 Mbps 的数据,而现在常用的100BASE-TX规格则使用的是双绞线,最高可传输100 Mbps 的数据。
同时还有更高速的千兆以太网(Gigabit Ethernet)等规格。
除了了解以太网的技术规格,还应该掌握以太网中的常用术语。
如“MAC地址”、“交换机”、“路由器”等。
二、以太网的拓扑结构以太网的拓扑结构是指连接在网络设备上的节点之间的物理布置。
常见的以太网拓扑结构包括总线型、星型、树型、环形等。
每种不同的拓扑结构都有其适用的场景。
以太网各种拓扑结构的特点、优缺点和适用场景对于网络工程师来说是重要的知识点。
例如,星型拓扑结构具有易于管理、检修的优点,但是它仅能在交换机故障时受到影响;而相比之下,总线型拓扑结构则更加容易扩展,但拓扑结构较为复杂,且易受到噪声和干扰的影响。
三、以太网的传输介质以太网的传输介质主要包括双绞线、同轴电缆、光纤等。
其中,双绞线是最为常见的一种传输介质。
双绞线在以太网中的应用十分广泛,其中,最为常见的是用于传输100 Mbps 数据的100BASE-TX双绞线。
同时,双绞线的质量和性能因素也会影响整个以太网的稳定性和传输速度。
因此,学习双绞线的相关知识和技巧,如如何识别双绞线类别、如何接线,对于网络从业人员来说至关重要。
四、以太网的网络设备以太网的网络设备主要包括交换机、路由器、网桥等。
其中,交换机是以太网中最为重要的网络设备之一。
1 以太网基础知识详解对于以太网的一些基础知识,我们有必要去做一些简单的了解。
做为常识介绍性内容,对以太网知识做一梳理。
1.1以太网概述自从1946年第一台数字计算机问世到现在,经历了半个多世纪的时间。
在这半个世纪的里程中,计算机技术的发展大体经历了三个成熟的阶段;第一个阶段是大型机时代,典型的是运行UNIX操作系统的大型计算机,该机器带很多终端,每个用户占用一个终端,大型机采用分时的技术为每个终端轮流服务,在用户看来自己单独享用了一个完整的计算机,这种体系结构主要用于科研机构来进行大量的数学运算。
第二个阶段是客户服务器阶段,也就是所谓的C/S结构。
最有代表性的是NOVELL公司的NetWare操作系统,这个系统分为服务器和客户机两部分,服务器软件安装在一台性能比较高的服务器上,客户机软件则安装在工作终端上(一般是基于DOS操作系统的PC机),这些服务器和客户机通过网络连接起来,达到文件和数据库共享的目的,后来的WINDOWS NT也是基于这样的体系结构,但是在软件上引入了一些分布式的处理体系。
第三个阶段,也就是目前所处的阶段,是网络阶段。
这个阶段的特点是,计算机之间的互连越来越复杂,不但互连的速度有很大提高(达到100M),而且在地理位置上也跨越了地域,通过高速专线把处于不同城市、不同国家的计算机网络连接起来。
这样复杂的网络对网络设备提出了很高的要求。
从上面的分析可以看出,在第二和第三阶段中,必须有一种技术来把本地的许多计算机连接起来。
这种技术就是所谓的局域网技术。
到目前为止,存在许多种局域网技术,比如令牌环,令牌总线,以及IBM公司的SNA(系统网络结构),以太网等等。
在这些技术当中,以太网技术以其简明,高效的特点逐渐战据了主导地位。
1.1.1以太网技术起源以太网技术起源于一个实验网络,该实验网络的目的是把几台个人计算机以3M的速率连接起来。
由于该实验网络的成功建立和突出表现,引起了DEC,Intel,Xerox三家公司的注意,这三家公司借助该实验网络的经验,最终在1980年发布了第一个以太网协议标准建议书。
以太网是当今现有局域网采用的最通用的通信协议标准,组建于七十年代早期。
Ethernet(以太网)是一种传输速率为10Mbps的常用局域网(LAN)标准。
在以太网中,所有计算机被连接一条同轴电缆上,采用具有冲突检测的载波感应多处访问(CSMA/CD)方法,采用竞争机制和总线拓朴结构。
基本上,以太网由共享传输媒体,如双绞线电缆或同轴电缆和多端口集线器、网桥或交换机构成。
在星型或总线型配置结构中,集线器/交换机/网桥通过电缆使得计算机、打印机和工作站彼此之间相互连接。
以太网具有的一般特征概述如下:共享媒体:所有网络设备依次使用同一通信媒体。
广播域:需要传输的帧被发送到所有节点,但只有寻址到的节点才会接收到帧。
CSMA/CD:以太网中利用载波监听多路访问/冲突检测方法(Carrier Sense Multiple Access/Collision Detection)以防止 twp 或更多节点同时发送。
MAC 地址:媒体访问控制层的所有 Ethernet 网络接口卡(NIC)都采用48位网络地址。
这种地址全球唯一。
Ethernet 基本网络组成:共享媒体和电缆:10BaseT(双绞线),10Base-2(同轴细缆),10Base-5(同轴粗缆)。
转发器或集线器:集线器或转发器是用来接收网络设备上的大量以太网连接的一类设备。
通过某个连接的接收双方获得的数据被重新使用并发送到传输双方中所有连接设备上,以获得传输型设备。
网桥:网桥属于第二层设备,负责将网络划分为独立的冲突域获分段,达到能在同一个域/分段中维持广播及共享的目标。
网桥中包括一份涵盖所有分段和转发帧的表格,以确保分段内及其周围的通信行为正常进行。
交换机:交换机,与网桥相同,也属于第二层设备,且是一种多端口设备。
交换机所支持的功能类似于网桥,但它比网桥更具有的优势是,它可以临时将任意两个端口连接在一起。
交换机包括一个交换矩阵,通过它可以迅速连接端口或解除端口连接。