新课标人教版九年级上册图形的旋转教案
- 格式:doc
- 大小:26.50 KB
- 文档页数:4
新人教版初中数学九年级上册第23章《图形的旋转》教案23.1图形的旋转(1)一、创设情境1.向学生展示有关的图片:(1)时钟上的秒针在不停的转动;(并介绍顺时针方向和逆时针方向)(2)大风车的转动;(3)飞速转动的电风扇叶片;(4)汽车上的括水器(5)由平面图形转动而产生的奇妙图案。
2、提出问题:这些情境中的转动现象,有什么共同特征?用课件展示图片并显示现实生活中部分物体的旋转现象学生观察图片学生思考,归纳它们的共同特征。
让学生再举一些类似的例子通过这些画面的展示让学生切身感受到我们身边除了平移、轴对称变换等图形变换之外,生产、生活中广泛存在着转动现象,从而产生对这种变换进一步探究的强烈欲望,为本节课探究问题作好铺垫。
初步感受转动的本质是绕着某一点,旋转一定的角度这两点,引导学生寻找、认识生活中的旋转现象,并揭示本节的研究课题-----图形的旋转。
二、自主探究1.建立旋转的概念请同学们尝试用自己的语言来描述上述图形的运动现象.2、给出旋转的定义:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转(rotation).点O叫做旋转中心,转动的角叫做旋转角。
重点突出旋转的三个要素:旋转中心、旋转方向和旋转角度。
3、结合图形理解对应点、对应线段、对应角、旋转中心、旋转角的意义。
学生先独立尝试,再同学之间讨论交流、总结,在此过程中以培养学生的抽象概括能力,同时让学生体会到合作交流的必要性,教师及时观察学生的学习情况和学习进度,碰到学生中的普遍性问题,在进行适当的探讨后,利用谈话讨论的形式进行解决。
完成本节课的两个学习目标:①点明图形旋转中对应点、对应线段及对应角的概念;②让学生及时巩固并理解旋转及其相关概念,并为下面探究旋转的性质作好物质与精神上的准备。
三、尝试1、如图,△ABO绕点O旋转得到△CDO,则:学生独立思考并解答,学生讲解,相互评价。
及时巩固新知,使每个学生都有收获.应用点B的对应点是点_____;线段OB的对应线段是线段______;线段AB的对应线段是线段______;∠A的对应角是______;∠B的对应角是______;旋转中心是点______;旋转的角是______。
人教版数学九年级上册23.1.1《图形的旋转》教学设计一. 教材分析《图形的旋转》是人民教育出版社九年级上册数学教材第五章第二节的内容。
本节内容是在学生已经掌握了图形的平移、缩放、轴对称等基本变换的基础上进行学习的,是进一步培养学生的空间想象能力和抽象思维能力的重要内容。
图形旋转的概念和性质在日常生活和生产实践中有着广泛的应用,如地图的绘制、机械设计等。
通过本节课的学习,让学生了解图形的旋转概念,理解旋转的性质,学会用旋转来解决实际问题。
二. 学情分析九年级的学生已经具备了一定的空间想象能力和抽象思维能力,对于图形的平移、缩放、轴对称等基本变换已经有了一定的了解。
但是,学生在学习过程中可能对旋转的概念和性质理解不深,不易掌握旋转的计算方法。
因此,在教学过程中,教师需要通过大量的实例和练习,帮助学生理解和掌握旋转的相关知识。
三. 教学目标1.知识与技能:使学生掌握图形旋转的概念,理解旋转的性质,学会用旋转来解决实际问题。
2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的空间想象能力和抽象思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和创新精神。
四. 教学重难点1.教学重点:图形旋转的概念,旋转的性质。
2.教学难点:旋转的计算方法,旋转在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例和数学故事,引发学生的兴趣,激发学生的学习欲望。
2.探究式教学法:引导学生观察、操作、猜想、验证,培养学生的自主学习能力。
3.合作学习法:学生进行小组讨论和合作交流,提高学生的团队协作能力。
六. 教学准备1.教学课件:制作课件,展示图形旋转的实例和性质。
2.教学素材:准备一些图形,如正方形、三角形等,用于讲解和练习。
3.计算器:为学生提供计算器,便于进行旋转的计算练习。
七. 教学过程1.导入(5分钟)教师通过一个有趣的数学故事引入本节课的内容,引发学生的兴趣。
2.呈现(10分钟)教师通过课件展示一些图形旋转的实例,如地球的自转、钟表的指针等,引导学生观察和思考。
23.1 图形的旋转教学目标1. 通过观察具体实例认识旋转,归纳旋转、旋转中心、旋转角和对应点的概念,并应用它们解决一些实际问题.2. 探索旋转的性质,会画出旋转后的图形.3. 理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果.4. 掌握根据需要用旋转的知识设计出美丽的图案.应用已学的知识作图,设计出美丽的图案.教学重点1. 旋转、对应点的有关概念及其应用.2.用旋转的有关知识画图.教学难点发现“对应角到旋转中心的夹角相等”的性质.课时安排2课时.1 / 10教案A第1课时教学内容23.1 图形的旋转(1).教学目标1.通过观察具体实例认识旋转,归纳旋转、旋转中心、旋转角和对应点的概念,并应用它们解决一些实际问题.2.探索旋转的性质,会画出旋转后的图形.教学重点旋转、对应点的有关概念及其应用.教学难点发现“对应角到旋转中心的夹角相等”的性质.教学过程一、导入新课教师指导学生复习平移、轴对图形的概念及有关性质,导入新课的教学.二、新课教学1.观察实例得出旋转概念.我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.(1)请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?学生口答,教师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.(2)再看自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?思考:这些现象有什么共同特点?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.归纳:像这样,把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.2.通过类比试验探究旋转的性质探究:如图,在硬纸板上,挖一个三角形洞,再另挖一个小洞O作为旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角2 / 10形图案(△ABC),然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形(△A′B′C′)移开硬纸板.△A'B'C'是由△ABC绕点O旋转得到的.线段OA与OA′有什么关系?∠AOA′与∠BOB′有什么关系?△ABC与△A′B′C′的形状和大小有什么关系?教师让学生思考这些问题.必要时,可引导学生从以下问题中进行思考:(1)轴对称的性质中对应点之间有怎样的位置关系和数量关系?旋转呢?(2)旋转是一个图形围绕旋转中心旋转一定的角度,此时,图形上的点发生旋转了吗?它是如何旋转的?哪个角表示了旋转的角度?通过思考、讨论,归纳出旋转的性质:对应点到旋转中心的距离相等.对应点与旋转中心所连线段的夹角等于旋转角.旋转前、后的图形全等.3.通过实例画出旋转后的图形.例如下图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形.分析:关键是确定△AD E三个顶点的对应点,即它们旋转后的位置.解:因为点A是旋转中心,所以它的对应点是它本身.正方形ABCD中,AD=AB,∠DAB =90°,所以旋转后点D与点B重合.设点E的对应点为点E′.因为旋转后的图形与旋转前的图形全等,所以∠ABE′=∠ADE=90°,BE′=DE.因此,在CB的延长线上取点E',使BE′=DE,则△ABE′为旋转后的图形(下图).三、巩固练习教材第59、61页练习.四、课堂小结本节课要掌握:1.旋转及其旋转中心、旋转角的概念.2.旋转的对应点及其它们的应用.3.对应点到旋转中心的距离相等.4.对应点与旋转中心所连线段的夹角等于旋转角.5.旋转前、后的图形全等及其它们的应用.五、布置作业习题23.1 第1、2、3、4题.3 / 10第2课时教学内容23.1 图形的旋转(2).教学目标1.理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果.2.掌握根据需要用旋转的知识设计出美丽的图案.应用已学的知识作图,设计出美丽的图案.3.复习图形旋转的基本性质,着重强调旋转中心和旋转角然后应用已学的知识作图,设计出美丽的图案.教学重点用旋转的有关知识画图.教学难点根据需要设计美丽图案.教学过程一、导入新课1.学生活动:老师口问,学生口答.(1)各对应点到旋转中心的距离有何关系呢?(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?(3)两个图形是旋转前后的图形,它们全等吗?2.请同学完成下面的作图题.如图,△AOB绕O点旋转后,G点是B点的对应点,作出△AOB旋转后的三角形.分析:要作出△AOB旋转后的三角形,应找出三方面:第一,旋转中心:O;第二,旋转角:∠BOG;第三,A点旋转后的对应点:A′.二、新课教学1.在作图时,旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,选择不同的旋转中心、不同的旋转角旋转同一个图案,会出现不同的效果.下面就选择不同的旋转中心、不同的旋转角来进行研究.(1)旋转中心不变,改变旋转角,会出现不同的效果.4 / 10上图的两个旋转中,旋转中心不变.旋转角改变了,产生了不同的旋转效果.(2)旋转角不变,改变旋转中心,会出现不同的效果.上图的两个旋转中,旋转角不变.旋转中心改变了,产生了不同的旋转效果.2.设计美丽图案从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案(下图).三、巩固练习1.例如下图是菊花一叶和中心与圆圈,现以O为旋转中心画出分别旋转45°、90°、135°、180°、225°、270°、315°的菊花图案.分析:只要以O为旋转中心、旋转角以上面为变化,旋转长度为菊花的最长OA,按菊花叶的形状画出即可.解:(1)连结OA.(2)以O点为圆心,OA长为半径旋转45°,得A.(3)依此类推画出旋转角分别为90°、135°、180°、225°、270°、315°的A点.(4)按菊花一叶图案画出各菊花一叶.那么所画的图案就是绕O点旋转后的图形.2.教材第62页练习.四、归纳小结本节课应掌握:1.选择不同的旋转中心、不同的旋转角,设计出美丽的图案.2.作出几个复合图形组成的图案旋转后的图案,要先求出图中的关键点——线的端点、角的顶点、圆的圆心等.五、布置作业习题23.1 第5、6题.5 / 10教案B第1课时教学内容23.1 图形的旋转(1).教学目标1.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.2.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.教学重点旋转及对应点的有关概念及其应用.教学难点从活生生的数学中抽出概念.教具准备小黑板、三角尺.教学过程一、导入新课学生活动:请同学们完成下面各题.1.将左图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如右图,已知△ABC和直线l,请你画出△ABC关于l对称图形△A′B′C′.教师指导学生复习平移的概念及有关性质.如何画一个图形关于一条直线(对称轴)的对称图形和它既有的一些性质.导入新课的教学.二、新课教学思考:如左图,钟表的指针在不停地转动,从3时到0时,时针转动了多少度?6 / 10如右图,风车风轮的每个叶片在风的吹动下转动到新的位置.以上这些现象有什么共同特点呢?我们可以把上面问题中的指针、叶片等看作平面图形.像这样,把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.例如,做左图中,时针在旋转,表盘的中心是旋转中心,旋转角是60°,时针的端点在3时的位置P与在5时的位置P′是对应点.下面我们来运用这些概念来解决一些问题.例 1 如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.例2 如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?教师点评:(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)画图略.(3)点A、B、C、D移到的位置是点E、F、G、H.强调:这个旋转中心是固定的,即正方形对角线的交点,但旋转角和对应点都是不唯一的.三、巩固练习教材第59页练习1、2、3.四、课堂小结今天你学习了什么?有什么收获?五、布置作业习题23.1 第1、2、3题.7 / 10第2课时教学内容23.1 图形的旋转(2).教学目标1.理解对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.2.用操作几何、实验,探究图形的旋转的基本性质.3.理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案.应用已学的知识作图,设计出美丽的图案.教学重点图形的旋转的基本性质及其应用.教学难点运用操作实验几何得出图形的旋转的三条基本性质.教学过程一、导入新课学生活动:老师口问,学生口答.1.什么叫旋转?什么叫旋转中心?什么叫旋转角?2.什么叫旋转的对应点?3.如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?分析:能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°、120°、180°、240°、300°形成的.二、新课教学1.上面的解题过程中,能否得出什么结论,请回答下面的问题:(1)A、B、C、D、E、F到O点的距离是否相等?(2)对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA 是否相等?(3)旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OF A全等吗?点评:(1)距离相等,(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验.2.探究:如图,在硬纸板上,挖一个三角形洞,再另挖一个小洞O作为旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形(△A′B′C′ )移开硬纸板.△A'B'C'是由△ABC绕点O旋转得到的.线段OA与OA′有什么关系?∠AOA′与∠BOB′有什么关系?△ABC与△A′B′C′的形状和大小有什么关系?8 / 10教师引导学生归纳旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.3.实例分析.例如右下图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B对应点的位置,以及旋转后的三角形.分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.解:(1)连结CD,(2)以CB为一边作∠BCE,使得∠BCE=∠ACD,(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点.(4)连结DB′.则△DB′C就是△ABC绕C点旋转后的图形.4.旋转图形.在作图时,旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,选择不同的旋转中心、不同的旋转角旋转同一个图案,会出现不同的效果.下面就选择不同的旋转中心、不同的旋转角来进行研究.(1)旋转中心不变,改变旋转角.画出以下图所示的四边形ABCD以O点为中心,旋转角分别为30°、60°的旋转图形.(2)旋转角不变,改变旋转中心.画出以下图,四边形ABCD分别为O1、O2为中心,旋转角都为30°的旋转图形.因此,从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.三、巩固练习1.教材第61页练习1、2.9 / 102.教材第62页练习.四、归纳小结今天你学习了什么?有什么收获?五、布置作业习题23.1 第5、6题.10 / 10。
九年级上册《图形的旋转》教案范文一、教学目标:知识与技能:让学生理解旋转的定义,掌握旋转变换的性质和规律,能够运用旋转变换解决实际问题。
过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力、逻辑思维能力和创新能力。
情感态度与价值观:激发学生对几何图形的兴趣,培养学生的合作意识,使学生感受到数学与生活实际的联系。
二、教学重点与难点:重点:旋转变换的定义及其性质。
难点:旋转变换在实际问题中的应用。
三、教学过程:1. 导入新课:利用多媒体展示生活中常见的旋转现象,如车轮转动、风扇旋转等,引导学生关注旋转变换在现实生活中的应用。
2. 探究新知:(1)引导学生观察、分析旋转现象,总结旋转变换的定义。
(2)讲解旋转变换的性质和规律,如旋转变换不改变图形的大小和形状,只改变图形的位置。
(3)通过实例演示,让学生理解旋转变换在实际问题中的应用。
3. 巩固练习:(1)设计一些有关旋转变换的练习题,让学生独立完成,检验对旋转变换的理解和掌握程度。
(2)引导学生运用旋转变换解决实际问题,如计算旋转后的图形面积、位置等。
四、课堂小结:本节课通过观察、操作、思考、交流等活动,使学生掌握了旋转变换的定义、性质和规律,并能够运用旋转变换解决实际问题。
培养了学生的空间想象能力、逻辑思维能力和创新能力。
五、课后作业:1. 完成练习册中有关旋转变换的练习题。
2. 结合生活实际,找一些旋转变换的应用实例,下节课分享给大家。
六、教学反思:1. 强调旋转变换的定义和性质,让学生清晰地理解旋转变换的概念。
2. 注重培养学生的空间想象能力,通过直观的演示和实例,帮助学生建立旋转变换的形象。
3. 鼓励学生积极参与课堂讨论,提高学生的逻辑思维能力和创新能力。
4. 关注学生的个体差异,针对不同程度的学生给予适当的指导和支持。
七、教学评价:本节课结束后,对学生进行旋转变换的知识点测试,了解学生对旋转变换的掌握程度。
观察学生在课堂上的表现,如参与程度、思考能力和合作意识等,全面评价学生的学习效果。
人教版数学九年级上册教学设计23.1《图形的旋转》一. 教材分析《图形的旋转》是人教版数学九年级上册第23.1节的内容,本节课主要让学生了解图形的旋转概念,掌握图形旋转的性质和运用。
通过本节课的学习,学生能够理解图形旋转的定义,掌握旋转中心、旋转方向和旋转角等基本概念,并能够运用旋转性质解决实际问题。
二. 学情分析学生在之前的学习中已经掌握了图形的平移、翻转等变换知识,具备一定的几何图形基础。
但图形旋转与平移、翻转存在一定的区别,学生可能对旋转概念和性质的理解存在一定的困难。
因此,在教学过程中,教师需要通过具体实例和实际操作,帮助学生理解和掌握图形旋转的性质。
三. 教学目标1.知识与技能:学生能够理解图形旋转的概念,掌握图形旋转的性质,并能够运用旋转性质解决实际问题。
2.过程与方法:学生通过观察、操作、思考等活动,培养空间想象能力和逻辑思维能力。
3.情感态度与价值观:学生感受数学与生活的紧密联系,增强学习数学的兴趣和信心。
四. 教学重难点1.重点:图形旋转的概念和性质。
2.难点:图形旋转的性质运用。
五. 教学方法1.情境教学法:通过生活实例和实际操作,引发学生对图形旋转的思考,提高学生的学习兴趣。
2.问题驱动法:教师提出问题,引导学生思考和探索,培养学生的问题解决能力。
3.合作学习法:学生分组讨论和操作,培养学生的团队协作能力和沟通能力。
六. 教学准备1.教学课件:制作课件,展示图形旋转的实例和操作过程。
2.学具:准备一些图形卡片和模型,供学生操作和观察。
3.教学视频:准备一些关于图形旋转的实际操作视频,供学生观看和分析。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的旋转现象,如旋转门、风车等,引导学生关注图形旋转,激发学生的学习兴趣。
2.呈现(10分钟)教师通过课件呈现图形旋转的实例,引导学生观察和思考,引出图形旋转的概念。
同时,教师讲解图形旋转的性质,如旋转中心、旋转方向和旋转角等。
23.1 图形的旋转教学目标知识与技能 1.了解旋转及其旋转中心和旋转角的概念.2.了解旋转对应点的概念及应用它们解决一些实际问题. 过程与方法1、通过观察具体实例认识旋转,探索它的基本性质.2、了解图形旋转的特征,并能根据这些特征绘制旋转后的几何图形.情感与态度培养学生学习数学的技能与兴趣。
教学要点教学重点观察具体实例认识旋转,探索它的基本性质.教学难点图形旋转的特征,并能根据这些特征绘制旋转后的几何图形.教学内容设计意图知识准备:(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其他的吗?自学指导教师点拨:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它有哪些性质.(3)什么叫轴对称图形.。
教师点拨:旋转角指对应点与旋转中心的连线的夹角.自学教材第59页内容,思考和完成教材上的练习.观察:让学生看转动的钟表和风车等.(1)上面情景中的转动现象,有什么共同的特征?(指针、风车叶片分别绕中间轴旋转)(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?(形状、大小不变,位置发生变化)问题:①从3时到5时,时针转动了多少度?(60°)②风车每片叶轮转到与下一片原来的位置重合时,风车旋转了多少度?(90°)③以上现象有什么共同特点?(物体绕固定点旋转)思考:在数学中如何定义旋转?知识探究把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个教师点拨(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.这个旋转中心是固定的,即正方形对角线的交点,但旋转角和对应点都是不唯一的.教师点拨:设任转一角度,如图中的虚线部分,要说明旋转后正方形重叠部分面积不变,只要说明S△OEE′=S△ODD′,那么只要说明△OEE′≌△ODD′教师点拨: 1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心距离相等.2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角.3.△ABC和△A′B′C′形状相同且大小相等,即全等.分别移到什么位置?例2 如图,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点A;旋转的度数是45°.活动2 跟踪训练两个边长为1的正方形,如图所示,让一个正方形的顶点与另一个正方形中心重合,不难知道重合部分的面积为14,现把其中一个正方形固定不动,另一个正方形绕其中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化?说明理由.预习导学2:自学指导自学教材第60页内容,并完成教材第61页练习.教师用几何画板演示请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)′、OB与OB′、OC与OC′有什么关系?2.∠AOA′、∠BOB′、∠COC′有什么关系?3.△ABC与△A′B′C′形状和大小有什么关系?知识探究(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.活动1 小组讨论例3 如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形. 关键是确定△ADE三个顶点的对应点的位置.例4 已知线段AB和点O,画出AB绕点O逆时针旋转100°后的图形.∠AOC=100°在OC上截取OA′∠BOD=100°在OD上截取OB′′B′.线段A′B′就是线段AB绕点O 按逆时针方向旋转100°后的对应线段.教师点拨:作图应满足三要素:旋转中心、旋转角、旋转方向.活动2 跟踪训练1.如图,AD=DC=BC,∠ADC=∠DCB=90°,BP=BQ,∠PBQ=90°.①此图能否旋转某一部分得到一个正方形?②若能,指出由哪一部分旋转而得到的?并说明理由. ③它的旋转角多大?并指出它们的对应点.解:①能. ②由△BCQ绕△ABP≌△△QCB可绕B点旋转与△ABP重合,从而得到正方形ABCD.③90°.点C对应点A,点Q对应点P.2.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B对应点的位置,以及旋转后的三角形. 解:(1)连接CD,(2)以CB为一边作∠BCE,使得∠BCE=∠ACD,(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点.(4)连结DB′,则△DB′C就是△ABC绕C点旋转后的图形.教师点拨:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.3.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.解:∵四边形ABCD、四边形AKLM是正方形,∴AB=AD,AK=AM,且∠BAD=∠KAM 为旋转角且为90°.∴△ADM是以A为旋转中心,∠BAD为旋转角由△ABK旋转而成的.∴BK=DM.教师点拨:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明.活动3 课堂小结1.旋转及其旋转中心、旋转角的概念.2.旋转的对应点及其它们的应用.3.本节课要掌握:(1)旋转的基本性质.(2)旋转变换与平移、轴对称两种变换有哪些共性与区别.。
作课类别课题23.1图形的旋转课型新授教学媒体多媒体教学目标知识技能1.掌握旋转地有关概念,理解旋转变换也是图形的一种基本变换.2.经历探索图形旋转特征的过程,体验和感受图形旋转的主要特征,理解图形旋转的基本性质.3.根据旋转地性质作出任一图形的旋转图形,并能根据所学旋转知识设计出美丽图案.过程方法1.通过观察、实际操作,理解旋转地性质,了解旋转作图的步骤及关键.2.通过观察、操作、交流、归纳等过程,培养学生探究问题的能力、动手能力、观察能力以及与他人合作交流的能力.情感态度经过对生活中旋转图形的观察、讨论、实践操作,使学生充分感知数学美,培养学生学习数学的兴趣和热爱生活的情感;通过小组合作交流活动,培养学生合作学习的意识和研究探索的精神.教学重点旋转的有关概念和旋转的基本性质教学难点探索旋转的基本性质教学过程设计教学程序及教学内容师生行为设计意图一、导语:在实际生活中,有许多能转动的物体,如风车、水车、风力发电机、飞机的螺旋桨、时钟的指针、游乐场的大转盘等,它们有许多的奥秘,这些奥秘与旋转紧密相关,从这节课开始就来学习图形旋转知识.二、探究新知活动1. 创设情境导入新课1、手工制作:制作一个小风车.2、欣赏日常生活中部分物体的旋转现象.问题:在这些运动中有哪些共同特征?活动2.演示导学形成概念1.观察:时钟上分针的运动.问题:时钟上分针的转动是绕哪一个点转动?沿着什么方向转动?从5分到15分转动了多少角度.2.动手做一做:在一张半透明的薄纸与另一张纸片之间垫上一张复写纸,在薄纸上画ΔABC,并在ΔABC外面找一点0,再用一枚图钉在0处穿过.将薄纸绕点0旋转一个角度,再次把ΔABC复印在纸片上,并记成ΔA´B´C´.在纸片上分别连接0A、0B、0C、0A´、0B´、0C´.问题:(1)根据所画的图形,用直尺量出OA与OA´、OB与OB´、OC´的大小;用量角器量出∠AOA´、∠BOB´、∠COC´的度数,观察这三个角的大小,并指出旋转中心,旋转角.(2)说出其中的对应点,对应角和对应线段.(3)旋转后图形的形状和大小是否发生教师举例,学生想象,并尝试举例学生制作后,思考教师提出的问题,教师指导学生观察实例,试着描述出旋转的定义.学生在观察后,回答问题,然后教师讲解:把一个图形绕着某一个点O转动一个角度的图形变换叫做旋转,点O叫旋转中心,转动的角叫旋转角.学生在老师的指导下,动手操作,循序渐进探究旋转的基本性质,即演示→观察→猜想→讨论→归纳.并完成老师交给的任务.学生交流讨论并归纳出旋转的性质:(1)对应点到旋转中从生活实际出发,引入本章通过小制作,图形欣赏,导入主题,调动学生的主观能动性,激发好奇心和求知欲.通过观察,使学生形象、直观地理解旋转的有关概念通过学生亲自动手做,逐步感知旋转地基本性质变化.活动3.举例应用加深认识1、如图,E是正方形ABCD中CD边上任意一点,以点A 为中心,把ΔADE顺时针旋转90°,画出旋转后的图形.三、课堂训练1、P56页练习2、补充:图形:线段、角、圆、梯形、正方形、菱形中绕一定点转动一定角度(小于360°)能与原图形重合的图形有()A、2个B、3个C、4个D、5个3、P58页练习4、P59页练习5.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?6.如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?7.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M•在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.四、小结归纳1.本节课你有什么收获?2.本节课内容和前面学习过的什么知识可以归为一类?五、作业设计复习巩固作业和综合运用为全体学生必做;拓广探索为成绩中上等学生必做;学有余力的学生,要求模仿编拟课堂上出现的一些补充题目进行重复练习.补充作业:如图,四边形ABCD是边长为1的正方形,且DE=14,△ABF是△ADE的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连结EF,那么△AEF是怎样的三角形?心的距离相等.(2)对应点与旋转中心所连结的线段的夹角等于旋转角.(3)旋转前、后的图形全等.学生独立思考,小组交流,尝试完成,教师及时关注学生完成情况,并给予点评.学生独立完成,教师巡视检查学生交流获得的知识和感受,教师聆听,并与学生交流.通过例题讲解,让学生加深对新知识的理解,培养学生分析问题和解决问题的能使学生巩固提高并了解学生掌握情况,通过练习,让学生再次明确旋转的主要因素,从而让学生对知识加深理解,形成能力,实现本课的知识目标.通过小结,概括出本节课的知识与方法.体验探究过程中的感受.并纳入知识系统板书设计课题旋转定义旋转的基本性质例题分析归纳。
23.1图形的旋转(第一课时)一、教学内容旋转的概念、旋转的性质二、教学目标知识与技能:通过观察具体实例认识旋转,探索其基本性质。
过程与方法:在发现探索过程中完成对旋转这一图形变换从直观到抽象,从感性认识到理性认识的转变,发展学生的观察、分析、归纳、抽象、概括能力。
情感态度与价值观:学生在经历了实验探究,知识应用及内化等数学活动中,体验数学的具体,生动,灵活性,调动学生学习数学的主动性.三、重难点重点:1、理解旋转的基本概念2、探索旋转的性质.难点:找准旋转变换关系及性质的形成。
四、教学过程设计(一)创设情境、引入新课1、介绍风车2、欣赏风车师生活动:教师展示旋转的风车图片,学生欣赏,并回忆小学曾经知道的旋转。
设计意图:通过转动的风车,引入本节课的研究对象。
(二)师生互动,探求新知1、观察转动的风车得出旋转的概念问题1:观察转动的风车实例:思考这些转动的风车有什么共同特点?师生活动:展示转动的风车图片,学生观察并思考,教师引导学生进行归纳图形旋转的定义。
在师生共同得出旋转定义后,教师射线OA绕着点O旋转到OB的位置为例,介绍图形旋转的相关概念“旋转中心”、“旋转角”、“旋转方向”设计意图:让学生从具体的实例中发现旋转现象,抽象出旋转的本质属性,即将“生活中的旋转”抽象为“数学中的旋转”让学生理解数学概念,同时发展抽象概括能力。
2、再次观察旋转的风车强调旋转的三要素问题:仔细观察两个旋转的风车有哪些异同点?师生活动:展示两个旋转方向、旋转角度都不同的风车,抛出问题,学生观察思考,寻找异同点。
设计意图:帮助学生巩固对旋转概念的认识,使学生初步感受决定旋转的三要素的重要性,缺少任何一条都会导致旋转的结果有所不同。
3、观看学生表演,强调图形旋转的三要素的重要性表演:(1)逆时针旋转900;(2)绕着肩关节旋转600;(3)绕着肘关节顺时针旋转。
师生活动:教师提出要求,两名同学表演,其他同学说明为什么表演的结果确不同。
图形的旋转
唐娟
一、教学目标
(1)了解生活中旋转现象的广泛存在;
(2)掌握旋转的有关概念,理解旋转变换也是图形的一种基本变换;
(3)会找出旋转前后图形中的对应点、对应线段、对应角、旋转中心、旋转角;
(4)理解图形的旋转变换是由旋转中心、旋转角和旋转方向所决定的,探索和发现旋转后图形上的每一点都绕着旋转中心转动了相同的角度,但图形的形状和大小都没有变化;
二、重点与难点
本节课的重点是旋转的有关概念及性质。
难点是概念的形成过程与性质的探究过程。
三.教学过程
(一)创设情景,引入新知
现代教学认为,在正式进行发现过程前要让学生对探索的目标,意义认识得十分明确,并从内心产生巨大的动力,做好探索的物质和精神准备.
情景创设:(用课件显示现实生活中部分物体的旋转现象)
通过这些画面的展示
(1)切身感受到我们身边除了平移、轴对称变换之外,生活中还广泛存在着
转动现象,从而产生对这种变换进一步探究的强烈欲望;
(2)为本节课探究问题作好铺垫。
情景问题:这些情景中的转动现象,有什么共同特征?
(二)探索新知,形成概念
1.建立旋转的概念
(1)试一试,请同学们尝试用自己的语言来描述以下旋转.
观察了上面图形的运动后,引导学生进入本课第一个学习目标:图形旋转的概念;
(本环节学生先独立尝试,再同学之间讨论交流、总结,在此过程中以培养学生的抽象概括能力,同时让学生体会到合作交流的必要性,随后,给出旋转的
定义:)
像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转(rotation).点O叫做旋转中心,转动的角叫做旋转角。
重点突出旋转的三个要素:旋转中心、旋转方向和旋转角度。
2.应用旋转的概念解决问题:
(本环节教学中,教师及时观察学生的学习情况和学习进度,碰到学生中的普遍性问题,在进行适当的探讨后,利用谈话讨论的形式进行解决。
)
(三)实践操作,再探新知
做一做:
如图,在硬纸板上,挖出一个三角形A’B’C’,再挖一个小洞O作为旋转中心,硬纸板下面放一张白纸。
先在纸上描出这个挖掉的三角形图案(△A’B’C’),然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形(△ABC),移开硬纸板。
问题:请指出旋转中心和各对应点,哪一个角是旋转角?
1.从我们看到的旋转现象以及你所完成的实验中,你认为旋转主要因素是什么?
2.在图形的旋转过程中,哪些发生了改变?哪些没有发生改变?
量一量线段OA与线段OA’的关系怎样,线段OB和OB’,OC和OC’呢?AB与A’B’呢?
3.你能通过度量角的方法得出旋转角度吗?你准备度量哪个角?
(本环节让学生在独立思考的基础上,再进行小组合作交流,利用度量等方法发现规律。
教师提供给学生动态的旋转图形,进行指导并参与讨论交流,而后归纳出旋转的特征。
)
1.旋转前后的图形全等;
2.对应点到旋转中心的距离相等;
3.对应点与旋转中心所连线段的夹角等于旋转角。
(四)巩固新知,形成技能
根据学生的具体情况,遵循“循序渐进”的原则,层层递进,逐步形成技能。
(五)回顾反思,深化提高
利用提问、解说形式,师生共同进行小结。
学生小结:自主小结和交流知识学习的收获,过程经历的感受,数学思想的感悟,学习方法的体会等,或提出疑问进行讨论;
教师小结:帮助学生整理所学知识,引导学生进一步体会探究学习的过程
和方法,领会数学的思想。
(六)分层作业,促进发展
最后布置作业,结合学生的实际水平,为了更好的因材施教,我准备了两部分作业:必做题和探究题。
教学设计说明
我按以下思路设计本课:
以观察为起点,以问题为主线,以培养能力为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则;遵循特殊到一般,具体到抽象,由浅入深,由易到难的认知规律。
教学过程突出以下构想:
(1)创设情景,引人入胜
首先播放一组生活中熟悉的体现运动变化的画面,激发学生的求知欲,为新课的开展创设良好的教学氛围,同时培养学生从数学的角度观察生活,思考问题的能力。
(2)过程凸现,紧扣重点
旋转概念的形成过程及旋转性质得到的过程是本节的重点,所以本节突出概念形成过程和性质探究过程的教学,首先列举学生熟悉的例子,从生活问题中抽象出数学本质,引导学生观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,再引导学生运用概念并及时反馈。
同时在概念的形成过程中,着意培养学生观察、分析、抽象、概括的能力。
引导学生从运动、变化的角度看问题,向学生渗透辨证唯物主义观点。
(3)动态显现,化难为易
教学活动中有声、有色、有动感的画面,不仅叩开学生思维之门,也打开了他们的心灵之窗,使他们在欣赏、享受中,在美的熏陶中主动的、轻松愉快的获得新知。
(4)例子展现,多方渗透
为了使抽象的概念具体化,通俗易懂,本节列举了大量生活中的例子,培养学生的发散思维,也增强学生用数学的意识。