第1课时 分式方程(一)
- 格式:ppt
- 大小:2.55 MB
- 文档页数:52
《分式方程》(第1课时)教案doc 初中数学[教学目标]1.明白分式方程的意义,会解可化为一元一次方程的分式方程.2,了解分式方程产生增根的缘故,会判定所求得的根是否是分式方程的增根.3.会列出方程解决简单的实际咨询题,并能依照实际咨询题的意义检验所得结果是否合理.此外,通过经历〝实际咨询题一建立数学模型(方程)一讲明、应用与拓展〞的过程,体验解决咨询题的差不多策略,进展应用意识和解决咨询题的技能.[教学过程(第一课时)]1.情境创设咨询题是数学的心脏,遵循«标准»关于〝方程是刻画现实世界的一种有效的数学模型〞的理念,同以往一样,我们仍旧从咨询题开始,让学生从实际咨询题数量关系的探究中,发觉一类未知数显现在分母中的新方程——分式方程. 除课本提供的3个实例外,教师能够依照学生的实际情形,补充一些与学生生活相关的实际咨询题,激发学生学习分式方程的爱好.2.探究活动探究活动(一):能够采纳不同的方式,探寻各个实际咨询题中的数量关系.例如:关于情境(一),能够用表格揭示服装加工中的工作总量与工作时刻、个人工作效率之间的数量关系:依照咨询题中的相等关系,得x x 20124=+ 关于情境(二),能够用数位填空的方式表示两位数的构成:原两位数 改变后的两位数因此,可得方程47410104=++⨯x x 关于情境(三),能够用线段示意图表示行程咨询题:由于自行车早动身40min ,但与汽车同时到达,多行驶了40min ,因此可得方程:604031515=-x x 探究活动(二):探究分式方程的解法.仍以咨询题为先导,发动学生研究如何解分式方程?20124xx =+ 学生可能会显现多种思路,例如:其一,分式方程与含有分数系数的一元一次方程〝形似〞,容易想到通过类比提出猜想:解分式方程也应该先去分母(卡通人语).猜想是否正确?实践之,检验之.要强调检验的必要性,通过检验能初步讲明猜想的正确性.然后告诉学生,解分式方程的一样方法是先去分母,把不熟悉的方程转化为熟悉的方程来解决.其二,移项进行减法运算,化简,得0)1(204=+-x x x 由分式的值为0的概念,得4x —20=0,从而得解x=5.正确否?可代人检验. 其三,利用分式的差不多性质,使方程两边的分式的分子为它们的最小公倍数,如xx 612055120=+,由分式相等的概念,得5x+5=6x ,从而得x=5. 应注意的是,假如学生提出后两种解决咨询题的思路,教师那么要在给予充分确信后,引导学生连续探讨,得出解分式方程的一样方法;假如没有学生提出,那么不必刻意追求,幸免干扰本课主题——分式方程的一样解法.3.例题教学例1给出了解分式方程的一样过程及完整的书写格式,假设有必要,教师可增补例题,让学生学会求解并规范表述.。
第十五章分式的方程15.3分式的方程第一课时 15.3.1分式的方程(认识、解法)1教学目标1.1知识与技能:[1]理解分式方程的意义。
[2]使学生掌握可化为一元一次方程的分式方程的一般解法。
[3]理解解分式方程时可能无解的原因,并掌握分式方程的验根方法。
1.2过程与方法:经历“实际问题---分式方程---整式方程”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识。
1.3 情感态度与价值观:[1]在活动中培养学生乐于探究﹑合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.[2]结合已有的数学经验,解决新问题,获得成就感以及克服困难的方法和勇气。
2教学重点/难点/易考点2.1 教学重点[1]可化为一元一次方程的分式方程的解法。
[2]分式方程转化为整式方程的方法及其中的转化思想。
2.2 教学难点[1]理解解分式方程时可能无解的原因。
[2]解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根。
3 专家建议本节课内容难度不大,但是难点在于灵活运用。
在讲授分式方程解法时,老师应该尽量说清楚以下知识点:(1)类比整式方程与分式方程的区别。
(2)在进行解分式方程时,注意出现曾根的情况。
从下一节起将开始分式方程的应用。
因此,可以在课下带领同学进行分式的乘除、加减、幂运算以及混合运算进行专题练习,锻炼同学综合运用分式运算知识进行解题的技能。
4 教学方法[1]分组讨论。
[2]类比推理。
[2]启发引导探索的教学方法。
5 教学用具多媒体,黑板6教学过程6.1复习提问【师】同学们好。
同学们看一下大屏幕上的这个题,我们一起回亿一下之前我们学过哪些方程?我们该如何求解它呢?【生】答:(1)前面已经学过了一元一次方程.(2)一元一次方程是整式方程.(3)一元一次方程解法步骤是:①去分母②去括号③移项④合并同类项⑤系数化一。
第十五章分式15.3 分式方程第1课时一、教学目标【知识与技能】1.理解分式方程的概念,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用;2.知道分式方程的意义,会解可化为一元一次方程的分式方程.3. 了解分式方程产生增根的原因,掌握解分式方程验根的方法.【过程与方法】经历“实际问题—分式方程模型”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识.【情感、态度与价值观】1.在探索活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.2. 通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】1. 正确、完整地解可化为一元一次方程的分式方程.2.探索如何将分式方程转化为整式方程并掌握解分式方程的一般步骤.【教学难点】产生增根的原因.五、课前准备教师:课件、直尺等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课一艘轮船在静水中的最大航速为20 km/h,它沿江以最大航速顺流航行100 km所用时间,与以最大航速逆流航行60 km所用时间相等,江水的流速为多少? (出示课件2)解:设江水的流速为v km/h,根据题意,得100 20+v =60 20−v这样的方程与以前学过的方程一样吗?(二)探索新知1.创设情境,探究分式方程的概念教师问1:为要解决导入中的问题,我们得到了方程10020+v =6020−v,仔细观察这个方程,未知数的位置有什么特点?(出示课件4)教师问2:方程与上面的方程有什么共同特征?教师问3:上面所得到的方程是我们以前学过的方程吗?学生回答:不是.教师问4:以前我们学过什么方程?试举例说明.学生回答:以前学过一元一次方程和二元一次方程,如x-1=3,x+y=7等.教师问5:仔细观察这两个方程,未知数的位置有什么特点?学生回答:分母中都含有未知数.教师问6:像这种,分母中含有未知数的方程叫做分式方程.,你能再写出几个分式方程吗?学生思考后,找学生回答。
《分式方程》说课稿(一)教材分析:《分式方程》第一课时本节内容是在学生把握了一元一次方程的解法和分式四那么运算的基础上进行的,为后面学习可化为一元一次方程的分式方程打下基础。
通过经历实际问题→列分式方程→探讨解分式方程的进程,体会分式方程是一种有效描述现实世界的模型,进一步进展学生分析问题和解决问题的能力,培育应用意识,渗透类比转化思想。
(二)、教学目标:知识技术:了解分式方程概念,明白得解分式方程的一样解法和分式方程可能产生增根的缘故,把握解分式方程验根的方式。
进程方式:通过经历实际问题→列分式方程→探讨解分式方程的进程,体会分式方程是一种有效描述现实世界的模型,进展学生分析问题解决问题的能力,培育应用意识,渗透转化思想。
情感态度:强化用数学的意识,增进同窗之间的配合,体验在数学活动中运用知识解决问题的成绩感,树立学好数学的自信心。
(三)教学重点:解分式方程的大体思路和解法。
(四)教学难点:明白得分式方程可能产生增根的缘故。
(五)学情分析:《课标》指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与一起进展的进程。
”从教师的教学角度上看:教师是进行数学活动的组织者、引领者,是教学活动的主导;从学生的学习角度上看:数学活动是学生经历数学化进程的活动,是学生自己建构数学知识的活动,是学习活动的主体;从师生的合作角度上看:数学活动进程是教师和学生之间互动的进程,是师生一起进展的进程,即要增进学生进展,也要增进教师成长。
教师作为教学主导,学生是主体作用咱们这学生基础知识较扎实,学生喜爱上数学课,学习数学的爱好较浓,具有必然探讨解决问题的能力,采纳的学习方式:1、类比学习的方式。
通过与分数的乘除法运算类比取得分式方程的解法。
2、探讨合作学习。
学生合作下进行学习。
(六)教学方式:教学方式是咱们实现教学目标的催化剂,好的教学方式常常使咱们事半功倍。
新课程改革中,教师应成为学生学习的引导者、合作者、增进者,踊跃探讨新的教学方式,引导学生学习方式的转变,使学生成为学习的主人。
《分式方程》(第1课时)教学反思一、基本情况本节课总体设计思路是→激发兴趣、主动探究→问题引导、落实目标→练习巩固、能力提升。
总体上能按计划开展教学活动,教学环节齐全,师生互动积极有效。
教师组织课堂有序,学生积极参与。
教学任务基本完成。
分式方式是在整式方程学习的基础上来展开,通过设计一个行船问题,而导入新课。
引导学生复习旧知识,发现新问题,交流合作解决新问题。
根据一元一次方程的解法步骤列出分式方程。
通过罗列八个方程,辨别分式方程和整式方程的区别。
两次小组活动从浅入深,让学生发现解分式方程的步骤,通过小结与归纳,引导学生理解“增根”的含义,以及检验的必要性。
分式方程的解法步骤通过课件动画的形式展示,加深学生印象。
二、存在不足及整改措施1.课时安排欠妥。
教学设计中教师要根据目的要求,内容多少,重点难点,学生的条件,以及教学设备等合理地分配教学时间。
2.讲授方式不灵活。
要注意节省时间,特别是在讲授新知识时,要抓住重点,不能企图一下讲深讲透。
要安排一定的练习时间。
通过练习的反馈,再采取必要的讲解或补充练习。
3.学生练习巩固不够。
关于检验是否为增根这个问题,练的少,讲的多,时间安排前松后紧,有一点拖堂。
要注意尽量安排全班学生的活动,如操作、练习巩固,解应用题等,避免由少数人代替全班学生的思维活动,使大多数学生成为旁观者。
4.过于关注学习困难学生。
每个学生是独特的,学生之间也存在巨大的差异。
课堂教学效率是整体教学效益的平衡结果,每一节课都不可能实现每一个教学目标人人都过关,不能因为个别同学目标未达成而牺牲整体的时间。
三、有效教学设想在本课的教学过程中,我认为应从帮助学生学习,交给学生学习方法入手:1. 分辨。
分清楚分式方程必须满足的两个条件⑴方程式里必须有分式;⑵分母中含有未知数。
2.转化。
分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种“转化”思想的教学。
北师大版数学八年级下册5.4《分式方程的概念及列分式方程》(第1课时)教学设计一. 教材分析北师大版数学八年级下册5.4《分式方程的概念及列分式方程》(第1课时)的内容包括分式方程的定义、性质和列分式方程的方法。
本节课内容是在学生已经掌握了分式的概念、性质、运算的基础上进行的,是初中数学的重要内容,也是解决实际问题的重要工具。
分式方程在实际生活中的应用非常广泛,如解决利润问题、浓度问题等。
通过本节课的学习,使学生掌握分式方程的基本概念和列方程的方法,培养学生解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了分式的基本概念、性质和运算,具备了一定的数学基础。
但是,对于分式方程的概念和列方程的方法,学生可能还比较陌生,需要通过实例来理解和掌握。
此外,学生可能对解决实际问题中的方程有一定的恐惧心理,需要教师通过引导和鼓励来激发学生的学习兴趣和自信心。
三. 教学目标1.知识与技能目标:使学生掌握分式方程的定义、性质,学会列分式方程的方法。
2.过程与方法目标:通过自主学习、合作交流,培养学生解决实际问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生的自信心,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:分式方程的定义、性质和列分式方程的方法。
2.难点:理解分式方程的实际意义,学会解决实际问题。
五. 教学方法1.自主学习:引导学生通过自主学习,掌握分式方程的基本概念和性质。
2.合作交流:学生进行小组讨论,分享彼此的学习心得和解决问题的方法。
3.实例分析:通过具体的实例,使学生理解和掌握分式方程的列法。
4.实践操作:让学生亲自动手解方程,提高学生的操作能力。
六. 教学准备1.课件:制作课件,展示分式方程的定义、性质和列方程的方法。
2.实例:准备一些实际问题,用于引导学生解决实际问题。
3.练习题:准备一些练习题,用于巩固学生对分式方程的理解和掌握。
七. 教学过程1.导入(5分钟)教师通过引入一些实际问题,如利润问题、浓度问题等,引导学生思考如何用数学方法解决这些问题。
5.4.1 分式方程(一)教学设计
2、甲、乙两班参加植树活动,已知乙班每小时比甲班多种3棵树,甲班种62棵树所用的时间与乙班种68棵树所用的时间相等.求甲、乙两班每小时各种多少棵树?
课堂小结 1.利用分式方程模型解决实际问题:
问题情境---提出问题---建立分式方程模型---解
决问题
2. 列分式方程的一般步骤小节由同学们
讨论,教师只
是顺势把学生
的话进行一个
归纳总结。
关注学生从现实
生活中发现并提
出数学问题的能
力,关注学生能
否尝试用不同方
法寻求问题中数
量关系,并用分
式方程表示,能
否表达自己解决
问题的过程。
板书
5.4.1 分式方程(一)
1、利用分式方程模型解决实际问题
2、列分式方程的一般步骤
例题
变式。
15.3分式方程教学设计
第1课时
前言:
本节内容从本章引言中的航行问题说起,列出分母中含有未知数的方程,然后分析这样的方程的特点,给出分式方程的概念,接着由分式方程的特点引出解分式方程的基本思路,即通过去分母使分式方程化为整式方程,再解出未知数。
在教学过程中要重视分式方程的特殊性,突出其解法的关键步骤:化分式方程为整式方程和检验。
本节知识都是进一步学习数学时必须具备的基础知识,打好基础很重要,因此教学中应注意通过必要的练习使学生切实地掌握它们。
一、教学任务分析
二、教学流程安排
三、教学过程设计
活动二诱导尝试,探究新知
:如何解分式方程=
:如何解分式方程=
=
(2)
(3)-1=
的值比分式
为何值时,分式方程+k=无解。
四、板书设计。
第十五章分式15.3分式方程第1课时一、教学目标(一)学习目标1.了解分式方程的概念.2.会用去分母的方法解可化为一元一次方程的简单的分式方程,体会化归思想和程序化思想.3.了解解分式方程根需要进行检验的原因.(二)学习重点解分式方程的基本思路和解法.(三)学习难点解分式方程过程中产生增根的原因及如何验根.二、教学设计(一)课前设计1.预习任务(1)分母中含__未知数____的方程叫做分式方程.(2)解分式方程的基本思路:利用“__去分母_”法将分式方程化为整式方程.2.预习自测(1)在下列方程中,关于x的分式方程有()①215x=3+216x,②xp=xp,③2(1)1xx--=1,④xm-nm=xn(m,n为非零常数),⑤7x++19x,⑥xm+yn=1(m,n为非零常数).A.1个B.2个C.3个D.4个【知识点】分式方程的定义【解题过程】解:①④⑥分母中没有未知数,不是分式方程;⑤不是等式,所以不是分式方程;②③是方式方程.故选B.【思路点拨】分母中含未知数的方程叫做分式方程【答案】B.(2)若x=3是分式方程2ax--12x-=0的根,则a的值是()A.5 B.-5 C.3 D.-3【知识点】分式方程的有关概念【解题过程】解:把x=3代入分式方程求得a=5.故选A.【思路点拨】利用分式方程的解求a.【答案】A.(3)把分式方程2x+4=1x转化为一元一次方程时,方程两边需同乘()A.x B.2x C.x+4 D.x(x+4)【知识点】分式方程的解法.【数学思想】化归思想【解题过程】解:方程两边同乘以x(x+4),可以转化为一元一次方程.故选D.【思路点拨】方程两边同乘以最简公分母.【答案】D.(4)方程211xx-+=0的解是()A.x=1或-1 B.x=-1 C.x=0 D.x=1【知识点】分式方程的解法.【解题过程】解:左边约分可得x-1=0,则x=1,经检验x=1是原分式方程的解.【思路点拨】先去分母,化为整式求解.【答案】D.(二)课堂设计1.知识回顾(1)一元一次方程:只含有一个未知数,并且未知数的最高次数为1的整式方程叫做一元一次方程.(2)解一元一次方程的步骤:①去分母,②去括号,③移项,④合并同类项,⑤系数化为1.如何解一元一次方程:211 3332x xx-++=-.解:去分母,得18x+2(2x-1)=18-3(x+1).去括号,得18x+4x-2=18-3x-3移项,得18x+4x+3x=18-3+2.合并同类项,得25x=17.系数化为1,得x =1725.2.问题探究探究一 分式方程的概念.●活动① 整合旧知,探究分式方程的概念.问题1:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间与以最大航速逆流航行60千米所用的时间相等,江水的流速为多少?分析:设水流的速度为v 千米/时.(1)轮船顺流航行速度为________千米/时,逆流航行速度为________千米/时;(2)顺流航行100千米的时间为________小时;逆流航行60千米的时间为________小时;(3)根据题意可列方程为______________________________.师生活动: (1) 20+v 20-v ;(2) v +20100 v -2060;(3)v +20100=v -2060 追问1:所列方程与方程2157146x x ---=相比有什么不同? 归纳:像这样分母中含未知数的方程叫做分式方程.追问2:分式方程与整式方程的区别在哪里?通过观察发现这两种方程的区别在于未知数是否在分母上.未知数在_____的方程是分式方程.未知数不在分母的方程是____方程.师生活动:分母、整式.追问3:你能再写出几个分式方程吗?【设计意图】让学生在观察和思考的过程中,发现并概括出分式方程的本质特征,了解分式方程的概念,认识其本质属性——分母中含有未知数.探究二 探索分式方程的解法●活动① 大胆操作,探究新知识问题2:你能尝试解分式方程:100602020v v =+- 吗?师生活动:学生独立思考,并尝试解这个方程,全班交流分式方程的解法.【设计意图】让学生在已有的知识经验基础上,尝试解分式方程.●活动② 集思广益,得出分式方程的解法问题3:这些解法有什么共同特点?师生活动:学生讨论之后,教师总结,上述解法依据虽不同,但解分式方程的基本思想是一致的,即将分式方程转化为整式方程.教师再次提问:思考:(1)如何把分式方程转化为整式方程呢?(2)怎样去分母?(3)在方程两边乘以什么样的式子才能把每一个分母都约去呢?(4)这样做的依据是什么?学生思考后总结:(1)分母中含有未知数的方程,通过去分母就化为整式方程了;(2)利用等式的性质2可以在方程两边都乘同一个式子——各分母的最简公分母.【设计意图】通过探究活动,学生探索出解分式方程的基本思路是将分式方程化为整式方程,并知道解决问题的关键是去分母.●活动③追问 你得到的解v =5 是分式方程的100602020v v=+-解吗? 【设计意图】让学生知道检验分式方程的解的方法-----将未知数的值代入原分式方程的两边,看左右两边的值是否相等.探究三 分析增根产生的原因 ●活动① 增根产生的原因例1 解分式方程:2110525x x =-- 【知识点】 分式方程的解法【数学思想】化归思想【思路点拨】两边都乘以最简公分母(x +5)(x -5),转化为整式方程.【解题过程】解:两边都乘以最简公分母(x +5)(x -5)得x +5 =10解得x =5,问题:x =5是原分式方程2110525x x =--的解吗?该如何验证呢? 小结:x =5 是原分式方程变形后的整式方程的解,但不是原分式方程的解,是增根.产生的原因:在去分母的过程中,对原分式方程进行了变形,而这种变形是否引起分式方程解的变化,主要取决于所乘的最简公分母是否为0.检验的方法主要有两种:(1)将整式方程的解代入原分式方程,看左右两边是否相等;(2)将整式方程的解代入最简公分母,看是否为0.检验:当x =5时,(x -5)(x +5)=0,因此x =5不是原分式方程的解,原分式方程无解. 师生总结:基本思路:将分式方程化为整式方程一般步骤:(1)去分母;(2)解整式方程;(3)检验.注意:由于去分母后解得的整式方程的解不一定是原分式方程的解,所以需要检验. 练习:解分式方程:233x x=-. 【知识点】 分式方程的解法【数学思想】化归思想【思路点拨】两边都乘以最简公分母x (x -3)转化为整式方程,解整式方程得解,再检验.【解题过程】解:两边都乘x (x -3),得2x =3x -9解得x =9检验:当x =9时,x (x -3)≠0.所以,原分式方程的解为x =9【答案】x =9【设计意图】让学生了解分式方程增根的原因,明白解分式方程必须检验.●活动2例2 解分式方程:()()31112x x x x -=--+ 【知识点】 分式方程的解法【数学思想】化归思想【思路点拨】两边都乘以最简公分母(x -1)(x +2)转化为整式方程,解整式方程得解,再检验.【解题过程】解:方程两边乘(x -1)(x +2),得x (x +2)-(x -1)(x +2)=3. 解得x =1, 检验:当x =1时,(x -1)(x +2)=0,因此x =1不是原分式方程的解.所以,原分式方程无解.【答案】无解练习:解方程:-2++2x x 24=14x - 【知识点】 分式方程的解法【数学思想】化归思想【思路点拨】去分母,把分式方程化为整式方程,再解这个整式方程,结果要检验.【解题过程】解: 方程的两边同乘x 2-4,得(x -2)2+4=x 2-4,解得x =3.检验:当x =3时,x 2-4≠0,所以x =3是原方程的解.【答案】x =3.【设计意图】让学生按照规范的步骤和格式解分式方程,在积累解题经验的同时,体会化归思想和程序化思想.●活动3例3 当m 为何值时,关于x 的方程223+242mx x x x =--+的解小于零. 【知识点】 分式方程的解法,不等式的解法【数学思想】化归思想【思路点拨】去分母,把分式方程化为整式方程,再解这个整式方程,又因为方程的解小于零 ,所以转化为不等式,解不等式得结果.【解题过程】解:方程两边都乘以(x +2)(x -2),得2(x +2)+mx =3(x -2),整理,得(1-m )x =10,解得x =101-m. ∵方程的解小于零,∴101-m <0且101-m ≠-2. 解得m >1且m ≠6.【答案】m >1且m ≠6.练习: 已知关于x 的分式方程111x k k x x +-=+-的解为负数,则k 的取值范围是___________. 【知识点】 分式方程的解法,不等式的解法【数学思想】化归思想【思路点拨】去分母,把分式方程化为整式方程,再解这个整式方程,又因为方程的解为负数 ,所以转化为不等式,解不等式得结果.【解题过程】解:去分母,得(x-1)(x+k)-k(x+1)=x2-1.整理,得x=1-2k.依题意,得12121kk<0ì-ïí-贡ïî, 解得k>12且k≠1.【答案】k>12且k≠1.【设计意图】解题时让学生注意原方程分母不为零的这一隐含条件.3. 课堂总结知识梳理(1)分母中含未知数的方程叫做分式方程.(2)解分式方程的基本思想:把分式方程“转化”为整式方程,再利用整式方程的解法求解. (3)解分式方程的方法及一般步骤:①去分母,方程的两边都乘最简公分母,约去分母,化成整式方程;——化整②解这个整式方程;——解整③把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.——验根重难点归纳(1)解分式方程的基本思想;(2)解分式方程的方法及一般步骤;(3)解分式方程过程中产生增根的原因:在去分母的过程中,对原分式方程进行了变形,而这种变形是否引起分式方程解的变化,主要取决于所乘的最简公分母是否为0.(三)课后作业基础型自主突破1.下列方程是分式方程的是()A. x-15+34=1 B.3p+2x=3 C.1x-1=2 D.x+2x-x+33【知识点】分式方程的定义【思路点拨】分母中含未知数的方程叫做分式方程.【解题过程】解:A、B分母中没含有未知数,不是分式方程;D不是等式,所以不是分式方程;C是分式方程.故选C.【答案】C.2.解分式方程1101x+=-,正确的结果是()A.x=0 B.x=1 C.x=2 D.无解【知识点】分式方程的解法【数学思想】化归思想【思路点拨】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解题过程】解:去分母得:1+x﹣1=0,解得:x=0,经检验x=0是分式方程的解,故选A【答案】A.3.将分式方程231-11xx x=--去分母,得到正确的整式方程是()A.1-2x=3 B.x-1-2x=3 C.1+2x=3 D.x-1+2x=3 【知识点】分式方程的解法【数学思想】化归思想【思路点拨】两边都乘以(x-1).【解题过程】解:去分母得:x-1-2x=3,故选B【答案】B.4.当a=________时,关于x的方程12325x ax a+-=-+的解为x=0.【知识点】分式方程的解【思路点拨】把x=0代入分式方程可求解.【解题过程】解:把x=0代入分式方程得0123025aa+-=-+,则a+5= -2(2a-3), 得a=15【答案】1 5 .5.若式子12x-和32+1x的值相等,则x=________.【知识点】分式方程的解法【数学思想】化归思想【思路点拨】列分式方程,去分母,解整式方程可得.【解题过程】解:12x-=32+1x,去分母得:2x+1=3(x-2),解得x=7,经检验x=7是原方程的解.【答案】76.解分式方程413x x-= -【知识点】分式方程的解法【数学思想】化归思想【思路点拨】把分式方程转化成整式方程,求出整式方程的解,再代入x(x﹣3)进行检验即可.【解题过程】解:方程两边都乘以最简公分母x(x﹣3)得:4x﹣(x﹣3)=0,解得:x=﹣1,经检验:x=﹣1是原分式方程的解故答案为:x=﹣1.【答案】x=﹣1.能力型师生共研7.若关于x的方程3333x m mx x++=--的解为正数,则m的取值范围是()A.m<92B.m<92且m ≠32C.m>﹣94D.m>﹣94且m≠﹣34【知识点】分式方程的解、分式方程解法.【数学思想】化归思想.【思路点拨】直接解分式方程,再利用解为正数列不等式,解不等式得出x的取值范围,进而得出答案.【解题过程】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,∵关于x的方程3333x m mx x++=--的解为正数,∴﹣2m+9>0,解得:m<92,当x=3时,x=292m-+=3,解得:m=32,故m的取值范围是:m<92且m≠32.故选B.【答案】B.8.若关于x的方程2222x mx x++=--无解,则m的值是______.【知识点】分式方程的解、分式方程解法【数学思想】化归思想【思路点拨】去分母把分式方程转化成整式方程,再利用分式方程无解,把增根代入整式方程,进而得出答案.【解题过程】解:去分母,得2-x-m=2x-4,即3x=6-m.∵方程无解,∴x=2.把x=2代入3x=6-m,得m=0.【答案】0.探究型多维突破9.小明解方程121xx x--=的过程如下:解:方程两边同乘x得1-(x-2)=1,①去括号得1-x-2=1,②合并同类项得-x-1=1,③移项得-x=2,④解得x=-2,⑤∴原方程的解为x=-2.⑥请指出他解答过程中的错误,并写出正确的解答过程.【知识点】分式方程解法【数学思想】化归思想【思路点拨】按照解分式方程的步骤检查得出答案.【解题过程】解:小明的解法有三处错误:步骤①去分母有误;步骤②去括号有误;步骤⑥前少“检验”步骤.正确解法是:方程两边同乘x,得1-(x-2)=x,去括号,得1-x+2=x,移项,得-x-x=-2-1,合并同类项,得-2x=-3,两边同除以-2,得x=3 2.经检验,x=32是原方程的解.所以原方程的解是x=3 2.10.请你仔细观察下述材料:方程1111123x x x x-=-+--的解为x=1;方程1111134x x x x-=----的解为x=2;方程11111245x x x x-=-----的解为x=3;….(1)请你观察上述方程与解的特征,写出能反映上述方程一般规律的方程,并写出这个方程的解;(2)根据(1)中所得的结论,写出一个解为x=-5的分式方程.【知识点】分式方程解法【数学思想】化归思想【思路点拨】观察总结规律,要从整体和部分两个方面入手,防止片面地总结,得出错误结论.【解题过程】解:(1) 方法一:分式方程中的四个分母都可看作是未知数与一个整数的差,这四个整数左边两个连续,右边两个连续,左右两边不连续,但只间隔一个整数,每个分式的分子都是1,方程的解正好是中间被省略的那个整数,即1111(2)(1)(1)(2)x n x n x n x n-=------+-+,方程的解是x=n(n为整数).方法二:第(1)问的规律方程也可以写成:1111(1)(3)(4)x n x n x n x n-=---+-+-+,此时,方程的解应为x=n+2(n为整数).(2)将x=-5代入上式,可得所求分式方程为11117+6+4+3 x x x x-=-+.自助餐1.下列关于x 的方程中,是分式方程的是( ) A. 23356x x ++-= B. 137x x a -=-+ C. x a b x a b a b-=- D. 2(1)11x x -=- 【知识点】 分式方程的定义【思路点拨】根据分式方程的定义:分母里含有未知数的方程叫做分式方程判断.【解题过程】解:A.方程分母中不含未知数,故不是分式方程;B.方程分母含字母a ,但它不是表示未知数,也不是分式方程;C.方程的分母中不含表示未知数的字母,不是分式方程;D.方程分母中含未知数x ,是分式方程.故选D.【答案】D .2.分式方程21221-93+3x x x -=-的解为( ) A .3 B .-3 C .无解 D .3或-3【知识点】 分式方程的解法【数学思想】化归思想【思路点拨】依据解分式方程的步骤可得.【解题过程】去分母得12-2(x +3)=x -3,解得x =3.经检验,当x =3时,x 2-9=0,即x =3不是原分式方程的解,故原方程无解.故选C .【答案】C .3.当a =________时,关于x 的方程2111ax a x -=--的解与方程43x x-=的解相同. 【知识点】方程的解、分式方程解法.【数学思想】化归思想 【思路点拨】先解分式方程43x x -=,再把它的解代入另一个分式方程可得结果. 【解题过程】解:由方程43x x -=得x -4=3x ,解得x =-2.当x =-2时,x ≠0,所以x =-2是方程43x x -=的解.又因为方程2111ax a x -=--的解与方程43x x-=的解相同,因此x =-2也是方程2111ax a x -=--的解.这时221121a a --=---,解得a =17. 当a =17时,a -1≠0,故a =17满足条件. 【答案】17. 4.若关于x 的分式方程2233x m x x -=--无解,则m 的值为_______. 【知识点】方程的解、分式方程解法【数学思想】化归思想【思路点拨】先去分母得整式方程,再把增根代入整式方程可得结果.【解题过程】解:方程两边都乘x -3,得x -2(x -3)=m 2.∵原方程无解,∴x =3.把x =3代入x -2(x -3)=m 2,得m =±3.【答案】±3.5. 解分式方程:21344-12142x x x x +=-+- 【知识点】分式方程解法【数学思想】化归思想【思路点拨】方程两边同时乘以(2x +1)(2x -1),即可化成整式方程,解方程求得x 的值,然后进行检验,确定方程的解. 【解题过程】解:原方程即132(21)(21)2121x x x x x +=-+-+-, 两边同时乘以(2x +1)(2x −1)得:x +1=3(2x −1)−2(2x +1),x+1=6x −3−4x −2,解得:x =6.经检验:x =6是原分式方程的解。
徐闻县和安中学 数学教研组 ◆八年级数学导学案 ◆◆我们的约定:我的课堂 我作主! 执笔:林朝清第 周 星期 第 节 本学期学案累计: 14 课时 姓名:________ 课题:16.3 分式方程(第1课时)学习目标 我的目标 我实现1.了解分式方程的概念, 和产生增根的原因.2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.学习过程 我的学习 我作主导学活动1:知识回顾一元一次方程的解法,并且解方程163242=--+x x导学活动2:知识引入1.引导说出解方程的步骤 . 导学活动3:知识转化1.分式方程的识别: 例(补充):下列方程中,是关于x 的分式方程的有 . ①531=-x ② 141-=x x ③133-=-x x ④11-=b a x ⑤33912+=-x x 练习:下列关于x 的方程,是分式方程的是( ) A .63352x x +=-+ B .x a x -=+-371 C .m x n m x =-2 D .4132=+x x 2.分式方程的解例(补充):若关于x 的分式方程32334=++xmx 的解是1=x ,求m 的值.练习1:分式方程2162=-x 的解为( ) A .2=x B .2-=x C .2-=x 或2=x D .0=x徐闻县和安中学 数学教研组 ◆八年级数学导学案 ◆◆我们的约定:我的课堂 我作主!3.分式方程的解法与增根例1.解方程:x x 332=- 例2.解方程:()()21311+-=--x x x x练习: 解方程:1.132=-x x 2.428123+=++x x x学习评价 我的评价 我自信当堂检测(限时:8分钟 )我自信 我进取1、请你写出一个解为1=x 的分式方程为: .2、若关于x 的分式方程4342=--x m 的解是1-=x ,求m 的值.3、解方程: 3.1625222-=-++x x x x x自我小结:自我评价:我完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差课后作业 我的作业 我承担课本(P32)习题16.3 第1(2)(3)(4)题。