基因在染色体的位置判断
- 格式:pptx
- 大小:2.36 MB
- 文档页数:5
高三生物——基因在染色体的位置判断1.判断基因位于X 染色体上还是常染色体上(1)若相对性状的显隐性是未知的,且亲本均为纯合子,则用正交和反交的方法。
即:正、反交实验⇒⎩⎪⎨⎪⎧ 若正、反交子代雌、雄表现型相同 ⇒在常染色体上若正、反交子代雌、雄表现型不同 ⇒在X 染色体上说明 ①若正反交结果相同,则相应的控制基因位于常染色体上。
遗传图解如下:②若正反交结果不同,且子代性状表现与性别有关,则相应的控制基因位于X 染色体上。
遗传图解如下:(2)若相对性状的显隐性已知,只需一个杂交组合判断基因的位置,则用隐性雌性个体与显性雄性纯合个体杂交的方法。
即:隐性雌×纯合显性雄⎩⎪⎨⎪⎧ 若子代中雌性全为显性,雄性 全为隐性⇒在X 染色体上若子代中雌性、雄性均为显性 ⇒在常染色体上说明 ①若子代中雄性个体全为隐性性状,雌性个体全为显性性状,则相应的控制基因位于X 染色体上。
遗传图解如图:②若子代中雌雄个体具有相同的性状表现,则相应的控制基因位于常染色体上。
遗传图解如图:2.判断基因只位于X 染色体上还是X 、Y 染色体的同源区段上适用条件:已知性状的显隐性和控制性状的基因在性染色体上。
(1)基本思路一:用“隐性雌×纯合显性雄”进行杂交,观察分析F 1的性状。
即:隐性雌×纯合显性雄⇒⎩⎪⎨⎪⎧若子代所有雄性均为显性性 状⇒位于X 、Y 染色体的同源区段上若子代所有雄性均为隐性性 状⇒仅位于X 染色体上说明 ①若子代全表现为显性性状,则相应的控制基因位于X 、Y 染色体的同源区段。
遗传图解如下: ②若子代中雌性个体全表现为显性性状,雄性个体全表现为隐性性状,则相应的控制基因位于X 、Y 染色体的非同源区段,且仅位于X 染色体上。
遗传图解如下:(2)基本思路二:用“杂合显性雌×纯合显性雄”进行杂交,观察分析F 1的性状。
即:杂合显性雌×纯合显性雄⇒⎩⎪⎨⎪⎧ 若子代中雌雄个体全表现显性性状 ⇒位于X 、Y 染色体的同源区段上若子代中雌性个体全表现显性性状,雄性个体中既有显性性状又有隐性性状 ⇒仅位于X 染色体上3.判断基因位于常染色体上还是X 、Y 染色体同源区段上(1)设计思路:隐性的雌性个体与显性的纯合雄性个体杂交,获得的F 1全表现为显性性状,再选F 1的雌雄个体杂交获得F 2,观察F 2表现型情况。
基因在染色体上得位置判断,您会了吗?基因就是许许多多得DNA片段,基因位于染色体上,遗传受基因控制。
高考中经常出现通过亲代基因判断子代性状或通过子代性状判断亲代基因类型得题目,要判断基因呈显性还就是隐性,首先应该判断基因在染色体上得位置(就是否为伴性遗传),即弄清就是在常染色体上、在X染色体上、在Y染色体上,还就是位于X-Y同源区段上。
在Y染色体上得情况最容易辨识,即遵循纯粹得父子遗传(如常见得控制男性第二性征得大量基因),此种情况相信都在同学们得掌控范围之内,故不再深入讨论,仅以下列几种情况作为参考。
基因得显隐性未知用相对性状得个体(纯合体)做正交、反交实验.(1)若基因在常染色体上(2)若基因在X染色体上结论:正反交实验结果相同,则基因位于常染色体上;正反交实验结果不同,则基因位于X染色体上.基因得显隐性已知显性得雄性(纯合子)×隐性得雌性(1)若基因在常染色体上(2)若基因在X染色体上结论:若后代只有一种表现型,则基因在常染色体上;若后代有两种表现型,则基因在X染色体上。
显性得雄(纯合子) ×隐性得雌得其她用途1用于区分基因仅位于X染色体上还就是X—Y得同源区段结论:若后代只有一种表现型,则基因位于X—Y同源区段若后代有两种表现型,则基因仅位于X染色体上典例果蝇得X染色体与Y染色体就是一对同源染色体,但其形态、大小却不完全相同。
下图为果蝇X、Y染色体同源区段得比较图解,其中A与C为同源区段。
请回答下列有关问题。
已知在果蝇得X染色体上有一对基因H、h分别控制得性状就是腿部有斑纹与腿部无斑纹。
现有纯种果蝇若干,请通过一次杂交实验,确定H、h基因在X染色体上得位置就是A段还就是B段。
实验步骤:①选用纯种果蝇做亲本,其中雌性亲本表现型为:腿部无斑纹。
②用亲本果蝇进行杂交。
③观察子代果蝇得性状并统计记录结果.结果分析:若子代雄果蝇变现为腿部有斑纹,则此对基因位于A段。
若子代雄果蝇表现为腿部无斑纹,则此对基因位于B段.2用于根据后代性状区分性别典例果蝇得红眼为伴性显性遗传,其隐性性状为白眼,在下列杂交组合中,通过眼色即可直接判断子代果蝇性别得一组就是( B )A、杂合红眼雌果蝇×红眼雄果蝇B、白眼雌果蝇×红眼雄果蝇C、杂合红眼雌果蝇×白眼雄果蝇D、白眼雌果蝇×白眼雄果蝇根据子代性状得数量比(1)若子代中某性状在雌雄中比例相同,则基因位于常染色体上;(2)若子代中某性状在雌雄中比例不同,则基因位于X染色体上。
专题基因在染色体上的位置判定授课人:彭正涛时间:4月9日地点:三(15)班一、基础梳理1、一个基因控制的性状类型主要遗传特点细胞质遗传①母系遗传:Fl性状总是受母本控制;②杂交后代不出现一定的分离比。
伴Y染色体遗传传男不传女2、一对基因控制的性状(A 、a)(如:单基因遗传病)类型常染色体上X(或Z)染色体上X、Y(或Z、W)染色体同源区段上所有可能杂交方式主要遗传特点在一个自然群体中,显隐性且基因型未知时:1、多个相同表现性个体杂交,不出现性状分离的为隐形,否则为显性;2、多个相对形状个体杂交,后代占多数的性状为显性★与在常染色体上的不同:Y上无相关基因,导致X a在雄性(XY)中的表现几率大于雌性(XX):1、伴X隐性:雄隐多于雌隐;伴X显性:雌显多于雄显;2、特征最明显的杂交组合:X a X a×X A YX A X a×X A Y★与伴X的共同点:性状仍与性别相关联★区别于伴X:Y上存在等位基因且只传给雄性后代,特征最明显的杂交组合:X a X a×X a Y A3、两对基因(A、a、B、b)控制的性状类型一对同源染色体上两对同源染色体上一对常染色体一对性染色体上基因在染色体上的情形主要遗传特点非等位基因之间不能自由组合灵活应用杂合子自交后代9种基因型、4种表现型比例及测交后代4种基因型4种表现型比例等位基因遵循分离定律两对基因遵循自由组合定律分析时性别分开、性状分开二、方法汇总1、萨顿运用类比推理法发现基因与染色体存在平行关系从而得出基因在染色体上的假说2、摩尔根运用假说演绎法发现控制果蝇颜色的基因位于X染色体上,从而证明萨顿提出的的假说三、题型展示类型一:系谱、数据分析类1、某种遗传病受一对等位基因控制,左图为该遗传病的系谱图。
下列叙述正确的是( C)A.该病为伴X染色体隐性遗传病,Ⅱ1为纯合子B.该病为伴X染色体显性遗传病,Ⅱ4为纯合子C.该病为常染色体隐性遗传病,Ⅲ2为杂合子D.该病为常染色体显性遗传病,Ⅱ3为纯合子思路整理:充分应用假说演绎法2.已知果蝇的灰身与黑身是一对相对性状(显性基因用B表示,隐性基因用b表示);直毛与分叉毛是一对相对性状(显性基因用F表示,隐性基因用f表示)。
基因在染色体上的位置判断与实验设计作者:吕桂红来源:《中学生理科应试》2015年第01期遗传实验设计题成为了重要题型,这类实验题形式多样,学生总是感到束手无策,常见问题有思路混乱,文字表述不规范等,导致大量丢分.下面仅就基因在染色体上的位置判断类实验题进行归类总结.明确以下两点知识:1.通过学习我们知道真核细胞中的基因主要分布在细胞核中,细胞质中也有少量分布,这些基因决定性状的遗传方式及其特点列举如下:基因在细胞质的线粒体或叶绿体中(其性状遗传不遵循遗传规律):其特点是母系遗传,性状只能由母亲传递给后代,因为受精卵中的细胞质几乎全部来自卵细胞.例:若某病是线粒体基因控制的,那么母亲患病,所有子女都患病;同理,母亲正常,则子女都正常.在细胞核的染色体上(其性状遗传一定遵循遗传规律)常染色体显性→常染色体遗传常染色体显性常染色体隐性特点:性状的遗传和性别无关联,具体体现是某种性状的个体雌雄都有且比例相当.性染色体上→伴性遗传伴性遗传伴X遗传伴X显性伴X隐性伴Y遗传:不分显隐性特点:性状的遗传和性别相关联,具体体现是某种性状的个体雌雄比例不同.2.有关XY型性别决定的生物,其性染色体XY结构不同,有同源区段和非同源区段之分.位于不同区段的基因控制的遗传性状在雌雄后代中表现不同,如图1,图中的Ⅱ区是同源区段,图中的Ⅲ区是仅位于Y上的非同源区段,Ⅲ区上基因决定性状的遗传就是图一中的伴Y 遗传,图中Ⅰ区是仅位于X上的非同源区段,Ⅰ区上基因决定性状的遗传就是图1中的伴X 遗传.图1对于XY型生物来说,根据控制一对相对性状的一对等位基因(A、a)的位置所对应的基因型列举如下表:明确以上两点,下面结合典型例题,对确定基因位置这一类型的实验设计题如何解答进行探讨.一、细胞质遗传和细胞核遗传的判断判断方法:通常通过正交和反交来判断.若正交和反交的实验结果不一致且有母系遗传的特点,则该生物性状的遗传属于细胞质遗传;若正交和反交的实验结果不一致且与性别有关,则该生物形状的遗传属于细胞核中的性染色体遗传.若正交和反交实验结果性状一致且无性别上的不同,则该生物形状的遗传属于细胞核中的常染色体遗传.例1下表为果蝇3个不同的突变品系与野生型正交和反交的结果,下列叙述正确的是().组数正交反交①♀野生型×♂突变型a↓野生型♀突变型a×♂野生型↓野生型②♀野生型×♂突变型b↓野生型♀突变型b×♂野生型↓♀野生型、♂突变型b③♀野生型×♂突变型c↓野生型♀突变型c×♂野生型↓突变型cA.①为细胞核遗传,②为细胞质遗传B.①为细胞质遗传,③为伴性遗传C.②为细胞质遗传,③为细胞核遗传D.②为伴性遗传,③为细胞质遗传解答根据表格分析,实验①正交:♀野生型×♂突变型a→野生型,反交:♀突变型a×♂野生型→野生型,正交与反交的结果一致,说明为细胞核遗传,且野生型是显性性状,突变型a 是隐性性状.实验②正交:♀野生型×♂突变型b→野生型,反交:♀突变型b×♂野生型→♀野生型、♂突变型b,正交与反交的结果不一致,表现出性别的差异,说明突变型b是伴X隐性遗传.实验③正交:♀野生型×♂突变型c→野生型,反交:♀突变型c×♂野生型突变型c,正交与反交的结果不一致,表现出子代总是与母本相同,说明突变型c是细胞质遗传.故选:D.二、判断基因位于常染色体还是X染色体上1.已知相对性状的显隐性关系时的判断方法:隐雌×显雄结果预测及结论:A.若子代中的雄性个体全为隐性性状,雌性个体全为显性性状,则基因位于X染色体上.B.若子代的雌雄个体中既有显性性状又有隐性性状,则基因位于常染色体上.C.若子代中的雌雄个体全为显性性状,则基因位于常染色体上.例2已知果蝇的红眼和白眼是一对相对性状分别由一对等位基因(W、w)控制,且红眼为显性性状,雌雄果蝇均有红眼和白眼类型.现有若干红眼和白眼的雌雄果蝇,用一次杂交实验证明这对基因位于常染色体上还是X染色体上.请写出你的实验方法、预测结果及相应结论.答案:将白眼雌果蝇和红眼雄果蝇杂交,观察后代雌雄果蝇的性状.①若后代雌果蝇全为红眼,雄果蝇全为白眼,则这对基因位于X染色体上.(分析:XwXw白眼♀×XwY红眼♂→XwXw红眼♀,XwY白眼♂);②若后代雌雄果蝇全为红眼,则这对基因位于常染色体上.(分析:P:ww白眼♀×WW红眼♂→F1: Ww红眼);③若后代雌雄都有红眼和白眼,则这对基因位于常染色体上.(分析: P:ww白眼♀×Ww 红眼♂→F1: Ww红眼,ww白眼)2.在未知显隐性关系而亲本都是纯合子的情况下的判断方法:正反交法(正交:隐雌×纯合显雄反交:纯合显性雌性×隐性雄性)结果预测及结论:A.若正交和反交结果一致,则该基因位于细胞核内的常染色体上.B.若正交和反交结果不一致,则该基因位于细胞核内的X染色体上.例3假设残翅果蝇是由于遗传物质改变引起的,现有一定数量的纯种长翅和纯种残翅果蝇,请通过一代杂交实验来确定该性状是伴X遗传还是常染色体遗传.请写出你的实验方法、预测结果及相应结论.(如XAY、XaY可视为纯种)答案:将纯种长翅雌果蝇×纯种残翅雄果蝇,纯种残翅雌果蝇×纯种长翅雄果蝇.①若两组杂交结果均是长翅或残翅,则该基因位于常染色体上.假设长翅为显性,若基因位于常染色体上.其分析如下:正交 P: AA长翅♀×aa残翅♂→F1:Aa长翅,反交 P: aa残翅♀×AA长翅♂→F1:Aa长翅.同理:假设残翅为显性,若基因位于常染色体上.则两组杂交结果均是残翅.②若两组杂交结果不同,且子代性状的表现与性别有关,则该基因位于X染色体上.假设长翅为显性,若基因位于X染色体上,则其分析如下:正交P: XAXA长翅♀×XaY残翅♂→F1: XAXa长翅♀,XAY长翅♂.反交P: XaXa残翅♀×XAY长翅♂→F1: XAXa长翅♀,XaY残翅♂.同理:假设残翅为显性,若基因位于X染色体上.则两组杂交子代中结果不同,且子代性状的表现与性别有关.三、判断基因位于X、Y染色体的同源区段还是仅位于X染色体上1.在未知显隐性关系时的判断方法:正反交法(用纯合隐性个体和纯合显性个体正交和反交)结果预测及结论:A.若正交和反交结果一致,则基因位于XY同源区段.B.若正交和反交结果不一致,则基因位于X染色体上.2.已知显隐性关系时的判断方法:隐性纯合雌性 ×显性纯合雄性结果预测及结论:A.若子代中的个体全表现为显性性状,则基因位于XY同源区段.B.若子代中雌性全表现为显性性状,雄性全表现为隐性性状,则基因位于X染色体上.例4科学家研究黑腹果蝇时发现,刚毛基因(B)对截毛基因(b)为显性.现有各种纯种果蝇若干,请利用一次杂交实验来推断这对等位基因是位于X、Y染色体的同源区段还是仅位于X染色体上.请写出实验方法、预测结果及相应结论.(XBY、XbY可视为纯种)答案将纯合的截毛雌果蝇与纯合的刚毛雄果蝇杂交,观察子代雌雄果蝇的性状.①若子代中的雌雄果蝇全表现为刚毛,则基因位于X、Y染色体的同源区段.(分析:P:XbXb截毛×XBYB刚毛→F1: XBXb刚毛,XbYB刚毛)②若子代中雌果蝇全表现为刚毛,雄果蝇全表现为截毛,则基因位于X染色体上.(分析:P: XbXb截毛×XBY刚毛→F1: XBXb刚毛,XbY截毛)。
基因在染色体上位置的判定方法1.遗传连锁法:遗传连锁法是通过观察遗传突变或多性状同时遗传的情况来确定基因在染色体上的位置。
当两个或多个基因在不同的染色体上时,它们可以独立地遗传给子代。
而当两个基因位于同一染色体上时,它们会同时遗传给子代。
通过连锁分析,可以确定基因的相对位置。
2.插入突变法:插入突变法是一种将外源DNA序列插入到已知基因上的方法。
通过这种方式,可以精确定位该基因的位置。
例如,科学家可以将一个反义DNA片段插入到已知基因上,并观察插入突变对基因表达的影响,从而确定该基因在染色体上的位置。
3.染色体映射法:染色体映射法是一种利用特定染色体标记或可识别的DNA序列,将基因定位到染色体特定区域的方法。
例如,通过比较有缺陷染色体的DNA序列与正常染色体的DNA序列之间的差异,可以确定染色体上承载缺陷基因的特定区域。
4.非连锁分析法:非连锁分析法是一种独立于遗传连锁法的方法,用于确定基因在染色体上的位置。
这种方法主要利用单核苷酸多态性(SNP)和微卫星标记等多态性基因标记,通过复杂的数学和统计模型来推断基因在染色体上的位置。
5.相对物理位置法:相对物理位置法是利用不同种群中的同源染色体达成互换片段,通过比较基因重组频率计算出基因的相对物理位置。
这种方法适用于逐渐构建染色体图谱,从而确定基因在染色体上的位置。
总结起来,基因在染色体上位置的判定方法包括遗传连锁法、插入突变法、染色体映射法、非连锁分析法和相对物理位置法。
这些方法的综合应用可以帮助科学家们更准确地确定基因在染色体上的位置,进而深入研究基因功能和与其相关的疾病。
基因在染色体上位置的判定方法(一)概述基因在染色体上的位置是研究基因功能和相互作用的重要基础。
本文将介绍几种常用的方法,用于基因在染色体上位置的判定。
方法一:基因组测序基因组测序是一种高效和精确的方法。
通过对一个生物体的基因组进行测序,并进行比对,可以确定基因的位置。
方法二:FISH技术FISH技术是一种利用探针与靶DNA结合的方法。
将基因组或染色体DNA进行处理,并标记上荧光信号的探针,通过光学显微镜观察荧光染色,从而确定基因在染色体上的位置。
FISH技术不需要DNA序列信息,因此,即使未知基因的序列也能找出其位置。
方法三:比较基因组学比较基因组学是一种通过比较不同物种的通用区域,快速确定已知和未知基因的位置的方法。
比较基因组学基于相同物种间的相似性,大概率的可预测基因在染色体上的位置。
方法四:PCR技术PCR技术是一种利用富含特定序列的引物扩增DNA的方法。
通过PCR扩增,可对目标序列进行定量、精确和高通量测定,从而精确地判定基因在染色体上位置。
结论以上四种方法中,基因组测序和FISH技术是常用的方法,但比较基因组学和PCR技术也有其优点。
在选择方法时,需要考虑到可用的资源、成本和目标研究问题的具体要求。
综合各种方法,可以帮助更好地理解基因组和染色体的特征,为基因定位提供更加可靠的支持。
补充除了以上提到的方法,还有一些其他的方法也能够用于基因在染色体上位置的判定:•SNP芯片:SNP芯片是一种基因芯片,判定基因在染色体上位置的精度高且速度快。
•跨物种比较基因组学:该方法通过比较不同物种基因组之间的共同区域来判定基因的位置。
该方法特别适用于研究进化关系较近的不同物种,例如哺乳动物。
•遗传连锁分析:遗传连锁分析经常用于研究复杂疾病的遗传。
该方法通过分析遗传连锁性极强的单倍体片段,来推断基因在染色体上的位置。
•基因组表情谱分析:该方法用于描述基因在不同时期或治疗后的表达水平变化,以帮助确定基因在染色体上位置。
高考知识能力提升专题5多对等位基因在染色体上位置的判定方法N对等位基因在染色体上的位置情况相对复杂,总体可分为完全独立遗传、部分独立遗传和完全连锁三种情况。
方法一:N对等位基因综合分析1.过程:将N对等位基因的杂合子自交或测交,观察子代表现型及其比例。
2.判断:(1)若自交后代的分离比(或其变式)为(3:1)n,或测交后代的分离比(或其变式)为(1:1)n,则说明这N对等位基因位于N对同源染色体上,表现出完全独立遗传,全部遵循基因的自由组合定律。
(2)若自交后代的分离比(或其变式)<(3:1)n,或测交后代的分离比(或其变式)<(1:1)n,则说明这N对等位基因位于<N对同源染色体上,表现出部分独立遗传,部分基因位于同一对染色体上。
独立遗传的遵循自由组合定律,位于一对同源染色体上的满足基因连锁互换定律。
(3)若自交后代的分离比(或其变式)为3:1或1:2:1,或测交后代的分离比(或其变式)为1:1,则说明这N对等位基因位于一对同源染色体上,表现出完全连锁遗传,全部基因位于同一对染色体上,满足基因连锁互换定律。
方法二:先两两分析后综合分析1.过程:先将任意两对等位基因的双杂合子进行自交或测交,观察子代表现型及其比例,从而判断任意两对等位基因在染色体上的位置关系,最后再进行综合,即可判断N对等位基因的位置关系。
2.判断:(1)若任意两对等位基因自交后代的表现型均为9:3:3:1分离比(或其变式),或测交后代均为1:1:1:1分离比(或其变式),则说明这N对等位基因位于N对同源染色体上,表现出完全独立遗传,全部遵循基因的自由组合定律。
(2)若任意两对等位基因自交部分后代的表现型均为9:3:3:1分离比(或其变式),部分为3:1或1:2:1;或测交后代部分为1:1:1:1分离比(或其变式),部分为1:1;则说明这N对等位基因位于<N对同源染色体上,表现出部分基因独立遗传,部分基因位于同一对染色体上。
独立遗传的遵循自由组合定律,位于一对同源染色体上的满足基因连锁互换定律。
测定基因在染色体上位置的方法嘿,咱今儿就来聊聊测定基因在染色体上位置的那些事儿。
你说这基因啊,就像藏在染色体这个大宝藏里的小秘密,咱得想办法把它们给找出来不是?先来说说杂交实验吧,这就好比是一场基因的大冒险。
通过不同性状的杂交,观察后代的表现,就能慢慢摸到基因位置的边儿。
就像在黑暗中摸索着找开关,一点点线索就能让我们离真相更近一步。
你想想,要是没有这种方法,我们怎么能知道哪些基因在一起,哪些又相隔得老远呢?还有细胞学观察呀,这就像是拿着放大镜在仔细端详染色体呢。
看看染色体的形态、结构,找找有没有特别的地方,说不定基因就藏在那里呢。
这就好比我们找东西,先看看大致的范围,再去细细搜寻。
类比一下啊,测定基因在染色体上的位置就像是在一个大拼图里找特定的那几块。
杂交实验和细胞学观察就是我们的工具,帮我们把拼图一片片拼起来。
还有啊,现代技术也给我们提供了很多厉害的手段呢。
比如那些高科技的仪器和方法,能更精确地找到基因的位置。
这就像是给我们配上了超级厉害的眼镜,让我们能看得更清楚、更准确。
你说要是没有这些方法,我们对基因的了解能有多少呢?那不就像在黑夜里摸瞎,啥都搞不清楚嘛。
正是有了这些测定基因位置的方法,我们才能对生命的奥秘有更深的理解呀。
想想看,我们能知道自己身体里的基因都在什么地方,它们是怎么工作的,这多神奇啊!这可都是科学家们通过不断努力和探索才找到的方法呢。
我们得好好珍惜这些知识,也要感谢那些为了探索基因位置而努力奋斗的人们。
总之呢,测定基因在染色体上位置的方法多种多样,每一种都有着独特的作用和意义。
它们就像一把把钥匙,打开了基因世界的大门,让我们能更深入地了解生命的奥秘。
以后啊,说不定还会有更厉害的方法出现呢,那时候我们对基因的了解肯定会更上一层楼啦!。
基因在染色体上位置的判定方法基因的位置是指基因位点在染色体上的具体位置,确定基因的位置对于研究基因的功能和相互作用以及遗传疾病的发生机制非常重要。
在过去的几十年里,科学家们发展了多种方法来确定基因在染色体上的位置,以下是其中一些常用的方法:1. 遗传连锁分析(Genetic Linkage Analysis):遗传连锁分析是一种通过研究基因在家族中的分离方式来确定基因在染色体上位置的方法。
该方法利用家系研究的理论,结合家族基因型和表型信息,分析基因之间的连锁关系,从而确定基因在染色体上的位置。
通过观察特定基因在家族中的遗传方式,可以大致确定其在染色体上的相对位置。
2. 分子标记连锁分析(Molecular Marker Linkage Analysis):分子标记连锁分析是一种利用分子标记(如多态性位点)来确定基因在染色体上位置的方法。
该方法通过检测和比较家族成员之间的分子标记,来确定其在染色体上的相对位置。
最常用的分子标记是DNA上的多态性位点,如单核苷酸多态性(SNP)和简单重复序列等。
3. 遗传图谱绘制(Genetic Mapping):遗传图谱绘制是一种通过构建遗传图谱来确定基因在染色体上位置的方法。
该方法基于基因重组的原理,利用不同基因座之间的重组频率,建立基因座之间的距离和顺序,从而确定基因在染色体上的位置。
遗传图谱绘制常用的手段有连锁分析和重组分析等。
4. 排序(Sequencing):排序是一种直接测定基因序列来确定基因在染色体上位置的方法。
该方法利用现代测序技术(如Sanger测序、二代测序和三代测序等)对基因进行测序,得到基因的具体序列。
通过比对已知的染色体序列,可以确定基因在染色体上的位置。
5. FISH技术(Fluorescence In Situ Hybridization):FISH技术是一种通过将荧光标记的DNA探针与染色体特定区域的DNA序列结合,来确定基因在染色体上的位置的方法。
高考生物专题复习《基因在染色体上的位置判断》真题练习含答案一、选择题1.(2023·抚州高三月考)已知控制某相对性状的等位基因A/a位于性染色体上且雌、雄均有显性和隐性个体。
为探究A/a的具体位置,科研小组选用一只隐性性状的雌性个体与一只显性性状的雄性个体杂交,欲根据子代的表型与性别的关系判断基因A/a在性染色体上的位置。
下列说法错误的是()A.根据雌、雄均有显性和隐性个体可判断出基因A/a不位于Y染色体上B.若子代雌性均为显性、雄性均为隐性,则基因A/a只位于X染色体上C.若子代雌性均为隐性、雄性均为显性,则基因A/a位于X和Y染色体的同源区段上D.若子代雌性和雄性均为显性,则基因A/a位于X和Y染色体的同源区段上2.(2023·衡水高三模拟)鸡的性别决定方式为ZW型,其羽毛分为有羽和无羽两种类型,受基因A/a控制,有羽类型分为正常羽和反卷羽两种类型,受基因B/b控制。
现将纯合正常羽公鸡与无羽母鸡交配,F1全为正常羽,F1个体相互交配,F2出现正常羽公鸡、正常羽母鸡、反卷羽母鸡、无羽公鸡、无羽母鸡,比例为6∶3∶3∶2∶2。
下列有关叙述错误的是() A.亲本无羽母鸡基因型为aaZ b WB.F2正常羽公鸡中杂合子比例为1/3C.F2反卷羽母鸡产生AZ b配子的概率是1/3D.F2正常羽母鸡与无羽公鸡交配,后代无羽的比例是1/33.(2024·大连高三模拟)两个红眼长翅的雌、雄果蝇相互交配,后代表型及比例如表。
假设眼色基因为A、a,翅型基因为B、b。
眼色与翅型性状的遗传方式分别是()A.常染色体遗传伴X染色体遗传B.伴X染色体遗传常染色体遗传C.都是伴X染色体遗传D.都是常染色体遗传4.(2023·苏州高三期末)家蚕的性别决定类型为ZW型,其体色有黄体和透明体(A/a),蚕丝颜色有彩色和白色(B/b),且两对基因均不位于W染色体上,现让一黄体蚕丝彩色雌蚕与一纯合透明体蚕丝白色雄蚕杂交,F1为黄体蚕丝白色个体和透明体蚕丝白色个体,让黄体蚕丝白色个体与透明体蚕丝白色个体杂交,F2中黄体蚕丝白色(♂)∶透明体蚕丝白色(♂)∶黄体蚕丝彩色(♀)∶透明体蚕丝白色(♀)=1∶1∶1∶1,不考虑突变和染色体间的互换。
基因在染色体上位置的判定方法基因是遗传信息的基本单位,它们位于染色体上。
染色体是一种线型结构,由蛋白质和 DNA 组成。
我们在研究某个基因时需要知道它在染色体上的位置,这对于理解基因功能和研究基因相关疾病都很重要。
方法一:遗传连锁分析遗传连锁分析是一种确定基因位置的经典方法。
这个方法基于这样的事实:在同一个染色体上的两个基因越接近,它们就越有可能同时遗传给后代。
因此,以平滑的变化(遗传连锁)观察在群体中的不同个体的基因型。
方法二:基因重组频率分析基因重组是指染色体上的两段 DNA 互换它们的顺序,这样可以改变基因之间的距离。
基因重组的频率是表示基因位置的一种方法。
如果两个基因在同一个染色体上,它们之间的距离越短,重组的频率就越小;如果两个基因在不同的染色体上,它们之间的重组频率就是50%。
方法三:物理定位物理定位是指使用实验室技术来定位基因。
例如,我们可以使用克隆图谱、核酸杂交、基因测序等方法来定位基因。
这些方法可以帮助我们精确地确定基因的位置,这样就可以更好地研究基因功能并开发药物,治疗某些疾病。
方法四:单倍体分型法单倍体分型法是一种新的基因位置判定方法。
大多数人类有两个染色体,其中父母各贡献一个染色体给子女。
然而,少数人只有一个染色体,这种情况被称为单倍体(haploid)。
单倍体分型法利用这些人的遗传信息,通过比较现代人的基因和古人类遗骸的基因,来确定某个基因的位置。
在研究基因时,我们需要使用多种方法来确定基因在染色体上的位置。
无论我们使用哪种方法,确定基因位置都是理解基因功能以及研究基因相关疾病的关键。
通过这些方法,我们可以更好地了解人类和其他生物的染色体结构和遗传特征,为科学研究和医学进步提供重要的支持和指导。
2种方法判断基因在常染色体或性染色体题大招适用题型【例】一只雌鼠的一条染色体上某基因发生了突变,使野生型性状变为突变型性状。
该雌鼠与野生型雄鼠杂交,F1的雌、雄鼠中均既有野生型,又有突变型。
若要通过一次杂交实验鉴别突变基因是在X染色体上还是在常染色体上,选择杂交的F1个体最好是( )A. 野生型(雌)×突变型(雄)B. 野生型(雄)×突变型(雌)C. 野生型(雌)×野生型(雄)D. 突变型(雌)×突变型(雄)识别标志操作步骤判断基因在常染色体或性染色体(X 或Z )。
需要选择杂交组合做实验设计。
1、 性状的显隐性未知设计正反交杂交实验,观察子代结果。
(1)若两组杂交结果不同,且子代性状表现都与相应母本性状相同,则该基因位于细胞质中;(2)若两组杂交结果不同,且子代性状表现与性别相关,则该基因位于细胞核X染色体上;(3)若两组杂交结果相同,则基因位于常染色体上。
2种方法判断基因在常染色体或性染色体题大招操作步骤2、 性状的显隐性已知设计隐性雌和显性雄交配,观察子代结果若子代中性状表现与性别无关,则基因位于常染色体上;若子代中性状表现与性别有关,且雌性全为显性,雄性全为隐性⇒在X染色体上。
例题分析由题中“一只雌鼠的一条染色体上某基因发生了突变,使野生型性状变为突变型性状”可知:该突变为显性突变,即突变型性状为显性性状、野生型性状为隐性性状。
对于显性基因位置的判断,应选择雄性的显性个体与雌性的隐性个体交配,若基因在X染色体上,则所有的后代中,雌性均表现为突变型性状、雄性均表现为野生型性状,否则,基因在常染色体上。
故选:A。
再练几道1.果蝇的眼色由一对等位基因(A、a)控制,在纯种暗红眼♀×纯种朱红眼♂的正交实验中,F1只有暗红眼;在纯种暗红眼♂×纯种朱红眼♀反交实验中,F1雌性为暗红眼,雄性为朱红眼。
则下列说法错误的是( )A.这对基因位于X染色体上,显性基因为暗红色基因B.正交、反交实验可以确定控制眼色的基因是在X染色体上还是常染色体上C.正反交的子代中,雌性果蝇的基因型都是XAXaD.反交实验中,F1雌、雄个体交配,子代雄性果蝇中暗红眼和朱红眼的比例为3∶1题2种方法判断基因在常染色体或性染色体大招再练几道2.某种羊的性别决定为XY型。
热点六基因在染色体中的定位[规律方法·会总结]1.判断基因位于常染色体上或X染色体上基因关系杂交方案实验结论未知显隐性选用纯合亲本,采用正交和反交方法,看正反交结果是否相同若结果相同,基因位于常染色体上;若结果不同,基因位于X染色体上已知显隐性性雄性个体显与隐性雌性个体杂交若后代雌性全为显性个体,雄性全为隐性个体,则基因位于X染色体上;若后代雌、雄个体中显隐性出现的概率相同(或显隐性的概率与性别无关),则基因位于常染色体上调查统计具有某性状的雌、雄个体数量:①雌、雄个体数量基本相同,基因最可能位于常染色体上;②雌性个体数量明显多于雄性个体数量,则基因最可能位于X染色体上,且该基因为显性基因;③雄性个体数量明显多于雌性个体数量,则基因最可能位于X染色体上,且该基因为隐性基因;④只有雄性,则基因位于Y染色体上。
2.判断基因位于X和Y染色体同源区段还是仅位于X染色体上(已知基因的显隐性关系) 在已知基因的显隐性关系的情况下,探究基因是位于X和Y染色体的同源区段上还是仅位于X染色体上,首选隐性纯合子作母本;若所给出的实验材料中雌性只有杂合子,也可以此为母本,但父本均选择显性性状。
具体归纳如下:(1)利用纯合隐性母本×纯合显性父本:若子代所有个体均表现显性性状→则该基因位于X和Y染色体同源区段上;若子代所有雄性均表现隐性性状→则该基因仅位于X染色体上(如图)。
(2)利用杂合显性母本×纯合显性父本:若子代雌、雄个体均表现显性性状→则该基因位于X 和Y染色体同源区段上;若子代雌性个体全表现显性性状,雄性个体既有显性性状又有隐性性状→则该基因仅位于X染色体上。
以上均是探究细胞核中染色体上基因的位置的方法,事实上基因除分布在细胞核中外,还分布在细胞质中,如线粒体、叶绿体等。
若要探究基因是位于细胞质中还是细胞核中,可利用正反交法:若正反交结果不同,且子代性状始终与母方相同,则为细胞质遗传。