第2讲 绘制根轨迹的基本规则
- 格式:ppt
- 大小:1.22 MB
- 文档页数:18
绘制根轨迹的基本原则绘制根轨迹是控制工程中常用的一种方法,它可以帮助我们分析系统的稳定性,相当于一个工程师的眼睛。
根轨迹是由根的轨迹组成的,而系统的根是指其特征方程的根。
特征方程是由系统的传递函数确定的,因此我们可以通过绘制特征方程的根轨迹来分析系统的动态性态。
绘制根轨迹的基本原则有以下几点。
1. 系统根轨迹的数量等于系统特征方程的根的数量。
这是因为每个根对应着系统中一个极点。
2. 根轨迹的起点和终点都在实轴上。
这是因为特征方程的根只有实数或成对的共轭复数根。
3. 根轨迹要从左侧的极点开始。
如果存在多个极点,则从最左侧的极点开始。
如果没有极点,则从传递函数的实轴交点开始。
4. 根轨迹要向右边的极点或者方向稳定,如果两个虚根前后交叉,则会出现不稳定性。
在解决此问题是,需要重新绘制,或者调整参数,使出现前后交叉的根跑到不相交的区域。
5. 当相邻两根的虚部相等时,其插值点在实轴上。
这个时候,由于两个根的插值点处于实轴上,因此根轨迹向这个点的方向发生了变化。
6. 根轨迹需要跨越系统的实轴部分。
无论极点的数量、位置以及根轨迹的线路,都必须穿过右半平面。
7. 根轨迹的末端,必须落到无限远点。
<1>{1}</1>因此,通过这几个基本原则,我们可以绘制出系统的根轨迹。
然而,在实际的工程中,我们会遇到许多不同的情况,例如系统传递函数变化、加入控制器等。
这时候,我们需要灵活应对,对基本原则进行微调,以便更好地分析系统的动态特性。
总结来说,根轨迹能够帮助工程师更好地了解控制系统的动态特性,这有助于他们进行有效的控制和优化。
在绘制根轨迹的过程中,需要严格遵循基本原则,同时对特殊情况进行灵活调整。
绘制根轨迹的基本法则本节讨论根轨迹增益K (或开环增益K)变化时绘制根轨迹的法则。
熟练地掌握这些法则,可以帮助我们方便快速地绘制系统的根轨迹,这对于分析和设计系统是非常有益的。
法则1根轨迹的起点和终点:根轨迹起始于开环极点,终止于开环零点;如果开环零点个数m少于开环极点个数n ,则有(n m)条根轨迹终止于无穷远处。
根轨迹的起点、终点分别是指根轨迹增益式(4-9)改写为K 0和时的根轨迹点。
将幅值条件*K -nl(S P j)| j 1ml(s Z i) | i 1可见当s= p j时,K* 0 ;当s= z i时,K*法则2根轨迹的分支数, 对称性和连续性n m P j |s |1 1j 1 s(4-11) mz i|1 -|i 1 s;当|s| 且n m时,*K 。
根轨迹的分支数与开环零点数m、开环极点数n中的大者相等,根轨迹连续并且对称于实轴。
根轨迹是开环系统某一参数从零变到无穷时,闭环极点在s平面上的变化轨迹。
因此,根轨迹的分支数必与闭环特征方程根的数目一致,即根轨迹分支数等于系统的阶数。
实际系统都存在惯性,反映在传递函数上必有n m。
所以一般讲,根轨迹分支数就等于开环极点数。
实际系统的特征方程都是实系数方程,依代数定理特征根必为实数或共轭复数。
因此根轨迹必然对称于实轴。
由对称性,只须画出s平面上半部和实轴上的根轨迹,下半部的根轨迹即可对称画出。
特征方程中的某些系数是根轨迹增益K的函数,K从零连续变到无穷时,特征方程的系数是连续变化的,因而特征根的变化也必然是连续的,故根轨迹具有连续性。
法则3实轴上的根轨迹:实轴上的某一区域,若其右边开环实数零、极点个数之和为奇数,则该区域必是根轨迹。
设系统开环零、极点分布如图4-5所示。
图中,S o是实轴上的点,i(i 1,2,3)是各开环零点到S o点向量的相角,j (j 1,2,3,4)是各开环极点到S o点向量的相角。
由图4-5可见,复数共轭极点到实轴上任意一点(包括S)点)的向量之相角和为2 。