eviews残差单位根检验步骤
- 格式:docx
- 大小:37.07 KB
- 文档页数:2
居民消费物价指数、消费者信心指数的相关数据,利用EVIEWS软件,将这几个指标数据进行相关分析。
特别在这里说明的是,因为同时参与了学校的本科生科研赞助---关于CCI (消费者信心指数)的一个项目,因此本人接下来的几个实验都将以CCI及相关影响指标为数据目标,研究CCI与其他因素间的关系。
本实验,则首先进行相关指标的稳定性检验。
【实验过程】(实验步骤、记录、数据、分析)本实验首先将通过多种方法对我国CCI序列进行平稳性分析:首先导入数据到eviews中,建立序列取名为CCI:然后我们首先通过折线图来直接观察其走势,如下图:从下图我们容易看到:CCI曲线基本是围绕100的轴线上下波动的,但是相比于白噪声序列,其波动幅度明显较大。
可以看到08年11月以前,其波动一直是在轴线以下,而在08年11月以后,数据都明显高于100。
联系当时的实事背景,我们不难解释这一点:2008年11月,正是国家公布四万亿投资的时候,而这之前,由于全球金融危机以及股市大跌的影响,我国居民的消费者信心指数都是较低的;国家的四万亿政策犹如一剂强心剂,立刻使得CCI有了直线的上升,一下子提高了消费者的信心。
为了判别序列是否稳定,我们绘制CCI序列的自相关图,如下:由每个Q统计量的伴随概率可以知道:都是拒绝原假设的,即存在某个K,使得滞后K期的自相关系数显著非零,即拒绝原数列是白噪声序列。
随后对其进行ADF检验:我们首先对序列本身进行单位根检验,分别采用带常数项,线性趋势,和无等三种情况进行检验。
可以从下图看到检验结果对应的p值均显著大于0.05,因此接受原假设,存在单位跟,即CCI序列本身是不平稳的.带常数项线性趋势无因此,考虑对其一阶差分进行单位根检验:可以看到,其一阶差分的单位根检验结果对应的p值显著小于0.01,拒绝存在单位根的原假设,因此我们可以得出结论:CCI的一阶差分序列是平稳的.然后我们通过PP检验来检验序列的平稳性:我们分别采用带常数项,线性趋势,和无等三种情况进行检验。
我用的是Eviews3.1注册版(因为其他的版本没注册都不稳定容易自己关闭程序),但大抵操作应该是相同的。
首先建立新的workfile,在命令窗口输入series,弹出新建的数列窗口,把要检验的数据存进去。
然后再数列窗口下点击view,找到unit root test就是单位根检验,弹出来的窗口的左上角是选择检验方式,一般保持默认的DF那一项就好了,Eviews里面的这个DF选项是把DF与ADF检验都包括在一起了。
右边的intercept啦intercept and trend啦是针对ADF 检验的不同模型,如果搞不清楚干脆就按默认吧。
左下角的level,1st differential,2st什么的是问你是针对原始数据、还是一阶差分、二阶差分来做检验,默认是level,就是原始数据。
都选好之后点击OK就好了。
输出的结果主要是看上面的表,第一个表左边给出一个值,右边给了三个值,分别是置信度99%,95%,90%的ADF检验临界值。
左边的值如果小于右边的某个值,说明该数据落在右边那个对应值的置信区间里。
比如左边给出-3,右边对应95%置信度的值是-1,-3<-1所以数据不存在单位根,是平稳的,这一检验的置信度是95%。
大概是这样吧,具体的ADF模型选择等等最好看一看相关书籍。
Eviews不难学的~~嘿嘿我也就是三天恶补大概看完的。
ADF检验的原假设是存在单位根,一般EVIEWS输出的是ADF检验的统计值,只要这个统计值是小于1%水平下的数字就可以极显著的拒绝原假设,认为数据平稳。
注意,ADF值一般是负的,也有正的,但是它只有小于1%水平下的才能认为是及其显著的拒绝原假设这样的话,如果你的变量是水平变量。
那么,你需要取对数,一般来说,取对数后的变量一般是平稳的,这样,你无需作协整;如果对数变量非平稳,再取一阶差分(绝大多数的水平变量取对数后再一阶差分是平稳的),你就可以作协整了了。
如果你的变量已是相对数,xt 与yt 并非I(1),那么,不能作协整,仅作一般的时间序列分析即可。
1.单位根检验结果检验类型ADF值P值结论LnY (0,0,2)-4.27016 0.0005 平稳LnX1 (C,T,1) -2.464548 0.3362 非平稳D(LnX1) (0,0,0) -2.994499 0.006 平稳LnX2 (C,0,0) -1.719707 0.4009 非平稳D(LnX2) (C,T,0) -3.692378 0.0616 平稳LnX3 (C,T,3) -3.123541 0.1494 非平稳D(LnX3) (C,T,3) -7.098886 0.0014 平稳LnX4 (C,T,3) -4.445399 0.0249 平稳LnX5 (C,T,0) -1.690278 0.7009 非平稳D(LnX5) (0,0,0) -3.277648 0.0033 平稳通过单位根检验,可以发现LnY和LnX4为平稳序列,而LnX1、LnX2、LnX3、LnX5均为一阶单整序列。
2.协整检验由于后面需要进行回归分析,这里对这些变量做协整检验。
这里采取EG协整检验的做法(备注:Johansen协整检验样本量不够),结果见下图:从上述结果可以看到,被解释变量为LnY时,其z统计量对应的显著性P值小于10%,因此在10%的显著水平下,以LnY为被解释变量的回归方程存在协整关系。
对此,我们检查该回归的残差是否平稳,结果见下图:由残差的单位根检验结果可以看出,此时残差为平稳序列,即该回归存在协整关系。
3.格兰杰因果关系检验由前面的协整检验知LnY与解释变量存在长期的均衡关系,在此基础上,我们对其进行格兰杰因果关系检验。
从上图可以看出LnX1和LnX5不是LnY的格兰杰原因,而LnX2、LnX3、LnX4均是LnY的格兰杰原因,因此我们将建立以LnY为被解释变量,以LnX2、LnX3、LnX4为解释变量的回归。
4.回归结果首先对LnY与LnX2、LnX3、LnX4做协整检验,结果如下:从结果可以看出被解释变量为LnY时,其tau统计量对应的显著性P值小于10%,因此在10%的显著水平下,以LnY为被解释变量的回归存在协整关系。
我国1978-2003年GDP数据平稳性分析实验报告
开机进入eviews系统,建立时间序列,导入以下数据:
x(年度)y(GDP)x(年度)y(GDP)
1978 1991
1979 1992
1980 1993
1981 1994
1982 1995
1983 1996
1984 7171 1997
1985 1998
1986 1999
1987 2000
1988 2001
1989 2002
1990 2003
绘制y的时序图可初步判断该序列是不平稳的。
如图所示:
120000
100000
80000
60000
40000
20000
78808284868890929496980002
Y
接着进行单位根检验:
输入y,弹出如下窗口:
选择ADF检验,level(水平序列),trend and intercept,滞后期数设为2.得到:
可知,在原假设下,单位根的t检验统计量的值为,比在1%,5%,10%这三个显著性水平下的单位根检验的临界值都要大,故接受原假设,可知该时间序列存在单位根,为非平稳序列。
继续对该序列的一阶差分进行检验。
得到
单位根的t检验统计量的值为,比在10%显著性水平下的单位根检验的临界值要小,即拒绝原假设,表明该序列的一阶差分为平稳序列。
Eviews残差单位根检验步骤
1. 概述
Eviews是一种广泛用于计量经济学研究的数据分析软件,它提供了
一系列的统计分析工具,其中包括残差单位根检验。
残差单位根检验
是判断时间序列数据是否平稳的重要方法之一,本文将介绍在Eviews 软件中进行残差单位根检验的具体步骤。
2. 数据准备
在进行残差单位根检验之前,首先需要利用Eviews进行时间序列模型的拟合,得到模型的残差序列。
在Eviews中,可以使用最小二乘法、一般最小二乘法等方法估计时间序列模型,得到残差序列。
以ARMA(p,q)模型为例,其残差序列可以通过以下步骤获取:
(1) 打开Eviews软件,导入所需数据;
(2) 选择“Quick/Estimate Equation”或“Proc/Estimate Equation”,在弹出的窗口中输入ARMA(p,q)模型的方程形式,点击“OK”进行模型估计;
(3) 在估计结果页面,找到残差序列并将其保存。
3. 单位根检验
Eviews提供了多种单位根检验的方法,如ADF检验、Phillips-Perron检验等。
下面将以ADF检验为例,介绍在Eviews中进行残差单位根检验的步骤。
(1) 打开Eviews软件,打开保存的残差序列数据;
(2) 选择“View/Residual Diagnostics/Unit Root Test”;
(3) 在弹出的窗口中选择ADF单位根检验,设置滞后阶数和趋势项,并点击“OK”进行检验;
(4) 在ADF单位根检验结果页面,查看检验统计量的数值及其显著
性水平,进行单位根检验的判断。
4. 检验结果解读
进行残差单位根检验后,需要对检验结果进行解读。
在Eviews中,一般使用的显著性水平为0.05,若检验统计量的值小于相应的临界值,就可以拒绝原假设,即残差序列是平稳的。
相反,若检验统计量的值
大于临界值,则不能拒绝原假设,残差序列是非平稳的。
在解读检验结果时,需要注意控制滞后阶数和趋势项的选择,以及
检验结果的稳健性和有效性。
5. 结论
本文介绍了在Eviews中进行残差单位根检验的步骤,包括数据准备、单位根检验和检验结果解读。
残差单位根检验是时间序列分析中的重
要环节,通过Eviews软件的工具,可以方便快捷地进行单位根检验。
在实际应用中,需要结合具体的数据和问题,灵活选择合适的单位根
检验方法,并对检验结果进行仔细分析和解释。
希望本文能对读者在Eviews中进行残差单位根检验时有所帮助。