实验讲义-光电效应-2013.9
- 格式:pdf
- 大小:377.70 KB
- 文档页数:8
《光电效应的理论解释》讲义在物理学的众多奇妙现象中,光电效应无疑是一颗璀璨的明珠。
它不仅揭示了光的粒子性,还为现代物理学的发展奠定了重要基础。
那么,什么是光电效应?简单来说,光电效应就是当光照射到金属表面时,金属中的电子会吸收光子的能量而逸出金属表面的现象。
要深入理解光电效应,我们得先了解几个关键概念。
首先是光子,光具有波粒二象性,光子就是光的粒子性体现,它具有一定的能量和动量。
其次是逸出功,这是指电子从金属表面逸出时克服原子核引力所做的功。
光电效应有着一些独特的实验规律。
比如,存在一个截止频率,只有当入射光的频率高于这个截止频率时,才会产生光电效应。
而且,光电子的最大初动能与入射光的频率成线性关系,而与入射光的强度无关。
另外,在一定频率的光照射下,光电流的强度与入射光的强度成正比。
那么,如何从理论上解释这些实验规律呢?经典物理学在这个问题上遭遇了困境。
按照经典电磁理论,光的能量是连续分布的,电子吸收能量需要一定的时间积累,而且光的强度越大,电子获得的能量应该越多,从而初动能也应该越大。
但光电效应的实验结果却并非如此。
这时,爱因斯坦站了出来,他提出了光量子假说。
他认为,光是由一个个不连续的光子组成的,每个光子的能量只与光的频率有关,即E =hν,其中 E 是光子的能量,h 是普朗克常量,ν 是光的频率。
当光子照射到金属表面时,如果光子的能量大于逸出功,电子就能立即吸收光子的能量并逸出金属表面,无需时间积累。
这就很好地解释了为什么存在截止频率,因为当光子频率低于截止频率时,其能量不足以使电子逸出。
同时,由于光电子的最大初动能只与光子的频率有关,而与光的强度无关。
光的强度只是决定了单位时间内入射的光子数,从而决定了光电流的强度。
我们再进一步思考,光电效应的理论解释有着极其重要的意义。
它推动了量子力学的发展,让人们对微观世界的认识发生了深刻的变革。
在实际应用方面,光电效应也有着广泛的用途。
比如,光电倍增管就是利用光电效应将光信号转化为电信号的一种器件,在天文学、核物理学等领域有着重要的应用。
光电效应的研究【实验目的】1. 研究光电流与极间电压的关系。
2. 研究光电流与光通量之间的关系。
3. 掌握光电管的一些主要特性,学会正确使用光电管。
【实验仪器】光电效应实验仪。
仪器包括以下部分:-12V~24V稳压电源,光源用可调电源0~15V,数字电压表(-12V~24V),数字电流表(实验时为180~600mA),光电管电压调节电位器,光源(小灯泡)电流调节电位器,分档的高灵敏度电流计(0~20µA, 0~200µA)。
暗箱,内包括光电管,小灯泡及光源距离调节刻度尺。
【预习要求】1. 参考数据记录表,拟定测量步骤。
2. 初步了解光电管的主要特性以及实验装置的结构特点。
【研究内容与方法】1. 测伏安特性:(1) 打开仪器电源开关,将微电流量程转换开关旋到“200µA”(如实验数据较小可选择“20µA”量程),检查确认仪器工作正常(电流调节应调至最小值)。
根据原理图3,接好线路(即仪器微电流输入连接线“Q9端”连接到仪器主机,微电流输入连接线“+”“-”分别接暗箱光电流输出“+”“-”;仪器光源电源“+”“-”分别接暗箱光源电源“+”“-”);调节输出电流调节电位器使小灯电流为规定值I L,建议参考值为250mA,在实验过程中小灯泡电流要始终保持I L不变;顺时针调节电压调节电位器,电压表显示值为正,此时在光电管上加正电压,逆时针调节电压调节电位器,电压表显示值为负,此时在光电管上加负电压。
(2) 使光源与光电管阴极的距离保持一定,调节“光电管电压调节”电位器,使光电管电压由零开始逐渐升高,同时测出若干个电压下的光电流IΦ。
(3) 调节(逆时针)“光电管电压调节电位器”,在光电管两端加上反向电压(即负电压),调节光电管电压由零开始逐渐减小(即负的增加),测出若干个电压下的光电流IΦ。
(4) 光电流IΦ为0时的电压即为反向截止电压Va。
(5) 改变光源与光电管阴极的距离,重复(1)-(4)步骤,绘制两条伏安特性曲线。
实验一光电效应1887年,赫兹在研究电磁辐射时意外发现,光照射金属表面时,在一定的条件下,有电子从金属的表面溢出,这种物理现象被称作光电效应,所溢出的电子称光电子。
由此光电子的定向运动形成的电流称光电流。
1888年以后,W.哈尔瓦克斯、A.Γ.斯托列托夫、P.勒纳德等人对光电效应进行了长时间的研究,并总结出了光电效应的基本实验事实:1.光强一定时,光电管两端电压增大时,光电流趋向一饱和值。
对于同一频率不同光强时,光电发射率(光电流强度或逸出电子数)与光强P成正比,见图1(a)、(b)。
2.对于不同频率的光,其截止电压不同,光电效应存在一个阈频率(截止频率、极限频率或红限频率),当入射光频率 低于某一阈值时,不论光的强度如何,都没有光电子产生,见图1(c)、(d)。
3.光电子的动能与入射光强无关,但与入射光的频率成线性关系。
4.光电效应是瞬时效应,一经光束照射立即产生光电子。
图1 光电效应规律上述实验事实用麦克斯韦的经典电磁理论无法作出圆满的解释。
1905年,爱因斯坦用光量子理论圆满解释了光电效应,并得出爱因斯坦光电效应方程。
后来密立根对光电效应展开全面的实验研究,证明了爱因斯坦光电效应方程的正确性,并精确测出普朗克常数h。
因为在光电效应等方面的杰出贡献,爱因斯坦和密立根分别于1921年和1923年获得诺贝尔物理学奖。
光电效应和光量子理论在物理学的发展史上具有划时代的意义,量子论是近代物理的理论基础之一。
而光电效应则可以给量子论以直观鲜明的物理图像。
随着科学技术的发展,利用光电效应制成的光电元件在许多科技领域得到广泛的应用,并且至今还在不断开辟新的应用领域,具有广阔的应用前景。
本实验利用“减速电势法”测量光电子的动能,从而验证爱因斯坦方程,并测得普朗克常数。
经过本实验有助于进一步理解量子理论。
【实验目的】1.通过实验了解光的量子性。
2.测量光电管的弱电流特性,找出不同光频率下的截止电压。
3.验证爱因斯坦方程,并由此求出普朗克常数。
第1讲光电效应板块一主干梳理夯实基础【知识点1】光电效应I1. 定义照射到金属表面的光,能使金属中的电子从表面逸出的现象。
2. 光电子光电效应中发射出来的电子。
3. 光电效应规律(1) 每种金属都有一个极限频率,入射光的频率必须大于等于这个极限频率才能产生光电效应。
低于这个频率的光不能产生光电效应。
(2) 光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大。
_-9(3) 光电效应的发生几乎是瞬时的,一般不超过10 S。
⑷当入射光的频率大于极限频率时,饱和光电流的强度与入射光的强度成正比。
_____【知识点2] 爱因斯坦光电效应方程I1. 光子说在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光的能量子,简称光子,光子的能量尸h v 其中h= 6.63x 10-34 Js(称为普朗克常量)。
2. 逸出功W o使电子脱离某种金属所做功的最/」—3. 最大初动能发生光电效应时,金属表面上的电子吸收光子后克服金属的逸出功后所具有的动能。
4. 爱因斯坦光电效应方程(1) 表达式:E k = h v- W o。
(2) 物理意义:金属表面的电子吸收一个光子获得的能量是h v,这些能量的一部分用来克服金属的逸出功W o,剩下的表现为逸出后光电子的最大初动能E k= ;m e v $。
5. 对光电效应规律的解释【知识点3】光的波粒二象性物质波1. 光的波粒二象性(1) 光的干涉、衍射、偏振现象说明光具有波动性。
(2) 光电效应和康普顿效应说明光具有粒子性。
(3) 光既具有波动性,又具有粒子性,即光具有波粒二象性。
2. 物质波(1) 1924年,法国物理学家德布罗意提出:实物粒子也具有波动性,每一个运动着的粒子都有一个波和它对应, 这种波叫做物质波,也叫德布罗意波。
(2) 物质波的波长:x= p=mh v,其中h是普朗克常量。
物质波也是一种概率波。
板块二考点细研悟法培优考点1光电效应规律的理解 [深化理解][考点解读】1. 光子与光电子光子是指组成光本身的一个个不可分割的能量子,光子不带电;光电子是指金属表面受到光照射时发射出来 的电子。