必修4三角函数的图象与性质练习题
- 格式:doc
- 大小:414.00 KB
- 文档页数:6
必修四第一章 三角函数精选练习题一、选择题1.在0°~360°的范围内,与-510°终边相同的角是( ) A .330° B .210° C .150° D .30°B [因为-510°=-360°×2+210°,因此与-510°终边相同的角是210°.] 2.cos 420°的值为( ) A .12 B .-12C .32D .-32A [cos 420°=cos(360°+60°)=cos 60°=12,故选A.]3.已知角θ的终边上一点P (a ,-1)(a ≠0),且tan θ=-a ,则sin θ的值是( ) A .±22 B .-22 C .22 D .-12B [由题意得tan θ=-1a =-a , 所以a 2=1, 所以sin θ=-1a 2+(-1)2=-22.] 4.一个扇形的弧长与面积的数值都是6,这个扇形中心角的弧度数是( ) A .1 B .2 C .3 D .4C [设扇形的半径为r ,中心角为α,根据扇形面积公式S =12lr 得6=12×6×r ,所以r =2, 所以α=l r =62=3.]5.已知sin θ+cos θ=43,θ∈⎝ ⎛⎭⎪⎫0,π4,则sin θ-cos θ的值为( ) A .23 B .13 C .-23 D .-13 C [∵已知sin θ+cos θ=43,θ∈⎝ ⎛⎭⎪⎫0,π4,∴1+2sin θcos θ=169,∴2sin θcos θ=79,故sin θ-cos θ=-(sin θ-cos θ)2 =-1-2sin θ·cos θ =-23,故选C.]6.函数y =tan(sin x )的值域是( ) A .⎣⎢⎡⎦⎥⎤-π4,π4B .⎣⎢⎡⎦⎥⎤-22,22C .[]-tan 1,tan 1D .[]-1,1C [sin x ∈[-1,1],又-π2<-1<1<π2,且y =tan x 在⎝ ⎛⎭⎪⎫-π2,π2上是增函数,所以y min =tan(-1)=-tan 1,y max =tan 1.]7.将函数y =sin ⎝ ⎛⎭⎪⎫x -π3的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移π3个单位,得到的图象对应的解析式为( )A .y =sin 12xB .y =sin ⎝ ⎛⎭⎪⎫12x -π2C .y =sin ⎝ ⎛⎭⎪⎫12x -π6D .y =sin ⎝ ⎛⎭⎪⎫2x -π6 C [函数y =sin ⎝ ⎛⎭⎪⎫x -π3的图象上所有点的横坐标伸长到原来的2倍可得y =sin ⎝ ⎛⎭⎪⎫12x -π3,再将所得的图象向左平移π3个单位,得到函数y =sin ⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫x +π3-π3=sin ⎝ ⎛⎭⎪⎫12x -π6.] 8.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间是( ) A .⎣⎢⎡⎦⎥⎤0,π8B .⎣⎢⎡⎦⎥⎤π8,π2C .⎣⎢⎡⎦⎥⎤0,3π8D .⎣⎢⎡⎦⎥⎤3π8,π2C [令2k π-π2≤2x -π4≤2k π+π2(k ∈Z )得k π-π8≤x ≤k π+3π8(k ∈Z ),k =0时,x∈⎣⎢⎡⎦⎥⎤-π8,3π8,又x ∈⎣⎢⎡⎦⎥⎤0,π2, ∴x ∈⎣⎢⎡⎦⎥⎤0,3π8,故选C.]9.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为( )A .y =2sin ⎝ ⎛⎭⎪⎫2x -π4B .y =2sin ⎝ ⎛⎭⎪⎫2x -π4或y =2sin ⎝ ⎛⎭⎪⎫2x +3π4 C .y =2sin ⎝ ⎛⎭⎪⎫2x +3π4D .y =2sin ⎝ ⎛⎭⎪⎫2x -3π4C [由图可知A =2,4⎝ ⎛⎭⎪⎫π8+π8=2πω得ω=2,且2×⎝ ⎛⎭⎪⎫-π8+φ=π2+2k π(k ∈Z )∴φ=2k π+3π4(k ∈Z ), 又∵|φ|<π, ∴φ=3π4,故选C.]10.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数图象大致为( )C [∵P 0(2,-2),∴∠P 0Ox =π4.按逆时针转时间t 后得 ∠POP 0=t ,∠POx =t -π4. 此时P 点纵坐标为2sin ⎝ ⎛⎭⎪⎫t -π4,∴d =2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫t -π4.当t =0时,d =2,排除A ,D ; 当t =π4时,d =0,排除B.]11.设α是第三象限的角,且⎪⎪⎪⎪⎪⎪cos α2=-cos α2,则α2的终边所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 B [∵α是第三象限的角, ∴π+2k π<α<3π2+2k π,k ∈Z . ∴π2+k π<α2<3π4+k π,k ∈Z . ∴α2在第二或第四象限. 又∵⎪⎪⎪⎪⎪⎪cos α2=-cos α2,∴cos α2<0.∴α2是第二象限的角.]12.化简1+2sin (π-2)·cos (π-2)得( )A .sin 2+cos 2B .cos 2-sin 2C .sin 2-cos 2D .±cos 2-sin 2 C [1+2sin (π-2)·cos (π-2) =1+2sin 2·(-cos 2) =(sin 2-cos 2)2, ∵π2<2<π,∴sin 2-cos 2>0. ∴原式=sin 2-cos 2.]13.同时具有下列性质的函数可以是( ) ①对任意x ∈R ,f (x +π)=f (x )恒成立; ②图象关于直线x =π3对称; ③在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数.A .f (x )=sin ⎝ ⎛⎭⎪⎫x 2+π6B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6C .f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3D .f (x )=cos ⎝ ⎛⎭⎪⎫2x -π6B [依题意知,满足条件的函数的周期是π,图象以直线x =π3为对称轴,且在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数.对于A 选项,函数周期为4π,因此A 选项不符合;对于C 选项,f ⎝ ⎛⎭⎪⎫π3=-1,但该函数在⎣⎢⎡⎦⎥⎤-π6,π3上不是增函数,因此C 选项不符合;对于D 选项,f ⎝ ⎛⎭⎪⎫π3≠±1,即函数图象不以直线x =π3为对称轴,因此D 选项不符合.综上可知,应选B.]14.已知函数f (x )=-2tan(2x +φ)(|φ|<π),若f ⎝ ⎛⎭⎪⎫π16=-2,则f (x )的一个单调递减区间是( )A .⎝ ⎛⎭⎪⎫3π16,11π16B .⎝ ⎛⎭⎪⎫π16,9π16C .⎝ ⎛⎭⎪⎫-3π16,5π16D .⎝ ⎛⎭⎪⎫π16,5π16 A [由f ⎝ ⎛⎭⎪⎫π16=-2得-2tan ⎝ ⎛⎭⎪⎫π8+φ=-2,所以tan ⎝ ⎛⎭⎪⎫π8+φ=1,又|φ|<π,所以φ=π8,f (x )=-2tan ⎝ ⎛⎭⎪⎫2x +π8, 令k π-π2<2x +π8<k π+π2,k ∈Z 得 k π2-5π16<x <k π2+3π16,k ∈Z .可得f (x )的单调递减区间是⎝ ⎛⎭⎪⎫k π2-5π16,k π2+3π16,k ∈Z ,令k =1,可得f (x )的一个单调递减区间是⎝ ⎛⎭⎪⎫3π16,11π16.]二、填空题15.对于锐角α,若tan α=34,则cos 2α+2sin 2α=________. 6425 [由题意可得:cos 2α+2sin 2α=cos 2α+4sin αcos αcos 2α+sin 2α=1+4tan α1+tan 2α=6425.]16.已知sin α=13,且α是第二象限角,那么cos(3π-α)的值为________. 223[cos(3π-α)=-cos α=-(-1-sin 2α)=1-⎝ ⎛⎭⎪⎫132=223.] 17.函数y =3-tan x 的定义域是________.⎝ ⎛⎦⎥⎤k π-π2,k π+π3(k ∈Z ) [作出三角数线如图,由函数可知3-tan x ≥0中tan x ≤3,而3对应角为π3,由图中阴影部分可得定义域为⎝ ⎛⎦⎥⎤k π-π2,k π+π3(k ∈Z ).]18.函数y =tan ⎝ ⎛⎭⎪⎫2x -π4的定义域为________.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠3π8+k π2,k ∈Z[2x -π4≠π2+k π,即x ≠3π8+k π2,k ∈Z .]19.若函数y =sin(ωx +φ)(ω>0)的部分图象如图所示,则ω=________.4 [观察图象可知函数y =sin(ωx +φ)的半个周期为π4, 所以2πω=π2,ω=4.]20.已知函数f (x )=sin(ωx +φ)(ω>0),若将f (x )的图象向左平移π3个单位长度所得的图象与将f (x )的图象向右平移π6个单位长度所得的图象重合,则ω的最小值为________.4 [由条件可知,图象变换后的解析式分别为y =sin ⎝ ⎛⎭⎪⎫ωx +ωπ3+φ和y =sin ⎝ ⎛⎭⎪⎫ωx -ωπ6+φ,由于两图象重合,所以ωπ3+φ=-ωπ6+φ+2k π(k ∈Z ). 即ω=4k (k ∈Z ),由ω>0,∴ωmin =4.]21.一扇形的圆心角为2弧度,记此扇形的周长为C ,面积为S ,则C -1S 的最大值为________.4 [由已知可得弧长l =2r ,周长C =4r ,面积S =12×lr =r 2,∴C -1S =4r -1r 2=-1r 2+4r =-⎝ ⎛⎭⎪⎫1r -22+4,故C -1S 的最大值为4.] 22.已知角α终边上一点P 的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,则角α的最小正值是________.5π3 [角α终边上一点P 的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,即⎝ ⎛⎭⎪⎫12,-32, tan α=-3212=-3,且α为第四象限角,所以角α的最小正值是5π3.]23.函数y =2+cos x2-cos x(x ∈R )的最大值为________.3 [由题意有y =42-cos x-1,因为-1≤cos x ≤1,所以1≤2-cos x ≤3,则43≤42-cos x ≤4,由此可得13≤y ≤3,于是函数y =2+cos x 2-cos x (x ∈R )的最大值为3.]24.对于函数f (x )=⎩⎨⎧sin x ,sin x ≤cos x ,cos x ,sin x >cos x ,给出下列四个命题:①该函数是以π为最小正周期的周期函数;②当且仅当x =π+k π(k ∈Z )时,该函数取得最小值-1; ③该函数的图象关于x =5π4+2k π(k ∈Z )对称; ④当且仅当2k π<x <π2+2k π(k ∈Z )时,0<f (x )≤22. 其中正确命题的序号是________. ③④ [作出函数f (x )的图象如图所示:由图象可知f (x )为周期函数,T =2π,①错误;当x =2k π+π或x =2k π+3π2时,取最小值-1,故②错误;x =π4+2k π(k ∈Z )和x =5π4+2k π(k ∈Z )都是该图象的对称轴,故③正确; 当2k π<x <π2+2k π(k ∈Z )时,f (x )图象在x 轴上方且f (x )max =22. 故0<f (x )≤22.故④正确.]三、解答题25.已知sin(π-α)·cos(-8π-α)=60169,且α∈⎝ ⎛⎭⎪⎫π4,π2,求sin α与cos α的值.[解] 由已知条件可得sin αcos α=60169,∴(sin α+cos α)2=1+2sin αcos α=1+120169=289169, (sin α-cos α)2=1-2sin αcos α=1-120169=49169. ∵x ∈⎝ ⎛⎭⎪⎫π4,π2,∴sin α>cos α, ∴⎩⎪⎨⎪⎧sin α+cos α=1713,sin α-cos α=713,解方程组得sin α=1213,cos α=513.26.(1)已知角α的终边经过点P (4,-3),求2sin α+cos α的值; (2)已知角α的终边经过点P (4a ,-3a )(a ≠0),求2sin α+cos α的值; (3)已知角α终边上一点P 到x 轴的距离与到y 轴的距离之比为3∶4,求2sin α+cos α的值.[解] (1)∵α终边过点P (4,-3),∴r =|OP |=5,x =4,y =-3, ∴sin α=y r =-35,cos α=x r =45, ∴2sin α+cos α=2×⎝ ⎛⎭⎪⎫-35+45=-25.(2)∵α终边过点P (4a ,-3a )(a ≠0), ∴r =|OP |=5|a |,x =4a ,y =-3a . 当a >0时,r =5a ,sin α=y r =-35, cos α=x r =45, ∴2sin α+cos α=-25;当a <0时,r =-5a ,∴sin α=y r =35, cos α=x r =-45, ∴2sin α+cos α=25.综上,2sin α+cos α=-25或25. (3)当点P 在第一象限时,sin α=35, cos α=45,2sin α+cos α=2; 当点P 在第二象限时,sin α=35, cos α=-45,2sin α+cos α=25;当点P 在第三象限时,sin α=-35, cos α=-45,2sin α+cos α=-2; 当点P 在第四象限时,sin α=-35, cos α=45,2sin α+cos α=-25.27.是否存在角α,β,α∈⎝ ⎛⎭⎪⎫-π2,π2,β∈(0,π),使等式sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.[解] 假设存在角α,β满足条件,则{sin α=2sin β, ①3cos α=2cos β, ② 由①2+②2得sin 2α+3cos 2α=2. ∴cos 2α=12, ∴cos α=22.∵α∈⎝ ⎛⎭⎪⎫-π2,π2,∴α=±π4.当α=π4时,代入②得:cos β=32, ∵0<β<π,∴β=π6,代入①可知成立; 当α=-π4时,代入②得cos β=32,∵0<β<π,∴β=π6,此时代入①式不成立,故舍去. ∴存在α=π4,β=π6满足条件.28.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+1. (1)求函数f (x )的最大值,并求取得最大值时x 的值; (2)求函数f (x )的单调递增区间.[解] (1)当2x +π3=2k π+π2,则x =k π+π12(k ∈Z )时,f (x )max =3. (2)当2k π-π2≤2x +π3≤2k π+π2,即k π-5π12≤x ≤k π+π12时,函数f (x )为增函数.故函数f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z ). 29.如图是函数y =A sin(ωx +φ)+k (A >0,ω>0,|φ|<π2)的一段图象.(1)求此函数解析式;(2)分析一下该函数是如何通过y =sin x 变换得来的? [解] (1)由图象知A =-12-⎝ ⎛⎭⎪⎫-322=12,k =-12+⎝ ⎛⎭⎪⎫-322=-1,T =2×⎝ ⎛⎭⎪⎫2π3-π6=π,∴ω=2πT =2.∴y =12sin(2x +φ)-1. 当x =π6,2×π6+φ=π2,∴φ=π6. ∴所求函数解析式为y =12sin ⎝ ⎛⎭⎪⎫2x +π6-1.(2)把y =sin x 向左平移π6个单位得到y =sin ⎝ ⎛⎭⎪⎫x +π6,然后纵坐标保持不变、横坐标缩短为原来的12倍,得到y =sin ⎝ ⎛⎭⎪⎫2x +π6,再横坐标保持不变,纵坐标变为原来的12倍,得到y =12sin ⎝ ⎛⎭⎪⎫2x +π6,最后把函数y =12sin ⎝ ⎛⎭⎪⎫2x +π6的图象向下平移1个单位,得到y=12sin ⎝ ⎛⎭⎪⎫2x +π6-1的图象.30.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的图象在y 轴上的截距为1,它在y 轴右侧的第一个最大值点和最小值点分别为(x 0,2)和(x 0+3π,-2).(1)求f (x )的解析式;(2)将f (x )的图象上的所有点的横坐标缩短到原来的13倍(纵坐标不变),然后再将所得的图象向右平移π3个单位,得到函数g (x )的图象,写出函数g (x )的解析式,并用五点作图的方法画出g (x )在长度为一个周期的闭区间上的图象.[解] (1)由f (x )=A sin(ωx +φ)在y 轴上的截距为1,最大值为2,得1=2sin φ,所以sin φ=12.又|φ|<π2,所以φ=π6.由题意易知T =2[(x 0+3π)-x 0]=6π, 所以ω=2πT =13, 所以f (x )=2sin ⎝ ⎛⎭⎪⎫x 3+π6.(2)将f (x )的图象上的所有点的横坐标缩短到原来的13倍(纵坐标不变),得到y =2sin ⎝ ⎛⎭⎪⎫x +π6的图象;再把所得图象向右平移π3个单位,得到g (x )=2sin ⎝ ⎛⎭⎪⎫x -π3+π6=2sin ⎝ ⎛⎭⎪⎫x -π6的图象.列表:。
专题4.4 三角函数的图象与性质【考试要求】1.能画出三角函数y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性、单调性、奇偶性、最大(小)值;2.借助图象理解正弦函数、余弦函数在[0,2π]上,正切函数在⎝ ⎛⎭⎪⎫-π2,π2上的性质. 【知识梳理】1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )【微点提醒】 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期.2.对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数. 【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”) (1)余弦函数y =cos x 的对称轴是y 轴.( ) (2)正切函数y =tan x 在定义域内是增函数.( ) (3)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( ) (4)y =sin|x |是偶函数.( )【答案】 (1)× (2)× (3)× (4)√【解析】 (1)余弦函数y =cos x 的对称轴有无穷多条,y 轴只是其中的一条.(2)正切函数y =tan x 在每一个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上都是增函数,但在定义域内不是单调函数,故不是增函数.(3)当k >0时,y max =k +1;当k <0时,y max =-k +1. 【教材衍化】2.(必修4P46A2,3改编)若函数y =2sin 2x -1的最小正周期为T ,最大值为A ,则( ) A.T =π,A =1 B.T =2π,A =1 C.T =π,A =2D.T =2π,A =2【答案】 A【解析】 最小正周期T =2π2=π,最大值A =2-1=1.故选A. 3.(必修4P47B2改编)函数y =-tan ⎝⎛⎭⎪⎫2x -3π4的单调递减区间为________. 【答案】 ⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z )【解析】 由-π2+k π<2x -3π4<π2+k π(k ∈Z ),得π8+k π2<x <5π8+k π2(k ∈Z ), 所以y =-tan ⎝⎛⎭⎪⎫2x -3π4的单调递减区间为⎝⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z ). 【真题体验】4.(2017·全国Ⅱ卷)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的最小正周期为( )A.4πB.2πC.πD.π2【答案】 C【解析】 由题意T =2π2=π.5.(2017·全国Ⅲ卷)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A.65 B.1C.35D.15【答案】 A【解析】 cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3,则f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3=65sin ⎝⎛⎭⎪⎫x +π3,函数的最大值为65.6.(2018·江苏卷)已知函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2 的图象关于直线x =π3对称,则φ的值是________. 【答案】 -π6【解析】 由函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π3对称,得sin ⎝ ⎛⎭⎪⎫2π3+φ=±1.所以2π3+φ=π2+k π(k ∈Z ),所以φ=-π6+k π(k ∈Z ),又-π2<φ<π2,所以φ=-π6. 【考点聚焦】考点一 三角函数的定义域【例1】 (1)函数f (x )=-2tan ⎝⎛⎭⎪⎫2x +π6的定义域是( )A.⎩⎨⎧⎭⎬⎫x |x ≠π6B.⎩⎨⎧⎭⎬⎫x |x ≠-π12C.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6(k ∈Z )D.⎩⎨⎧⎭⎬⎫x |x ≠k π2+π6(k ∈Z ) (2)不等式3+2cos x ≥0的解集是________.(3)函数f (x )=64-x 2+log 2(2sin x -1)的定义域是________. 【答案】(1)D (2)⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z (3)⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8【解析】 (1)由2x +π6≠k π+π2(k ∈Z ),得x ≠k π2+π6(k ∈Z ).(2)由3+2cos x ≥0,得cos x ≥-32,由余弦函数的图象,得在一个周期[-π,π]上,不等式cos x ≥-32的解集为⎩⎨⎧⎭⎬⎫x |-5π6≤x ≤56π,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z .(3)由题意,得⎩⎪⎨⎪⎧64-x 2≥0,①2sin x -1>0,②由①得-8≤x ≤8,由②得sin x >12,由正弦曲线得π6+2k π<x <56π+2k π(k ∈Z ).所以不等式组的解集为⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8. 【规律方法】1.三角函数定义域的求法(1)以正切函数为例,应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域转化为求解简单的三角不等式.(2)求复杂函数的定义域转化为求解简单的三角不等式. 2.简单三角不等式的解法 (1)利用三角函数线求解. (2)利用三角函数的图象求解.【训练1】 (1)函数y =sin x -cos x 的定义域为________. (2)函数y =lg(sin x )+cos x -12的定义域为______.【答案】 (1)⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z 【解析】 (1)要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]上,满足sin x =cos x 的x 为π4,5π4再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z .(2)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ), 所以2k π<x ≤π3+2k π(k ∈Z ),所以函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .(2)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z考点二 三角函数的值域与最值【例2】 (1)y =3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域是________.(2)(2017·全国Ⅱ卷)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.(3)函数y =sin x -cos x +sin x cos x 的值域为________.【答案】 (1)⎣⎢⎡⎦⎥⎤-32,3 (2)1 (3)⎣⎢⎡⎦⎥⎤-12-2,1【解析】 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即y =3sin ⎝ ⎛⎭⎪⎫2x -π6的值域为⎣⎢⎡⎦⎥⎤-32,3.(2)由题意可得f (x )=-cos 2x +3cos x +14=-(cos x -32)2+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1].∴当cos x =32,即x =π6时,f (x )max =1. (3)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x , sin x cos x =1-t22,且-2≤t ≤2,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2.所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1. 【规律方法】 求解三角函数的值域(最值)常见三种类型:(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).【训练2】 (1)函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( ) A.4 B.5 C.6 D.7(2)(2019·临沂模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6,其中x ∈⎣⎢⎡⎦⎥⎤-π3,a ,若f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则实数a 的取值范围是________.【答案】 (1)B (2)⎣⎢⎡⎦⎥⎤π3,π【解析】 (1)由f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x =1-2sin 2x +6sin x =-2⎝ ⎛⎭⎪⎫sin x -322+112,又sin x ∈[-1,1],所以当sin x =1时函数的最大值为5.(2)由x ∈⎣⎢⎡⎦⎥⎤-π3,a ,知x +π6∈⎣⎢⎡⎦⎥⎤-π6,a +π6.因为x +π6∈⎣⎢⎡⎦⎥⎤-π6,π2时,f (x )的值域为⎣⎢⎡⎦⎥⎤-12,1,所以由函数的图象知π2≤a +π6≤7π6,所以π3≤a ≤π.考点三 三角函数的单调性 角度1 求三角函数的单调区间【例3-1】 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π12-π12,k π2+5π12(k ∈Z )B.⎝⎛⎭⎪⎫k π12-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎝⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ) (2)函数y =sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________.【答案】 (1)B (2)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z【解析】 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).(2)y =-sin ⎝ ⎛⎭⎪⎫2x -π3,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间.令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .角度2 利用单调性比较大小【例3-2】 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π4,则a ,b ,c 的大小关系是( ) A.a >b >c B.a >c >b C.c >a >bD.b >a >c【答案】 A【解析】 令2k π≤x +π6≤2k π+π,k ∈Z ,解得2k π-π6≤x ≤2k π+5π6,k ∈Z ,∴函数f (x )=2cos ⎝⎛⎭⎪⎫x +π6在⎣⎢⎡⎦⎥⎤-π6,5π6上是减函数,∵-π6<π7<π6<π4<5π6,∴f ⎝ ⎛⎭⎪⎫π7>f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4. 角度3 利用单调性求参数【例3-3】 (2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π【答案】 A【解析】 f (x )=cos x -sin x =2cos ⎝⎛⎭⎪⎫x +π4,由题意得a >0,故-a +π4<π4,因为f (x )=2cos ⎝⎛⎭⎪⎫x +π4在[-a ,a ]是减函数,所以⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,a >0,解得0<a ≤π4,所以a 的最大值是π4.【规律方法】1.已知三角函数解析式求单调区间:(1)求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;(2)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.2.对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷.【训练3】 (1)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈⎣⎢⎡⎦⎥⎤-π2,π,则以下结论正确的是( ) A.函数f (x )在⎣⎢⎡⎦⎥⎤-π2,0上单调递减B.函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增C.函数f (x )在⎣⎢⎡⎦⎥⎤π2,5π6上单调递减 D.函数f (x )在⎣⎢⎡⎦⎥⎤5π6,π上单调递增 (2)cos 23°,sin 68°,cos 97°的大小关系是________.(3)(一题多解)若函数f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.【答案】 (1)C (2)sin 68°>cos 23°>cos 97° (3)32【解析】 (1)由x ∈⎣⎢⎡⎦⎥⎤-π2,0,得2x -π3∈⎣⎢⎡⎦⎥⎤-4π3,-π3,此时函数f (x )先减后增;由x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,此时函数f (x )先增后减;由x ∈⎣⎢⎡⎦⎥⎤π2,5π6,得2x -π3∈⎣⎢⎡⎦⎥⎤2π3,4π3,此时函数f (x )单调递减;由x ∈⎣⎢⎡⎦⎥⎤5π6,π,得2x -π3∈⎣⎢⎡⎦⎥⎤4π3,5π3,此时函数f (x )先减后增.(2)sin 68°=cos 22°,又y =cos x 在[0°,180°]上是减函数, ∴sin 68°>cos 23°>cos 97°.(3)法一 由于函数f (x )=sin ωx (ω>0)的图象经过坐标原点,由已知并结合正弦函数的图象可知,π3为函数f (x )的14周期,故2πω=4π3,解得ω=32.法二 由题意,得f (x )max =f ⎝ ⎛⎭⎪⎫π3=sin π3ω=1.由已知并结合正弦函数图象可知,π3ω=π2+2k π(k ∈Z ),解得ω=32+6k (k ∈Z ),所以当k =0时,ω=32. 考点四 三角函数的周期性、奇偶性、对称性 角度1 三角函数奇偶性、周期性【例4-1】 (1)(2018·全国Ⅰ卷)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4(2)(2019·杭州调研)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=( )A.-π6B.π6C.-π3D.π3【答案】 (1)B (2)A【解析】 (1)易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4.(2)f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3,由题意可得f (0)=2sin ⎝ ⎛⎭⎪⎫θ-π3=±2,即sin ⎝ ⎛⎭⎪⎫θ-π3=±1,∴θ-π3=π2+k π(k ∈Z ),∴θ=5π6+k π(k ∈Z ).∵|θ|<π2,∴k =-1时,θ=-π6.【规律方法】 1.若f (x )=A sin(ωx +φ)(A ,ω≠0),则 (1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).2.函数y =A sin(ωx +φ)与y =A cos(ωx +φ)的最小正周期T =2π|ω|,y =A tan(ωx +φ)的最小正周期T=π|ω|.角度2 三角函数图象的对称性【例4-2】 (1)已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( )A.关于点⎝ ⎛⎭⎪⎫π3,0对称 B.关于点⎝⎛⎭⎪⎫2π3,0对称C.关于直线x =π3对称D.关于直线x =π6对称(2)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A.11B.9C.7D.5 【答案】 (1)C (2)B【解析】 (1)因为函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π3,所以1=32a +12,a =33, 所以g (x )=sin x +33cos x =233sin ⎝⎛⎭⎪⎫x +π6,函数g (x )的对称轴方程为x +π6=k π+π2(k ∈Z ),即x =k π+π3(k ∈Z ),当k =0时,对称轴为直线x =π3,所以g (x )=sin x +a cos x 的图象关于直线x =π3对称. (2)因为x =-π4为f (x )的零点,x =π4为f (x )的图象的对称轴,所以π4-⎝ ⎛⎭⎪⎫-π4=T 4+kT 2,即π2=2k +14T =2k +14·2πω(k ∈Z ),所以ω=2k +1(k ∈Z ). 又因为f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,所以5π36-π18=π12≤T 2=2π2ω,即ω≤12,ω=11验证不成立(此时求得f (x )=sin ⎝ ⎛⎭⎪⎫11x -π4在⎝ ⎛⎭⎪⎫π18,3π44上单调递增,在⎝ ⎛⎭⎪⎫3π44,5π36上单调递减),ω=9满足条件,由此得ω的最大值为9. 【规律方法】1.对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.2.对于可化为f (x )=A cos(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=k π(k ∈Z ),求x ;如果求f (x )的对称中心的横坐标,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可.【训练4】 (1)(2018·全国Ⅲ卷)函数f (x )=tan x 1+tan 2x的最小正周期为( ) A.π4 B.π2 C.π D.2π(2)设函数f (x )=cos ⎝⎛⎭⎪⎫x +π3,则下列结论错误的是( ) A.f (x )的一个周期为-2πB.y =f (x )的图象关于直线x =8π3对称 C.f (x +π)的一个零点为x =π6D.f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减 【答案】 (1)C (2)D【解析】 (1)f (x )的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z . f (x )=sin x cos x1+⎝ ⎛⎭⎪⎫sin x cos x 2=sin x ·cos x =12sin 2x , ∴f (x )的最小正周期T =2π2=π. (2)A 项,因为f (x )的周期为2k π(k ∈Z 且k ≠0),所以f (x )的一个周期为-2π,A 项正确.B 项,因为f (x )图象的对称轴为直线x =k π-π3(k ∈Z ),当k =3时,直线x =8π3是其对称轴,B 项正确. C 项,f (x +π)=cos ⎝ ⎛⎭⎪⎫x +4π3,将x =π6代入得到f ⎝ ⎛⎭⎪⎫7π6=cos 3π2=0,所以x =π6是f (x +π)的一个零点,C 项正确.D 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3的递减区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3 (k ∈Z ),递增区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3 (k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是减区间,⎣⎢⎡⎭⎪⎫2π3,π是增区间,D 项错误.【反思与感悟】1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t (或y =cos t )的性质.3.数形结合是本节的重要数学思想.【易错防范】1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性;含参数的最值问题,要讨论参数对最值的影响.2.要注意求函数y =A sin(ωx +φ)的单调区间时A 和ω的符号,尽量化成ω>0时情况,避免出现增减区间的混淆.3.求三角函数的单调区间时,当单调区间有无穷多个时,别忘了注明k ∈Z .【分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.(2017·山东卷)函数y =3sin 2x +cos 2x 的最小正周期为( )A.π2B.2π3C.πD.2π【答案】 C【解析】 ∵y =2⎝⎛⎭⎪⎫32sin 2x +12cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6, ∴T =2π2=π. 2.(2019·石家庄检测)若⎝⎛⎭⎪⎫π8,0是函数f (x )=sin ωx +cos ωx 图象的一个对称中心,则ω的一个取值是( )A.2B.4C.6D.8 【答案】 C【解析】 因为f (x )=sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4,由题意,知f ⎝ ⎛⎭⎪⎫π8=2sin ⎝ ⎛⎭⎪⎫ωπ8+π4=0,所以ωπ8+π4=k π(k ∈Z ),即ω=8k -2(k ∈Z ),当k =1时,ω=6. 3.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23B.32C.2D.3【答案】 B【解析】 ∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32. 4.(2019·湖南十四校联考)已知函数f (x )=2sin ωx -cos ωx (ω>0),若f (x )的两个零点x 1,x 2满足|x 1-x 2|min =2,则f (1)的值为( ) A.102 B.-102 C.2 D.-2【答案】 C【解析】 依题意可得函数的最小正周期为2πω=2|x 1-x 2|min =2×2=4,即ω=π2,所以f (1)=2sin π2-cos π2=2. 5.若f (x )为偶函数,且在⎝⎛⎭⎪⎫0,π2上满足:对任意x 1<x 2,都有f (x 1)-f (x 2)x 1-x 2>0,则f (x )可以为( ) A.f (x )=cos ⎝⎛⎭⎪⎫x +5π2 B.f (x )=|sin(π+x )| C.f (x )=-tan xD.f (x )=1-2cos 22x 【答案】 B 【解析】 ∵f (x )=cos ⎝⎛⎭⎪⎫x +5π2=-sin x 为奇函数,∴排除A ;f (x )=-tan x 为奇函数,∴排除C ;f (x )=1-2cos 22x =-cos 4x 为偶函数,且单调增区间为⎣⎢⎡⎦⎥⎤k π2,k π2+π4(k ∈Z ),排除D ;f (x )=|sin(π+x )|=|sin x |为偶函数,且在⎝⎛⎭⎪⎫0,π2上单调递增. 二、填空题6.(2019·烟台检测)若函数f (x )=cos ⎝⎛⎭⎪⎫2x +φ-π3(0<φ<π)是奇函数,则φ=________. 【答案】 5π6【解析】 因为f (x )为奇函数,所以φ-π3=π2+k π(k ∈Z ),φ=5π6+k π,k ∈Z .又因为0<φ<π,故φ=5π6. 7.函数y =cos ⎝ ⎛⎭⎪⎫π4-2x 的单调递减区间为________. 【答案】 ⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ) 【解析】 由y =cos ⎝ ⎛⎭⎪⎫π4-2x =cos ⎝⎛⎭⎪⎫2x -π4, 得2k π≤2x -π4≤2k π+π(k ∈Z ),解得k π+π8≤x ≤k π+5π8(k ∈Z ), 所以函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ). 8.(2018·北京卷)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0).若f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,则ω的最小值为________.【答案】 23【解析】 由于对任意的实数都有f (x )≤f ⎝ ⎛⎭⎪⎫π4成立,故当x =π4时,函数f (x )有最大值,故f ⎝ ⎛⎭⎪⎫π4=1,πω4-π6=2k π(k ∈Z ),∴ω=8k +23(k ∈Z ).又ω>0,∴ωmin =23. 三、解答题9.(2018·北京卷)已知函数f (x )=sin 2x +3sin x cos x .(1)求f (x )的最小正周期;(2)若f (x )在区间⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为32,求m 的最小值. 【答案】见解析【解析】(1)f (x )=12-12cos 2x +32sin 2x =sin ⎝⎛⎭⎪⎫2x -π6+12. 所以f (x )的最小正周期为T =2π2=π. (2)由(1)知f (x )=sin ⎝⎛⎭⎪⎫2x -π6+12. 由题意知-π3≤x ≤m , 所以-5π6≤2x -π6≤2m -π6. 要使得f (x )在⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为32, 即sin ⎝ ⎛⎭⎪⎫2x -π6在⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为1. 所以2m -π6≥π2,即m ≥π3. 故实数m 的最小值为π3. 10.(2019·北京通州区质检)已知函数f (x )=sin ωx -cos ωx (ω>0)的最小正周期为π.(1)求函数y =f (x )图象的对称轴方程;(2)讨论函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调性. 【答案】见解析【解析】(1)∵f (x )=sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π4,且T =π,∴ω=2,于是f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4.令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π8(k ∈Z ).即函数f (x )图象的对称轴方程为x =k π2+3π8(k ∈Z ).(2)令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ).注意到x ∈⎣⎢⎡⎦⎥⎤0,π2,所以令k =0,得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间为⎣⎢⎡⎦⎥⎤0,3π8;同理,其单调递减区间为⎣⎢⎡⎦⎥⎤3π8,π2.【能力提升题组】(建议用时:20分钟)11.若对于任意x ∈R 都有f (x )+2f (-x )=3cos x -sin x ,则函数f (2x )图象的对称中心为() A.⎝ ⎛⎭⎪⎫k π-π4,0(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π-π8,0(k ∈Z )C.⎝ ⎛⎭⎪⎫k π2-π4,0(k ∈Z )D.⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z )【答案】 D【解析】 因为f (x )+2f (-x )=3cos x -sin x ,所以f (-x )+2f (x )=3cos x +sin x .解得f (x )=cos x +sin x =2sin ⎝ ⎛⎭⎪⎫x +π4,所以f (2x )=2sin ⎝ ⎛⎭⎪⎫2x +π4.令2x +π4=k π(k ∈Z ),得x =k π2-π8(k ∈Z ).所以f (2x )图象的对称中心为⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ).12.(2017·天津卷)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则( )A.ω=23,φ=π12B.ω=23,φ=-11π12C.ω=13,φ=-11π24D.ω=13,φ=7π24 【答案】 A【解析】 ∵f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π, ∴f (x )的最小正周期为4⎝ ⎛⎭⎪⎫11π8-5π8=3π, ∴ω=2π3π=23,∴f (x )=2sin ⎝ ⎛⎭⎪⎫23x +φ. ∴2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12(k ∈Z ), 又|φ|<π,∴取k =0,得φ=π12. 13.已知x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,则f (x )的单调递减区间是________. 【答案】 ⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z ) 【解析】 因为x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点, 所以sin ⎝ ⎛⎭⎪⎫2×π3+φ=1,解得φ=2k π-π6(k ∈Z ). 不妨取φ=-π6,此时f (x )=sin ⎝⎛⎭⎪⎫2x -π6, 令2k π+π2≤2x -π6≤2k π+3π2(k ∈Z ), 得f (x )的单调递减区间是⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z ). 14.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值. 【答案】见解析【解析】(1)f (x )=cos x sin x -32(2cos 2x -1) =12sin 2x -32cos 2x =sin ⎝⎛⎭⎪⎫2x -π3.当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1. (2)由(1)知,函数f (x )图象的对称轴为x =512π+k π(k ∈Z ),∴当x ∈(0,π)时,对称轴为x =512π. 又方程f (x )=23在(0,π)上的解为x 1,x 2. ∴x 1+x 2=56π,则x 1=56π-x 2, ∴cos(x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝⎛⎭⎪⎫2x 2-π3, 又f (x 2)=sin ⎝⎛⎭⎪⎫2x 2-π3=23, 故cos(x 1-x 2)=23. 【新高考创新预测】15.(思维创新)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π6,若对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,则实数m 的最小值是________.【答案】 π2【解析】 因为α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,所以α-π6∈⎣⎢⎡⎦⎥⎤-π,-2π3,则f (α)=sin ⎝ ⎛⎭⎪⎫α-π6∈⎣⎢⎡⎦⎥⎤-32,0,因为对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,所以f (β)在[0,m ]上单调,且f (β)∈⎣⎢⎡⎦⎥⎤0,32,则sin ⎝ ⎛⎭⎪⎫β-π6∈⎣⎢⎡⎦⎥⎤0,32,则β-π6∈⎣⎢⎡⎦⎥⎤0,π3,所以β∈⎣⎢⎡⎦⎥⎤π6,π2,即实数m 的最小值是π2.。
三角函数的图像和性质课 题 三角函数的图像和性质学情分析三角函数的图象与性质是三角函数的重要内容,学生刚刚刚学到,对好多概念还 不很清楚,理解也不够透彻,需要及时加强巩固。
教学目标与 考点分析 1.掌握三角函数的图象及其性质在图象交换中的应用;2.掌握三角函数的图象及其性质在解决三角函数的求值、求参、求最值、求值域、求单调区间等问题中的应用.教学重点 三角函数图象与性质的应用是本节课的重点。
教学方法导入法、讲授法、归纳总结法1.“五点法”描图(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为(0,0),)1,2(π,(π,0),)1,23(-π,(2π,0).(2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为(0,1),)0,2(π,(π,-1),)0,23(π,(2π,1).2.三角函数的图象和性质 函数 性质 y =sin x y =cos x y =tan x定义域R R{x |x ≠k π+π2,k ∈Z }图象值域[-1,1][-1,1]R(1)周期性函数y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期为2π|ω|,y=tan(ωx+φ)的最小正周期为π|ω|.(2)奇偶性三角函数中奇函数一般可化为y=A sin ωx或y=A tan ωx,而偶函数一般可化为y=A cos ωx+b的形式.三种方法求三角函数值域(最值)的方法:(1)利用sin x、cos x的有界性;(2)形式复杂的函数应化为y=A sin(ωx+φ)+k的形式逐步分析ωx+φ的范围,根据正弦函数单调性写出函数的值域;(3)换元法:把sin x或cos x看作一个整体,可化为求函数在区间上的值域(最值)问题.双基自测1.函数)3cos(π+=x y ,x ∈R ( ).A .是奇函数B .是偶函数C .既不是奇函数也不是偶函数D .既是奇函数又是偶函数2.函数)4tan(x y -=π的定义域为( ). A .},4|{Z k k x x ∈-≠ππ B .},42|{Z k k x x ∈-≠ππ C .},4|{Z k k x x ∈+≠ππD .},42|{Z k k x x ∈+≠ππ3.)4sin(π-=x y 的图象的一个对称中心是( ).A .(-π,0)B .)0,43(π-C .)0,23(πD .)0,2(π4.函数f (x )=cos )62(π+x 的最小正周期为________.考向一 三角函数的周期【例1】►求下列函数的周期:(1))23sin(x y ππ-=;(2))63tan(π-=x y考向二 三角函数的定义域与值域(1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.(2)求解三角函数的值域(最值)常见到以下几种类型的题目:①形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);②形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).【例2】►(1)求函数y =lg sin 2x +9-x 2的定义域. (2)求函数y =cos 2x +sin x )4|(|π≤x 的最大值与最小值.【训练2】 (1)求函数y =sin x -cos x 的定义域;(2))1cos 2lg(sin )4tan(--=x xx y π的定义域(3)已知)(x f 的定义域为]1,0[,求)(cos x f 的定义域.考向三 三角函数的单调性求形如y =A sin(ωx +φ)+k 的单调区间时,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,若ω为负则要先把ω化为正数. 【例3】►求下列函数的单调递增区间.(1))23cos(x y -=π,(2))324sin(21x y -=π,(3))33tan(π-=x y .【训练3】 函数f (x )=sin )32(π+-x 的单调减区间为______.考向四 三角函数的对称性正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应熟记它们的对称轴和对称中心,并注意数形结合思想的应用. 【例4】►(1)函数y =cos )32(π+x 图象的对称轴方程可能是( ).A .x =-π6B .x =-π12C .x =π6D .x =π12(2)若0<α<π2,)42sin()(απ++=x x g 是偶函数,则α的值为________.【训练4】 (1)函数y =2sin(3x +φ))2|(|πϕ<的一条对称轴为x =π12,则φ=________.(2)函数y =cos(3x +φ)的图象关于原点成中心对称图形.则φ=________.难点突破——利用三角函数的性质求解参数问题含有参数的三角函数问题,一般属于逆向型思维问题,难度相对较大一些.正确利用三角函数的性质解答此类问题,是以熟练掌握三角函数的各条性质为前提的,解答时通常将方程的思想与待定系数法相结合.【示例】► 已知函数f (x )=sin )3(πω+x (ω>0)的单调递增区间为]12,125[ππππ+-k k (k ∈Z ),单调递减区间为]127,12[ππππ++k k (k ∈Z ),则ω的值为________.练一练:1、已知函数)33sin()(π+=x x f(1)判断函数的奇偶性;(2)判断函数的对称性.2、设函数)0)(2sin()(<<-+=ϕπϕx x f 的图象的一条对称轴是直线8π=x ,则=ϕ______.课后练习:三角函数的图象与性质·练习题一、选择题(1)下列各命题中正确的是 [ ](2)下列四个命题中,正确的是 [ ]A.函数y=ctgx在整个定义域内是减函数B.y=sinx和y=cosx在第二象限都是增函数C.函数y=cos(-x)的单调递减区间是(2kπ-π,2kπ)(k∈Z)(3)下列命题中,不正确的是 [ ]D.函数y=sin|x|是周期函数(4)下列函数中,非奇非偶的函数是 [ ](5)给出下列命题:①函数y=-1-4sinx-sin2x的最大值是2②函数f(x)=a+bcosx(a∈R且b∈R-)的最大值是a-b以上命题中正确命题的个数是 [ ]A.1B.2C.3D.4[ ] A.sinα<cosα<tgαB.cosα>tgα>sinαC.sinα>tgα>cosαD.tgα>sinα>cosα(7)设x为第二象限角,则必有 [ ][ ]二、填空题(9)函数y=sinx+sin|x|的值域是______.的值是______.(11)设函数f(x)=arctgx的图象沿x轴正方向平移2个单位,所得到的图象为C,又设图象C1与C关于原点对称,那么C1所对应的函数是______.(12)给出下列命题:①存在实数α,使sinαcosα=1⑤若α,β是第一象限角,α>β则tgα>tgβ其中正确命题的序号是______.三、解答题(14)已知函数y=cos2x+asinx-a2+2a+5有最大值2,试求实数a的值.答案与提示一、(1)B (2)D (3)D (4)B (5)D (6)D (7)A (8)D提示(2)y=ctgx在(kπ,kπ+π)(k∈Z)内是单调递减函数.y=cos(-x)=cosx在[2kπ-π,2kπ](k∈Z)上是增函数,而在[2kπ,2kπ+π]上是减函数.(3)可画出y=sin |x|图象验证它不是周期函数或利用定义证之.(5)①=-y(sinx+2)2+3 sinx=-1时,y max=2②当cosx=-1时,f(x)max=a-b∴cosα<sinα<tgα二、(9)[-2,2] (10)2或3 (11)y=arctg(x+2) (12)③④提示(11)C:y=arctg(x-2),C1:-y=arctg(-x-2),∴y=arctg(x+2)由390°>45°,但tg390°=tg30°<tg45°,故⑤不正确.综上,③④正确.三、。
第一章 三角函数 知识点详列一、角的概念及其推广 正角:一条射线绕着端点以逆时针方向旋转形成的角1、任意角 零角:射线不做任何旋转形成的角 负角:一条射线绕着端点以顺时针方向旋转形成的角记忆法则:第一象限全为正,二正三切四余弦.ααcsc sin 为正 全正ααcot tan 为正ααsec cos 为正例1、(1)判断下列各式的符号: ①,265cos 340sin∙ ②,423tan 4sin ⎪⎭⎫⎝⎛-∙π③)cos(sin )sin(cos θθ其中已知)0tan ,cos cos (<-=θθθ且答案:+ — —2、象限角:角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z3、终边相同的角:一般地,所有与α角终边相同的角连同α在内(而且只有这样的角),cot α<0tan α<0cos α>0sin α<0cot α>0tan α>0cos α<0sin α<0cot α<0tan α<0cos α<0sin α>0sin α>0tan α>0cot α>0cos α>0可以表示为.,360Z k k∈+∙α4、特殊角的集合:(1)终边在X 轴非负半轴上的角的集合为{};,2Z k k ∈=παα(2)终边在X 轴非正半轴上的角的集合为(){};,12Z k k ∈+=πα (3)终边在X 轴上的角的集合为{};,Z k k ∈=παα(4)终边在Y 轴非负半轴上的角的集合为;,22⎭⎬⎫⎩⎨⎧∈+=Z k k ππαα (5)终边在Y 轴非正半轴上的角的集合为;,22⎭⎬⎫⎩⎨⎧∈-=Z k k ππαα(6)终边在Y 轴上的角的集合为;,2⎭⎬⎫⎩⎨⎧∈+=Z k k ππαα (7)终边在坐标轴上角的集合为;,2⎭⎬⎫⎩⎨⎧∈=Z k k παα(8)终边在一、三象限角平分线上的角的集合为;,4⎭⎬⎫⎩⎨⎧∈+=Z k k ππαα (9)终边在二、四象限角平分线上的角的集合为.,4⎭⎬⎫⎩⎨⎧∈-=Z k k ππαα 二、弧度1、定义:长度等于半径长的弧所对的圆心角叫做1弧度2、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭. 3、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lrα= 4、两个公式:若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.三、三角函数1.设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )则P 与原点的距离02222>+=+=y x yx r2.比值r y 叫做α的正弦 记作: r y =αsin 比值r x 叫做α的余弦 记作: r x =αcos比值x y 叫做α的正切 记作: x y =αtan比值y x叫做α的余切 记作: yx =αcot比值x r 叫做α的正割 记作: x r =αsec 比值y r叫做α的余割 记作: yr =αcsc 以上六种函数,统称为三角函数.2.同角三角函数的基本关系式: (1)倒数关系:tan cot 1αα⋅=;(2)商数关系:sin cos tan ,cot cos sin αααααα==; (3)平方关系:22sin cos 1αα+= .3.诱导公式,奇变偶不变,符号看象限.()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.例2.化简(1)sin()cos()44ππαα-++;(2)已知32,cos(9)5παπαπ<<-=-,求11cot()2πα-的值. ry)(x,αP解:(1)原式sin()cos[()]424πππαα=-++-sin()sin()044ππαα=---=.(2)3cos()cos(9)5απαπ-=-=-,∴3cos 5α=,∵2παπ<<,∴4sin 5α=-,sin 4tan cos 3ααα==,∴1134cot()cot()tan 223ππααα-=--=-=.例3 确定下列三角函数值的符号(1)cos250° (2))4sin(π-(3)tan (-672°) (4))311tan(π解:(1)∵250°是第三象限角 ∴cos250°<0(2)∵4π-是第四象限角,∴0)4sin(<-π(3)tan (-672°)=tan (48°-2×360°)=tan48°而48°是第一象限角,∴tan (-672°)>0(4) 35tan)235tan(311tanππππ=+= 而35π是第四象限角,∴0311tan<π. 例4 求值:sin(-1320°)cos1110°+cos(-1020°)sin750°+tan495°. 解:原式=sin(-4×360°+120°)·cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)+tan(360°+135°) =sin120°·cos30°+cos60°·sin30°+tan135°=21212323⨯+⨯-1=0 题型一 象所在象限的判断 例5(1)如果α为第一象限角,试问2α是第几象限角?(2)如果α为第二象限角,试问:απαπα+--,,分别为第几象限角?答案:(1)第一或者第三;(2)第三,第一,第四。
1.4.2 正弦函数、余弦函数的性质(二) 课时目标 1.掌握y =sin x ,y =cos x 的最大值与最小值,并会求简单三角函数的值域或最值.2.掌握y =sin x ,y =cos x 的单调性,并能用单调性比较大小.3.会求函数y =A sin(ωx +φ)及y =A cos(ωx +φ)的单调区间.正弦函数、余弦函数的性质: 函数 y =sin xy =cos x 图象定义域______ ______ 值域______ ______ 奇偶性______ ______ 周期性最小正周期:______ 最小正周期:______ 单调性在__________________________________ 上单调递增;在__________________________________________________上单调递减 在__________________________________________上单调递增;在______________________________上单调递减 最值 在________________________时,y max =1;在________________________________________时,y min =-1在______________时,y max =1;在__________________________时,y min =-1 一、选择题1.若y =sin x 是减函数,y =cos x 是增函数,那么角x 在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.若α,β都是第一象限的角,且α<β,那么( )A .sin α>sin βB .sin β>sin αC .sin α≥sin βD .sin α与sin β的大小不定3.函数y =sin 2x +sin x -1的值域为( )A.[]-1,1B.⎣⎡⎦⎤-54,-1 C.⎣⎡⎦⎤-54,1 D.⎣⎡⎦⎤-1,54 4.函数y =|sin x |的一个单调增区间是( )A.⎝⎛⎭⎫-π4,π4B.⎝⎛⎭⎫π4,3π4 C.⎝⎛⎭⎫π,3π2 D.⎝⎛⎭⎫3π2,2π 5.下列关系式中正确的是( )A .sin 11°<cos 10°<sin 168°B .sin 168°<sin 11°<cos 10°C .sin 11°<sin 168°<cos 10°D .sin 168°<cos 10°<sin 11°6.下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上为减函数的是( )A .y =sin(2x +π2)B .y =cos(2x +π2) C .y =sin(x +π2) D .y =cos(x +π2) 题 号 1 2 3 4 5 6 答 案二、填空题7.函数y =sin(π+x ),x ∈⎣⎡⎦⎤-π2,π的单调增区间是____________. 8.函数y =2sin(2x +π3)(-π6≤x ≤π6)的值域是________. 9.sin 1,sin 2,sin 3按从小到大排列的顺序为__________________.10.设|x |≤π4,函数f (x )=cos 2x +sin x 的最小值是______. 三、解答题11.求下列函数的单调增区间.(1)y =1-sin x 2; (2)y =log 12(cos 2x ).12.已知函数f (x )=2a sin ⎝⎛⎭⎫2x -π3+b 的定义域为⎣⎡⎦⎤0,π2,最大值为1,最小值为-5,求a 和b 的值.能力提升13.已知sin α>sin β,α∈⎝⎛⎭⎫-π2,0,β∈⎝⎛⎭⎫π,32π,则( ) A .α+β>π B .α+β<πC .α-β≥-32πD .α-β≤-32π 14.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23 B.32C .2D .31.求函数y =A sin(ωx +φ)(A >0,ω>0)单调区间的方法是:把ωx +φ看成一个整体,由2k π-π2≤ωx +φ≤2k π+π2(k ∈Z )解出x 的范围,所得区间即为增区间,由2k π+π2≤ωx +φ≤2k π+32π (k ∈Z )解出x 的范围,所得区间即为减区间.若ω<0,先利用诱导公式把ω转化为正数后,再利用上述整体思想求出相应的单调区间.2.比较三角函数值的大小,先利用诱导公式把问题转化为同一单调区间上的同名三角函数值的大小比较,再利用单调性作出判断.3.求三角函数值域或最值的常用求法将y 表示成以sin x (或cos x )为元的一次或二次等复合函数再利用换元或配方、或利用函数的单调性等来确定y 的范围.1.4.2 正弦函数、余弦函数的性质(二)答案知识梳理 R R [-1,1] [-1,1] 奇函数 偶函数 2π 2π [-π2+2k π,π2+2k π](k ∈Z ) [π2+2k π,3π2+2k π] (k ∈Z ) [-π+2k π,2k π] (k ∈Z ) [2k π,π+2k π] (k ∈Z ) x =π2+2k π (k ∈Z ) x =-π2+2k π (k ∈Z ) x =2k π (k ∈Z ) x =π+2k π (k ∈Z ) 作业设计1.C 2.D3.C [y =sin 2x +sin x -1=(sin x +12)2-54当sin x =-12时,y min =-54; 当sin x =1时,y max =1.]4.C [由y =|sin x |图象易得函数单调递增区间⎣⎡⎦⎤k π,k π+π2,k ∈Z ,当k =1时,得⎝⎛⎭⎫π,32π为y =|sin x |的单调递增区间.]5.C [∵sin 168°=sin (180°-12°)=sin 12°,cos 10°=sin (90°-10°)=sin 80°由三角函数线得sin 11°<sin 12°<sin 80°,即sin 11°<sin 168°<cos 10°.]6.A [因为函数周期为π,所以排除C 、D.又因为y =cos(2x +π2)=-sin 2x 在⎣⎡⎦⎤π4,π2上为增函数,故B 不符合.故选A.]7.⎣⎡⎦⎤π2,π8.[0,2]解析 ∵-π6≤x ≤π6,∴0≤2x +π3≤2π3. ∴0≤sin(2x +π3)≤1,∴y ∈[0,2] 9.b <c <a解析 ∵1<π2<2<3<π, sin(π-2)=sin 2,sin(π-3)=sin 3.y =sin x 在⎝⎛⎭⎫0,π2上递增,且0<π-3<1<π-2<π2, ∴sin(π-3)<sin 1<sin(π-2),即sin 3<sin 1<sin 2.∵b <c <a . 10.1-22解析 f (x )=cos 2x +sin x =1-sin 2x +sin x=-(sin x -12)2+54∵|x |≤π4,∴-22≤sin x ≤22. ∴当sin x =-22时,f (x )min =1-22. 11.解 (1)由2k π+π2≤x 2≤2k π+32π,k ∈Z , 得4k π+π≤x ≤4k π+3π,k ∈Z .∴y =1-sin x 2的增区间为[4k π+π,4k π+3π] (k ∈Z ). (2)由题意得cos 2x >0且y =cos 2x 递减.∴x 只须满足:2k π<2x <2k π+π2,k ∈Z . ∴k π<x <k π+π4,k ∈Z . ∴y =log 12(cos 2x )的增区间为⎝⎛⎭⎫k π,k π+π4,k ∈Z . 12.解 ∵0≤x ≤π2,∴-π3≤2x -x 3≤23π, ∴-32≤sin ⎝⎛⎭⎫2x -π3≤1,易知a ≠0. 当a >0时,f (x )max =2a +b =1,f (x )min =-3a +b =-5.由⎩⎨⎧ 2a +b =1-3a +b =-5,解得⎩⎨⎧a =12-63b =-23+123. 当a <0时,f (x )max =-3a +b =1,f (x )min =2a +b =-5. 由⎩⎨⎧ -3a +b =12a +b =-5,解得⎩⎨⎧a =-12+63b =19-123. 13.A [∵β∈⎝⎛⎭⎫π,32π, ∴π-β∈⎝⎛⎭⎫-π2,0,且sin(π-β)=sin β. ∵y =sin x 在x ∈⎝⎛⎭⎫-π2,0上单调递增,∴sin α>sin β⇔sin α>sin(π-β)⇔α>π-β⇔α+β>π.]14.B [要使函数f (x )=2sin ωx (ω>0)在区间[-π3,π4]上的最小值是-2,则应有T 4≤π3或34T ≤π4,即2π4ω≤π3或6πω≤π,解得ω≥32或ω≥6. ∴ω的最小值为32,故选B.]附赠材料答题六注意 :规范答题不丢分提高考分的另一个有效方法是减少或避免不规范答题等非智力因素造成的失分,具体来说考场答题要注意以下六点:第一,考前做好准备工作。
一、选择题1.设函数5()sin 26f x x π⎛⎫=-⎪⎝⎭,将函数()f x 的图象向左平移()0ϕϕ>个单位长度,得到函数()g x 的图象,若()g x 为偶函数,则ϕ的最小值是( ) A .6π B .3π C .23π D .56π 2.已知函数()cos 2y x ϕ=+()πϕπ-≤<的图象向右平移2π个单位后,与函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象重合,则ϕ的值为( )A .56πB .56π-C .6π D .6π-3.将函数()sin 2f x x =的图象向右平移ϕ(02πϕ<≤)个单位,得到函数()g x 的图象.在同一坐标系中,这两个函数的部分图象如图所示,则ϕ=( )A .6π B .4π C .3π D .2π 4.函数()()12cos 20211f x x x π=++⎡⎤⎣⎦-在区间[]3,5-上所有零点的和等于( ) A .2B .4C .6D .85.设函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0,0A ω>>).若()f x 在区间[,]32ππ上具有单调性,且()(),23f f ππ=-2()()23f f ππ=,则ω=( ) A .6 B .3 C .2D .16.设函数()3sin()10,2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭的最小正周期为π,其图象关于直线3x π=对称,则下列说法正确是( )A .()f x 的图象过点30,2⎛⎫ ⎪⎝⎭; B .()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上单调递减; C .()f x 的一个对称中心是7,012π⎛⎫⎪⎝⎭; D .将()f x 的图象向左平移12ϕ个单位长度得到函数3sin 21y x =+ 的图象. 7.己知函数()sin()(0,||)2f x x πωϕωϕ=+><的最小正周期为π,且图象向右平移12π个单位后得到的函数为偶函数,则下列说法错误的有( ) A .()f x 关于点5(,0)12π对称 B .()f x 关于直线6x π=对称C .()f x 在,]1212π5π[-单调递增 D .()f x 在7[,]1212ππ单调递减8.已知函数()sin 0,2y x πωϕωϕ⎛⎫=+><⎪⎝⎭的部分图象如图所示,则( )A .1ω=,6π=ϕ B .1ω=,6πϕ=-C .2ω=,6π=ϕ D .2ω=,6πϕ=-9.已知曲线1C :sin y x =,2C :cos 23y x π⎛⎫=-⎪⎝⎭,则下面结论正确的是( ) A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移23π个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12π个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移12π个单位长度,得到曲线2C10.已知1sin 34x π⎛⎫+= ⎪⎝⎭,则22sin sin 36x x ππ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭( )A .1B C .1916D .3411.已知函数2()[sin()])cos()f x x x x ωωω=+(0)>ω在[0,]π上有且只有四个零点,则实数ω的取值范围是( ) A .5[,2]3B .5(,2)3C .5[,2)3D .5(,2]312.已知函数11()sin sin sin sin f x x x x x ⎛⎫⎛⎫=+- ⎪⎪⎝⎭⎝⎭,现有命题:①()f x 的最大值为0; ②()f x 是偶函数; ③()f x 的周期为π; ④()f x 的图象关于直线2x π=对称.其中真命题的个数是( ) A .4B .3C .2D .1二、填空题13.下列判断正确的是___________(将你认为所有正确的情况的代号填入横线上). ①函数1tan 21tan 2xy x+=-的最小正周期为π;②若函数()lg f x x =,且()()f a f b =,则1ab =; ③若22tan 3tan 2αβ=+,则223sin sin 2αβ-=;④若函数()2221sin 41x xy x ++=+的最大值为M ,最小值为N ,则2M N +=.14.已知()tan 1f x a x =+(a ,b 为实数),且3(lg log 10)5f =,则(lglg3)f =____________.15.将函数()sin (0)f x x ωω=>的图象向右平移12π个单位长度得到函数()y g x =的图象,若函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递增函数,则实数ω的取值范围是__________.16.若函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭,则6f π⎛⎫⎪⎝⎭的值是___________. 17.若函数π()sin()cos()3f x x x ωω=++的一个周期是π,则常数ω的一个取值可以为__________.18.已知函数()()π5sin 24f x x x ⎛⎫=-∈ ⎪⎝⎭R ,对于下列说法:①要得到()5sin 2g x x =的图象,只需将()f x 的图象向左平移4π个单位长度即可;②()y f x =的图象关于直线3π8x =对称:③()y f x =在[]π,π-内的单调递减区间为3π7π,88⎡⎤⎢⎥⎣⎦;④5π8y f x ⎛⎫=+⎪⎝⎭为奇函数.则上述说法正确的是________(填入所有正确说法的序号). 19.已知()()sin 03f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=-⎪⎝⎭是奇函数;③()06f f π⎛⎫<⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是___________.20.已知函数()()()sin 0,0,f x A x A ωϕωπϕπ=+>>-<<的部分图象如下图所示,则ϕ=________.三、解答题21.已知函数27()sin cos 2sin 632x f x x x ππ⎛⎫⎛⎫=-+--⎪ ⎪⎝⎭⎝⎭.(1)求函数()f x 的单调递增区间; (2)求使()0f x <成立的实数x 的取值集合.22.函数()cos()0,02f x x πωϕωϕ⎛⎫=+><<⎪⎝⎭的部分图象如图所示.(1)写出()f x 的解析式; (2)将函数()f x 的图象向右平移12π个单位后得到函数()g x 的图象,讨论关于x 的方程()3()0f x g x m -=(11)m -<≤在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数.23.已知()442sin cos cossin f x x x x x ωωωω=+-(其中ω>0).(1)若()f x 的最小正周期是π,求ω的值及此时()f x 的对称中心; (2)若将()y f x =的图像向左平移4π个单位,再将所得的图像纵坐标不变,横坐标缩小为原来的12,得到()g x 的图像,若y g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递减,求ω的取值范围.24.已知函数()()2sin f x x ωϕ=+(0>ω,0ϕπ<<)的最大值和最小正周期相同,()f x 的图象过点(3,且在区间10,12⎡⎤⎢⎥⎣⎦上为增函数.(1)求函数()f x 的解析式;(2)若函数()()1g x f x =+在区间()0,b 上只有4个零点,求b 的最大值. 25.已知函数()231cos 2f x x x =-+. (1)当π02x ⎡⎤∈⎢⎥⎣⎦,时,求函数()f x 的取值范围;(2)将()f x 的图象向左平移π6个单位得到函数()g x 的图象,求()g x 的单调递增区间. 26.已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><的部分图象如下图所示.(1)求函数()f x 的解析式,并写出函数()f x 的单调递增区间; (2)将函数()f x 图象上所有点的横坐标缩短到原来的14(纵坐标不变),再将所得的函数图象上所有点向左平移02m m π⎛⎫<< ⎪⎝⎭个单位长度,得到函数()g x 的图象.若函数()g x 的图象关于直线512x π=对称,求函数()g x 在区间7,1212ππ⎡⎤⎢⎥⎣⎦上的值域.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题意有()5sin 226g x x ϕπ⎛⎫=+ ⎪⎝⎭-,若()g x 为偶函数则52()62k k Z πππϕ-=+∈,结合0ϕ>可得出答案. 【详解】 解:由题意可得()()55()sin 2sin 2266g x f x x x πϕϕϕπ⎛⎫⎛⎫=+=+-=+ -⎪ ⎪⎝⎭⎝⎭因为()g x 为偶函数,则52()62k k Z πππϕ-=+∈,即2()32k k Z ππϕ=+∈ 因为0ϕ>,所以当1k =-时ϕ取得最小值6π. 故选:A. 【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于()f x 的方程(组),从而得到()f x 的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值; (4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.2.A解析:A 【分析】根据三角函数的平移变换得到cos(2)y x ϕπ=+-后,再根据诱导公式变为sin(2)2y x πϕ=+-,然后利用图象重合列式可得结果.【详解】函数()cos 2y x ϕ=+()πϕπ-≤<的图象向右平移2π个单位后,得到cos[2()]cos(2)2y x x πϕϕπ=-+=+-sin(2)2x πϕπ=+-+sin(2)2x πϕ=+-,依题意可得223k ππϕπ-=+()k ∈Z ,所以526k πϕπ=+()k ∈Z 因为πϕπ-≤≤,所以0k =,56πϕ=. 故选:A. 【点睛】关键点点睛;经过平移变换后,利用诱导公式化为同名函数是解题关键,属于中档题. 3.C解析:C 【分析】由图可知,17248g f ππ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭()()sin 2x g x ϕ=-,于是推出1717sin 224242g ππϕ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,即1722124k ππϕπ-=+或324k ππ+,k Z ∈,再结合02πϕ<≤,解之即可得ϕ的值.【详解】由图可知,17sin 224882g f πππ⎛⎫⎛⎫⎛⎫==⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为()f x 的图象向右平移ϕ个单位,得到函数()g x 的图象,所以()()sin 2x g x ϕ=-,所以171717sin 2sin 22424122g πππϕϕ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以1722124k ππϕπ-=+或17322124k ππϕπ-=+,k Z ∈, 解得712k πϕπ=-或3k πϕπ=-,k Z ∈,因为02πϕ<≤,所以3πϕ=.故选:C 【点睛】本小题主要考查三角函数图象变换,属于中档题.4.D解析:D 【分析】由图可得函数的零点就是11y x =-和2cos y x π=交点的横坐标,画出函数图象,可得出()f x 在[]3,5-有8个零点,且关于1x =对称,即可求出.【详解】()()112cos 20212cos 11f x x x x x ππ=++=-⎡⎤⎣⎦--, 令()0f x =,则12cos 1x x π=-, 则函数的零点就是11y x =-和2cos y x π=交点的横坐标, 可得11y x =-和2cos y x π=的函数图象都关于1x =对称,则交点也关于1x =对称, 画出两个函数的图象,观察图象可知,11y x =-和2cos y x π=在[]3,5-有8个交点, 即()f x 有8个零点,且关于1x =对称,故所有零点的和为428⨯=. 故选:D. 【点睛】本题考查求函数的零点之和,解题的关键是将题目化为找11y x =-和2cos y x π=交点的横坐标,从而通过函数图象求解.5.B解析:B 【分析】 由2()()23f f ππ=求出函数的一条对称轴,结合()f x 在区间[,]32ππ上具有单调性,且()()23f f ππ=-,可得函数的四分之一周期,即可求出ω的值.【详解】解:由2()()23f f ππ=,可知函数()f x 的一条对称轴为2723212x πππ+==, 则2x π=离最近对称轴距离为712212πππ-=. 又()()23f f ππ=-,则()f x 有对称中心5,012π⎛⎫⎪⎝⎭, 由于()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上具有单调性, 则1232T ππ-,所以3T π≥,从而7512124T ππ-=,所以23T π=,因为2T πω=,所以3ω=.故选:B【点睛】本题考查()sin()f x A x ωϕ=+型函数图象的应用,考查了学生灵活处理问题和解决问题的能力.6.D解析:D 【分析】先根据对称轴及最小正周期,求得函数()f x 的解析式,再结合正弦函数的图象与性质,判断点是否在函数图象上可判断A ,求得函数的单调区间及对称中心即可判断选项BC ,由平移变换求得变化后的解析式并对比即可判断D. 【详解】函数()3sin()10,2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭的最小正周期是π 所以22πωπ==,则()()3sin 21f x x ϕ=++,()()3sin 21f x x ϕ=++图象关于直线3x π=对称,对称轴为2,2x k k Z πϕπ+=+∈,代入可得2,32k k Z ππϕπ⨯+=+∈,解得,6k k Z πϕπ=-+∈,因为,22ππϕ⎛⎫∈- ⎪⎝⎭,所以当0k =时, 6πϕ=-, 则()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭,对于A,当0x =时,()3103sin 11622f π=-+=-+=- ,所以错误; 对于B,()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的单调递减区间为3222,262k x k k πππππ+-+∈Z ≤≤, 解得5,36k x k k Z ππππ+≤≤+∈,因为123ππ<,则()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上不是减函数,所以错误; 对于C ,773sin 213sin 11012126f ππππ⎛⎫⎛⎫=⨯-+=+=≠⎪ ⎪⎝⎭⎝⎭,所以7,012π⎛⎫ ⎪⎝⎭不是()f x 的一个对称中心,所以错误; 对于D ,1212πϕ=,将()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的图象向左平移12π个单位长度得到可得3sin 213sin 21126y x x ππ⎡⎤⎛⎫=-++=+ ⎪⎢⎥⎝⎭⎣⎦,所以能得到3sin 21y x =+的图象,所以正确. 故选: D. 【点睛】本题考查了正弦函数的图象与性质的综合应用,关键点是根据已知条件先求出正弦函数的解析式,还要熟练掌握三角函数的性质才能正确的解题,属于中档题.7.A解析:ABD 【分析】由周期可求出ω,再由平移后为偶函数求出ϕ,即得()sin 23πf x x ⎛⎫=-⎪⎝⎭,求出512f π⎛⎫⎪⎝⎭可判断A ;求出6f π⎛⎫⎪⎝⎭可判断B ;令222,232k x k k Z πππππ-+≤-≤+∈求出单调递增区间可判断C ;由C 选项可判断D. 【详解】()f x 的最小正周期为π,22πωπ∴==,()sin(2)f x x ϕ=+,向右平移12π个单位后得到sin 26y x πϕ⎛⎫=-+ ⎪⎝⎭为偶函数, ,62k k Z ππϕπ∴-=+∈,即2,3k k Z πϕπ=+∈, ||2πϕ<,3ϕπ∴=-,()sin 23f x x π⎛⎫∴=- ⎪⎝⎭, 对于A ,55sin 2sin 10121232f ππππ⎛⎫⎛⎫=⨯-==≠ ⎪ ⎪⎝⎭⎝⎭,故()f x 不关于点5(,0)12π对称,故A 错误; 对于B ,sin 2sin 001663f πππ⎛⎫⎛⎫=⨯-==≠± ⎪ ⎪⎝⎭⎝⎭,故B 错误;对于C ,令222,232k x k k Z πππππ-+≤-≤+∈,解得5,1212k x k k Z ππππ-+≤≤+∈, 当0k =时,51212x ππ-≤≤,故()f x 在,]1212π5π[-单调递增,故C 正确; 对于D ,由C 选项可知,()f x 在5[,]1212ππ单调递增,故D 错误.故选:ABD.本题考查正弦型函数的性质,可通过代入验证的方法判断对称轴和对称中心,利用整体换元可求单调区间.8.D解析:D 【分析】根据函数的图象求出函数的周期,然后可以求出ω,通过函数经过的最大值点求出ϕ值,即可得到结果. 【详解】由函数的图象可知:74123T πππ⎛⎫=-⨯= ⎪⎝⎭,22T πω∴==. 当3x π=,函数取得最大值1,所以sin 213πϕ⎛⎫⨯+= ⎪⎝⎭,2232k k Z ππϕπ+=+∈,, ||,02k πϕ<∴=,6πϕ∴=-,故选:D. 【点睛】本题主要考查了由三角函数的图象求解析式,通过周期求ω的值,通过最值点求ϕ的值是解题的关键,属于基础题.9.C解析:C 【分析】由题意利用诱导公式得1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,根据函数()cos y A x ωϕ=+的图象变换规律,得出结论. 【详解】已知曲线1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,2cos 23:C y x π⎛⎫=- ⎪⎝⎭,∴把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,可得cos 22y x π⎛⎫=- ⎪⎝⎭的图象,再把得到的曲线向左平移 12π个单位长度,得到曲线2cos 2cos 263:2C x x πππ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭的图象,故选C .【点睛】本题主要考查函数()cos y A x ωϕ=+的图象变换规律,属于基础题.10.C【分析】由诱导公式求得cos 6x π⎛⎫- ⎪⎝⎭,然后再由平方关系和诱导公式计算. 【详解】 由已知1cos cos sin 62334x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 222115sin 1cos 166416x x ππ⎛⎫⎛⎫⎛⎫-=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,21sin sin cos 32664x x x ππππ⎛⎫⎛⎫⎛⎫-=+-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以2211519sin sin 3641616x x ππ⎛⎫⎛⎫-+-=+= ⎪ ⎪⎝⎭⎝⎭. 故选:C . 【点睛】关键点点睛:本题考查三角函数的求值.解题关键是确定“已知角”和“未知角”的关系,选用适当的公式进行变形求值.本题中首先利用诱导公式得出cos 6x π⎛⎫- ⎪⎝⎭,然后再用诱导公式得出2sin 3x π⎛⎫-⎪⎝⎭,用平方关系得出2sin 6x π⎛⎫- ⎪⎝⎭,这样求解比较方便.11.C解析:C 【分析】先化简函数的解析式,然后利用x 的范围求出26x πω⎛⎫-⎪⎝⎭的范围,根据题意列不等式求解ω.【详解】221cos 21()[sin()])cos()2sin(2)2262ωπωωωωω-=+=+=-+x f x x x x x x ,因为[0,]x π∈,得2,2666πππωωπ⎛⎫⎡⎤-∈-- ⎪⎢⎥⎝⎭⎣⎦x ,因为函数在[0,]π有且只有四个零点,则19232666πππωπ≤-<,解得523ω≤<. 故选:C. 【点睛】关于三角函数中求解ω的取值范围问题,一般要先求解出整体的范围,即x ωϕ+的范围,然后根据题意,分析x ωϕ+范围所在的区间,列不等式求解,即可求出ω.12.A【分析】先求函数的定义域,再根据函数奇偶性定义,周期函数的定义可判断②③的正误,再根据函数解析的特征可判断④的正误,最后利用换元法可求判断①的正误. 【详解】22111()sin sin sin sin sin sin f x x x x x x x ⎛⎫⎛⎫=+-=- ⎪⎪⎝⎭⎝⎭, 由sin 0x ≠可得,x k k Z π≠∈,故函数的定义域为{}|,x x k k Z π≠∈, 所以函数的定义域关于原点对称.又()()()222211()sin sin sin sin f x x x f x x x-=--=-=-,故()f x 为偶函数, 故②正确.又()()()221()sin sin f x x f x x πππ+=+-=+, 故()f x 是周期函数且周期为π,故③正确.又()()()221()sin sin f x x f x x πππ-=--=-,故()f x 的图象关于直线2x π=对称,故④正确.令2sin t x =,则(]0,1t ∈且()1f x t t=-,因为1y t t=-为(]0,1上的增函数,故()max 0f x =,故①正确. 故选:A. 【点睛】思路点睛:对于复杂函数的性质的研究,注意先研究函数的定义域,再研究函数的奇偶性或周期性,最后再研究函数的单调性,讨论函数图象的对称性,注意根据()()f a x f x -=来讨论. 二、填空题13.③④【分析】①化简可得即可求出;②由可能相等可判断;③利用同角三角函数关系可化简求出;④化简可得利用奇函数的性质可得【详解】对①则最小正周期为故①错误;对②若则可能相等故②错误;对③若则即即即即故③解析:③④ 【分析】①,化简可得tan 24y x π⎛⎫=+⎪⎝⎭,即可求出;②由,a b 可能相等可判断;③利用同角三角函数关系可化简求出;④化简可得24sin 141x xy x +=++,利用奇函数的性质可得.【详解】对①,tantan 21tan 24tan 21tan 241tan tan 24xx y x x x πππ++⎛⎫===+ ⎪-⎝⎭-⋅,则最小正周期为2π,故①错误;对②,若()()f a f b =,则,a b 可能相等,故②错误;对③,若22tan 3tan 2αβ=+,则2222sin 3sin 2cos cos αβαβ=+,即222222sin cos 3cos sin 2cos cos αβαβαβ=+,即22222222sin cos cos cos 3cos sin 3cos cos αβαβαβαβ+=+,即22cos 3cos βα=,即223sin sin 2αβ-=,故③正确;对④,()22221sin 4sin 14141x xx x y x x +++==+++,令()24sin 41x x g x x =++,则()()g x g x -=,故()g x 是奇函数,()()max min 0g x g x ∴+=,()()max min 112M N g x g x ∴+=+++=,故④正确.故答案为:③④. 【点睛】本题考查正切型函数的周期,考查同角三角函数的关系,考查奇函数的应用,解题的关键是正确利用三角函数的关键进行化简.14.【分析】令可知为奇函数根据与为相反数即可求解【详解】令定义域关于原点对称且所以为奇函数则所以由奇函数性质可得所以故答案为:【点睛】关键点点睛:首先要观察出中的部分为奇函数其次要能利用换底公式对数的运 解析:3-【分析】令tan ()a x g x =+,可知()g x 为奇函数,根据3lg log 10与lg lg3为相反数即可求解. 【详解】令tan ()a x g x =+,,2x k k Z ππ≠+∈,定义域关于原点对称,且()tan ()g x a x g x -=--=-, 所以()g x 为奇函数,则31(lg log 10)(lg)(lg lg 3)(lg lg 3)15lg 3f f fg ==-=-+=, 所以(lg lg3)514g -=-=, 由奇函数性质可得(lg lg3)4g =-, 所以(lglg3)(lglg3)1413f g =+=-+=-, 故答案为:3- 【点睛】关键点点睛:首先要观察出()f x中的部分tan ()a x g x =+为奇函数,其次要能利用换底公式,对数的运算性质找到3lg log 10与lg lg3为相反数,借助奇函数的性质求解.15.【分析】先求出由可求出利用单调性可得结合即可求解【详解】将函数的图象向右平移个单位长度得到函数因为所以因为函数在区间上是单调递增函数所以解得:因为所以故答案为:【点睛】关键点点睛:本题解题的关键点是解析:60,5⎛⎤⎥⎝⎦【分析】先求出()sin 12g x x πω⎛⎫=-⎪⎝⎭,由0,2x π⎡⎤∈⎢⎥⎣⎦可求出5121212x πππωωω⎛⎫-≤-≤ ⎪⎝⎭,利用单调性可得1225122ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,结合0>ω即可求解.【详解】将函数()sin (0)f x x ωω=>的图象向右平移12π个单位长度得到函数()sin 12g x x πω⎛⎫=- ⎪⎝⎭,因为02x π≤≤,所以5121212x πππωωω⎛⎫-≤-≤⎪⎝⎭, 因为函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递增函数, 所以1225122ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得:665ωω≤⎧⎪⎨≤⎪⎩,因为0>ω,所以605ω<≤, 故答案为:60,5⎛⎤ ⎥⎝⎦【点睛】关键点点睛:本题解题的关键点是由x 的范围求出12x πω⎛⎫-⎪⎝⎭的范围,将12x πω⎛⎫-⎪⎝⎭看成一个整体让其满足正弦函数的单调递增区间,即可得其满足的条件.16.4或-4【分析】由题意可得故函数的周期为求得;在中令求得从而求得的值【详解】∵函数对任意的都有∴故函数的周期为∴所以∴在中令可得:即∴则故答案为:4或-4【点睛】求三角函数解析式的方法:(1)求A 通解析:4或-4. 【分析】 由题意可得()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π,求得=3ω;在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,求得sin 0ϕ=,从而求得6f π⎛⎫⎪⎝⎭的值. 【详解】∵函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭, ∴()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π, ∴22=3ππω,所以=3ω. ∴()()4sin 3f x x ϕ=+. 在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,可得:()03f f π⎛⎫= ⎪⎝⎭, 即()4sin =4sin πϕϕ+,∴sin =0ϕ. 则=4sin()4cos 462f ππϕϕ⎛⎫+==±⎪⎝⎭. 故答案为: 4或-4. 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.17.2(答案不唯一)【分析】把函数化为一个角的一个三角函数形式然后利用正弦函数的周期求解注意题中已知条件是函数的一个周期是并没有说是最小正周期因此只要函数的最小正周期是除以一个正整数都可满足题意【详解】解析:2(答案不唯一) 【分析】把函数化为一个角的一个三角函数形式,然后利用正弦函数的周期求解,注意题中已知条件是函数的一个周期是π,并没有说π是最小正周期.因此只要函数的最小正周期是π除以一个正整数,都可满足题意. 【详解】1()sin cos cossin sin(1cos 332f x x x x x x ππωωωωω=+-=-+,令cosϕ=sin ϕ=,且ϕ为锐角,则()sin()f x x ωϕ=+,由2T ππω==,得2ω=,实际上,由2T ππω==得2ω=±,或者2kππω=(k Z ∈且0k ≠),2k ω=(k Z ∈且0k ≠),ω可为任意一个非零点的偶数. 故答案为:2.(填任一非0的偶数都可以). 【点睛】关键点点睛:本题考查三角函数的周期,求解三角函数周期,一般是把函数化为一个角的一个三角函数形式,然后利用正弦函数的周期性求解.而我们一般说周期通常是求最值正周期,若题中强调某个数是函数的一个周期,则这个周期不一定是最小正周期.18.②④【分析】结合三角函数的图象与性质对四个结论逐个分析即可得出答案【详解】①要得到的图象应将的图象向左平移个单位长度所以①错误;②令解得所以直线是的一条对称轴故②正确;③令解得因为所以在定义域内的单解析:②④ 【分析】结合三角函数的图象与性质对四个结论逐个分析即可得出答案. 【详解】①要得到()5sin 2g x x =的图象,应将()ππ5sin 25sin 248f x x x ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象向左平移π8个单位长度,所以①错误;②令ππ2π42x k -=+,k ∈Z ,解得3ππ82k x =+,k ∈Z ,所以直线3π8x =是()y f x =的一条对称轴,故②正确;③令ππ3π22π42π22k k x ≤+≤-+,k ∈Z ,解得3π7πππ88k x k +≤≤+,k ∈Z ,因为[]π,πx ∈-,所以()f x 在定义域内的单调递减区间为3π7π,88⎡⎤⎢⎥⎣⎦和5ππ,88⎡⎤--⎢⎥⎣⎦,所以③错误;④5π5ππ5sin 25sin 2884y f x x x ⎡⎤⎛⎫⎛⎫=+=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦是奇函数,所以该说法正确. 【点睛】本题考查了正弦型函数的对称轴、单调性、奇偶性与平移变换,考查了学生对()sin y A ωx φ=+的图象与性质的掌握,属于中档题.19.【分析】由周期公式可得由三角函数的中心对称可得结合即可得为奇数即可得由可得进而可得即可得解【详解】由可得由是奇函数可得函数的图象关于中心对称所以即又所以所以为奇数由可得因为在上没有最小值所以即故答案解析:511,612ππ⎛⎤⎥⎝⎦【分析】由周期公式可得ω,由三角函数的中心对称可得,3k k Z πϕπ=+∈,结合()06f f π⎛⎫< ⎪⎝⎭即可得k 为奇数,即可得()sin 23πf x x ⎛⎫=-⎪⎝⎭,由[)0,x t ∈可得2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭,进而可得432332t πππ<-≤,即可得解. 【详解】 由T π=可得22T πω==,()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭由3y f x π⎛⎫=- ⎪⎝⎭是奇函数可得函数()f x 的图象关于,03π⎛-⎫⎪⎝⎭中心对称, 所以2,33k k Z ππϕπ⎛⎫⨯-++=∈ ⎪⎝⎭,即,3k k Z πϕπ=+∈, 又()06f f π⎛⎫< ⎪⎝⎭,所以2sin sin 33ππϕϕ⎛⎫⎛⎫+<+ ⎪ ⎪⎝⎭⎝⎭, 所以,3k k πϕπ=+为奇数,()sin 2sin 2333f x x k x ππππ⎛⎫⎛⎫=+++=- ⎪ ⎪⎝⎭⎝⎭,由[)0,x t ∈可得2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭, 因为()f x 在[)0,t 上没有最小值,所以432332t πππ<-≤即511,612t ππ⎛⎤∈ ⎥⎝⎦. 故答案为:511,612ππ⎛⎤⎥⎝⎦. 【点睛】本题考查了三角函数图象与性质的应用,考查了运算求解能力,牢记知识点是解题关键,属于中档题.20.【分析】根据图象得出函数的最小正周期可得出的值再将点代入函数解析式结合的取值范围可求出的值【详解】由图象可知函数的最小正周期则将点代入函数解析式得即因为函数在附近单调递减则得故答案为:【点睛】本题考 解析:6π【分析】根据图象得出函数()y f x =的最小正周期T ,可得出ω的值,再将点5,012π⎛⎫⎪⎝⎭代入函数解析式,结合ϕ的取值范围,可求出ϕ的值. 【详解】由图象可知,函数()y f x =的最小正周期11521212T πππ⎛⎫=⨯-=⎪⎝⎭,222T ππωπ∴===, 则()()sin 2f x A x ϕ=+, 将点5,012π⎛⎫⎪⎝⎭代入函数解析式得55sin 201212f A ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,即5sin 06πϕ⎛⎫+= ⎪⎝⎭, 因为函数()y f x =在512x π=附近单调递减,则()526k k Z πϕππ+=+∈, 得()26k k Z πϕπ=+∈,πϕπ-<<,0k ∴=,6π=ϕ. 故答案为:6π. 【点睛】本题考查利用图象求三角函数解析式中的参数,考查分析问题和解决问题的能力,属于中等题.三、解答题21.(1)22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)422,3x k x k k Z πππ⎧⎫-+<<∈⎨⎬⎩⎭∣.【分析】(1)化简()f x ,应用整体思想,结合正弦函数的递增区间,即可得出结论; (2)应用整体思想,运用正弦函数图像,建立不等式,即可求解. 【详解】()sin cos cos sincoscos sinsin cos 16633f x x x x x x ππππ=-+++-11cos cos cos 1cos 122x x x x x x x =-++-=+-12cos 12sin 126x x x π⎫⎛⎫=+-=+-⎪ ⎪⎪⎝⎭⎝⎭. (1)由22,262k x k k Z πππππ-+++∈,解得222,33k x k k Z ππππ-++∈, 所以()f x 的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(2)由(1)知()2sin 16f x x π⎛⎫=+- ⎪⎝⎭.因为()0f x <,即2sin 106x π⎛⎫+-< ⎪⎝⎭.所以1sin 62x π⎛⎫+< ⎪⎝⎭, 所以7+2++2,666k x k k Z πππππ-<<∈. 所以422,3k x k k Z πππ-+<<∈, 所以使()0f x <成立的x 的取值集合为422,3xk x k k Z πππ⎧⎫-+<<∈⎨⎬⎩⎭∣. 【点睛】方法点睛:解决正弦型函数的单调性和不等式的相关问题,运用整体思想,先由三角函数恒等变换,化简解析式为同一角同一三角函数的形式,再运用三角函数的性质以及建立三角不等式求解.22.(1)()cos(2)6f x x π=+;(2)见解析.【分析】(1)根据图象求出周期,再根据最低点可求ϕ,从而得到函数解析式. (2)求出()g x 的解析式,故方程可化为cos 206m x π⎛⎫---= ⎪⎝⎭,可通过直线y m =-与cos 26y x π⎛⎫=- ⎪⎝⎭ 的图象的交点的个数解决方程的解的个数.【详解】(1)由函数的图象可得()f x 的周期为2236πππ⎛⎫⨯-=⎪⎝⎭,故22πωπ==,又26312fππ⎛⎫+⎪=- ⎪⎪⎝⎭,故5cos2+112πϕ⎛⎫⨯=-⎪⎝⎭,所以526kπϕππ+=+即2,6k k Zπϕπ=+∈,因为02πϕ<<,故6π=ϕ,所以()cos(2)6f x xπ=+.(2)()cos(2)cos266g x x xππ=-+=,故()3()cos(2)3cos26f xg x m x x mπ-⋅-=+--cos2cos sin2sin3cos2cos2666x x x m m xπππ⎛⎫=---=---⎪⎝⎭故方程在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数即为y m=-与cos26y xπ⎛⎫=-⎪⎝⎭图象交点的个数,cos26y xπ⎛⎫=-⎪⎝⎭在,2ππ⎡⎤-⎢⎥⎣⎦上的图象如图所示,由图象可得:当1m-=-31m<-<即1m=或31m-<<时,方程有2个不同的解;当31m-<-≤31m≤<时,方程有4个不同的解;当3322m-<-≤即3322m-≤<时,方程有3个不同的解;【点睛】方法点睛:(1)平移变换有“左加右减”(水平方向的平移),注意是对自变量x做加减.(2)与余弦型函数有关的方程的解的个数的讨论,一般可转化为动直线与确定函数的图象的交点个数来讨论.23.(1)=1ω,对称中心是(,0),82k k Z ππ-+∈,(2)1524ω≤≤【分析】(1)先对函数化简变形得(2+4f x x πω(),由函数的周期为π,得=1ω,再由2+=4x k ππ,可求出对称中心的横坐标,进而可得对称中心;(2)由题意得到())24g x x ωππω=++,由0,8x π⎡⎤∈⎢⎥⎣⎦可得424244x ωππωπππωωπ⎡⎤++∈++⎢⎥⎣⎦,,而y g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递减,所以可得322,24422k k k Z ωπππππωπππ⎡⎤⎡⎤++⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,从而可求出ω的取值范围 【详解】解:(1)()sin 2+cos 22+4f x x x x πωωω=(),()f x 的最小正周期是π,2==12ππωω∴∴,此时()2+4f x x π=(),令2+=4x k ππ,得,82k x k Z ππ=-+∈ ()f x ∴的对称中心是(,0),82k k Z ππ-+∈. (2)由题知())24g x x ωππω=++, 0,4824244x x πωππωπππωωπ⎡⎤⎡⎤∈∴++∈++⎢⎥⎢⎥⎣⎦⎣⎦,,,又()y g x =在08π⎡⎤⎢⎥⎣⎦,上单调递减,322,24422k k k Z ωπππππωπππ⎡⎤⎡⎤∴++⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,即32154242,242242k k k k Z k ππωππωωππππ⎧+≤+⎪⎪⇒+≤≤+∈⎨⎪+≥+⎪⎩, 150,24ωω>∴≤≤【点睛】关键点点睛:此题考查三角函数的恒等变换,考查三角函数的图像和性质,第2问解题的关键是求出424244x ωππωπππωωπ⎡⎤++∈++⎢⎥⎣⎦,,再由y g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递减,可得322,24422k k k Z ωπππππωπππ⎡⎤⎡⎤++⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,从而可求出ω的取值范围,属于中档题 24.()2sin 3f x x ππ⎛⎫=+ ⎪⎝⎭;(2)296【分析】(1)根据条件先求ω,再根据()0f =ϕ,最后再验证ϕ值,确定函数的解析式;(2)根据条件求函数的零点,确定b 的最大值应是第5个零点. 【详解】 (1)函数的最大值是2,∴,函数的周期2T =,即22πωπω=⇒=,()02sin f ϕ==,且0ϕπ<<,3πϕ∴=或23π, 当3πϕ=时,()2sin 3f x x ππ⎛⎫=+⎪⎝⎭,当10,12x ⎡⎤∈⎢⎥⎣⎦时,5,3312x ππππ⎡⎤+∈⎢⎥⎣⎦ 0,2π⎡⎤⎢⎥⎣⎦,满足条件; 当23ϕπ=时,()22sin 3f x x ππ⎛⎫=+⎪⎝⎭,当10,12x ⎡⎤∈⎢⎥⎣⎦时,223,334x ππππ⎡⎤+∈⎢⎥⎣⎦ 3,22ππ⎡⎤⎢⎥⎣⎦,所以函数在区间10,12⎡⎤⎢⎥⎣⎦上为减函数,所以舍去, 所以函数()2sin 3f x x ππ⎛⎫=+⎪⎝⎭; (2)()2sin 103g x x ππ⎛⎫=++= ⎪⎝⎭,得1sin 32x ππ⎛⎫+=- ⎪⎝⎭, 72,36x k k Z ππππ+=+∈,解得:52,6x k k Z =+∈, 或112,36x k k Z ππππ+=+∈,解得:32,2x k k Z =+∈, 函数()()1g x f x =+在区间()0,b 上只有4个零点,∴这四个零点应是56,32,176,72,那么b 的最大值应是第5个零点,即296,所以b 的最大值是296. 【点睛】关键点点睛:本题第一问注意求出两个ϕ 后需验证是否满足条件,第二个关键点是,注意()0,b 是开区间,开区间内只有四个零点,则b 的最大值是第5个零点.25.(1)112⎡⎤-⎢⎥⎣⎦,;(2)ππππ36k k ⎡⎤-+⎢⎥⎣⎦,,k Z ∈. 【分析】(1)根据余弦的二倍角公式、辅助角公式化简()f x ,得到()πsin 26f x x ⎛⎫=- ⎪⎝⎭,再利用正弦函数的性质确定当π02x ⎡⎤∈⎢⎥⎣⎦,时,()f x 的取值范围; (2)根据图象的平移得到()πsin 26g x x ⎛⎫=+ ⎪⎝⎭,再利用正弦函数的性质可求得()g x 得单调递增区间. 【详解】(1)()211πcos cos2sin 2226f x x x x x x ⎛⎫=-+=-=- ⎪⎝⎭,π02x ⎡⎤∈⎢⎥⎣⎦,,ππ5π2666x ⎡⎤∴-∈-⎢⎥⎣⎦,, π1sin 2162x ⎛⎫⎡⎤∴-∈- ⎪⎢⎥⎝⎭⎣⎦,.∴函数()f x 的取值范围为112⎡⎤-⎢⎥⎣⎦,.(2)由题意知:()ππππsin 2sin 26666g x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 令πππ2π22π262k x k -≤+≤+,k Z ∈, 解得πππ2π.36k k k Z -≤≤+∈, ∴()g x 的单调递增区间为ππππ36k k ⎡⎤-+⎢⎥⎣⎦,,k Z ∈. 【点睛】本题考查了三角函数的性质,根据二倍角的余弦公式、辅助角公式化简函数,并求函数在区间上的最值,及函数的单调区间,考查学生的运算能力,属于中档题. 26.(1)12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,递增区间为74,4,33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (2)[]1,2-. 【分析】(1)由三角函数的图象,求得函数的解析式12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,结合三角函数的性质,即可求解.(2)由三角函数的图象变换,求得2()2sin 223g x x m π⎛⎫=-+ ⎪⎝⎭,根据()g x 的图象关于直线512x π=对称,求得m 的值,得到()2sin 23g x x π⎛⎫=- ⎪⎝⎭,结合三角函数的性质,即可求解. 【详解】(1)由图象可知2A =,422433T πππ⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦, 所以212T πω==,所以1()2sin 2f x x ϕ⎛⎫=+ ⎪⎝⎭, 由图可求出最低点的坐标为,23π⎛⎫- ⎪⎝⎭,所以2sin 236f ππϕ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭, 所以262k ππϕπ+=-+,所以22,3k k Z πϕπ=-+∈, 因为||ϕπ<,所以23πϕ=-,所以12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,由1222,2232k x k k Z πππππ-+≤-≤+∈,可得744,33k x k k Z ππππ+≤≤+∈. 所以函数()f x 的单调递增区间为74,4,33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. (2)由题意知,函数22()2sin 2()2sin 2233g x x m x m ππ⎡⎤⎛⎫=+-=-+ ⎪⎢⎥⎣⎦⎝⎭, 因为()g x 的图象关于直线512x π=对称, 所以5222,1232m k k Z ππππ⨯-+=+∈,即,62k m k Z ππ=+∈, 因为02m π<<,所以6m π=,所以()2sin 23g x x π⎛⎫=-⎪⎝⎭. 当7,1212x ππ⎡⎤∈⎢⎥⎣⎦时,52,366x πππ⎡⎤-∈-⎢⎥⎣⎦,可得1sin 2,132x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,所以2sin 2[1,2]3x π⎛⎫-∈- ⎪⎝⎭,即函数()g x 的值域为[]1,2-.【点睛】解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为sin()y A wx ϕ=+的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解.。
三角函数的图象与性质※※※ 知识点归纳一、三角函数的图象与性质1、正弦函数、余弦函数和正切函数的图象与性质:sin y x =cos y x =tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦ ()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数; 在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2xk k ππ=+∈Z对称中(),02k k ππ⎛⎫+∈Z⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭无对称轴函 数 性 质2、正弦函数y=sinx 的图象和余弦函数y=cosx 的图象分别叫做正弦曲线和余弦曲线.3、用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (π,0) (23π,-1) (2π,0) 余弦函数y=cosx x ∈[0,2π]的五个关键点是:(0,1) (2π,0) (π,-1) (23π,0) (2π,1) 只要这五个点描出后,图象的形状就基本确定了.因此在精确度要求不太高时,常采用五点法作正弦函数和余弦函数的简图,要求熟练掌握。
优点是方便,缺点是精确度不高。
二、函数y A x =+sin()ωϕ的图象1、由函数y x =sin 的图象通过变换得到y A x =+sin()ωϕ的图象。
有两种主要途径:“先平移后伸缩”与“先伸缩后平移”。
法一:先平移后伸缩y x y x =−→−−−−−−−=+><sin sin()()()||向左或向右平移个单位ϕϕϕϕ00横坐标变为原来的倍纵坐标不变1ωωϕ−→−−−−−−−=+y x sin()纵坐标变为原来的倍横坐标不变A y A x −→−−−−−−−=+sin()ωϕ法二:先伸缩后平移y x =−→−−−−−−−sin 横坐标变为原来的倍纵坐标不变1ωy x y x =−→−−−−−−−=+><sin sin()()()||ωωϕϕϕϕω向左或向右平移个单位00纵坐标变为原来的倍横坐标不变A y A x −→−−−−−−−=+sin()ωϕ注意:第一种方法平移||ϕ个单位,第二种方法平移||ϕω个单位。
原因在于相位变换和周期变换都是针对变量x 而言的。
因此在用这样的变换法作图象时一定要注意平移的先后顺序,否则必然会出现错误。
2、函数yA x =+sin()ωϕ[)+∞∈,0x 其中)0,0(>>ωA 的物理意义:y=cosx y=sinx π2π3π4π5π6π-π-2π-3π-4π-5π-6π-6π-5π-4π-3π-2π-π6π5π4π3π2ππ-11y x-11o xy函数yA x =+sin()ωϕ[)+∞∈,0x 其中)0,0(>>ωA 表示一个振动量时:A :这个量振动时离开平衡位置的最大距离,称为“振幅”. T :. 2T 间,称为“周期”往复振动一次所需的时ωπ=f :. 2T 1次数,称为“频率”单位时间内往返振动的πω==f :ϕω+x :称为“相位” .ϕ:x =0时的相位,称为“初相”. ※※※ 例题选讲例1、函数tan 3y x =-的定义域。
解:由tan 30x -≥ 得 tan 3x ≥,所求定义域为(),32k k k Z ππππ⎡⎫++∈⎪⎢⎣⎭, 例2、求函数⎪⎭⎫⎝⎛+=42sin 2πx y 的单调递减区间. 解:由)(,2234222Z k k x k ∈+≤+≤+πππππ解得)(,858Z k k x k ∈+≤≤+ππππ; 函数的递减区间为)(,85,8Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ;例3、用两种方法将函数y x =sin 的图象变换为函数y x =+sin()23π的图象。
分析1:x x x →+→+ππ323解法1:y x=−→−−−−−sin 向左平移个单位π3 y x =+−→−−−−−−−sin()π312横坐标缩短到原来的纵坐标不变 y x =+sin()23π分析2:x x x x →→+=+22623()ππ解法2:y x=−→−−−−−−−sin 横坐标缩短到原来的纵坐标不变12 y x=−→−−−−−sin26向左平移个单位πy x x =+=+sin[()]sin()2623ππ注意:在解法1中,先平移,后伸缩;在解法2中,,先伸缩,后平移。
表面上看来,两种变换方法中的平移是不同的(即6π和3π),但由于平移时平移的对象已有所变化,所以得到的结果是一致的。
※※※ 巩固练习1、已知ΔABC 中,125tan -=A ,则A cos 等于( )D A 、1312 B 、135 C 、135- D 、1312-2、化简)22cos()2sin(++-ππ的结果等于( )AA 、0B 、-1C 、23D 、23-3、下列等式中,恒成立的是( )C A 、)2cos()2sin(x x -=-ππB 、x x sin )sin(-=-πC 、x x sin )2sin(=+πD 、x x cos )cos(=+π 4、函数)(),42sin(3)(R x x x f ∈-=π的最小正周期为( )DA 、2πB 、πC 、π2D 、π4 5、函数)43sin(π-=x y 是图象的一个对称中心是( )BA .⎪⎭⎫ ⎝⎛-0,12π B .⎪⎭⎫ ⎝⎛-0,127π C .⎪⎭⎫ ⎝⎛0,127π. D.⎪⎭⎫ ⎝⎛0,1211π. 6、在下列各区间中,函数y =sin (x +4π)的单调递增区间是( )BA.[2π,π] B.[0,4π] C.[-π,0] D.[4π,2π] 7、当函数1cos 2-=x y 取得最大值时,x 的取值为( )C A 、Z k k x ∈+=,22ππ B 、Z k k x ∈-=,22ππC 、Z k k x ∈=,2πD 、Z k k x ∈+=,2ππ8、函数)3x 2sin(3y π+=的图象可看作是函数x 2sin 3y =的图象,经过如下平移得到的,其中正确的是( ).D A 、向右平移3π个单位 B 、向左平移3π个单位 C 、向右平移6π个单位 D 、向左平移6π个单位9、已知sin αcos α = 18 ,则cos α-sin α的值等于 ( )BA 、±34B 、±23C 、23D 、-2310、sin34π·cos 625π·tan 45π的值是( )AA 、-43B 、43C 、-43D 、4311、函数)62sin()(π-=x x f 的单调递减区间是 。
)(,65,3Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ 12、若)si n (2)(ϕω+=x x f (其中2,0πϕω<>)的最小正周期是π,且1)0(=f ,则=ω2 ,=ϕ6π。
13、将000168sin ,11sin ,10cos 从小到大排列为 。
00010cos 168sin 11sin <<14、函数)32sin(2π+=x y 的图象的对称轴方程是 14、Z k k x ∈+=122ππ;15、记4)cos()sin()(++++=βπαπx b x a x f ,(a 、b 、α、β均为非零实数),若2009)2009(=f ,则)2010(f = 15、2001-; 三.解答题 16、已知3tan 3,2απαπ=<<,求sin cos αα-的值.2312123cos sin 21cos ,23sin 3tan )23,(-=+-=-∴-=-=∴=∈αααααππα且17、⑴化简000sin(180)cos()sin(180)tan(180)x x x x +-----; 解:原式=(sin )cos sin (tan )x x x x -- =sin (sin )cos sin ()cos xx x x x-- =3sin x . ⑵证明:2222tan sin tan sin x x x x -=.证:左边=22222tan sin tan tan cos x x x x x -=- =22tan (1cos )x x - =22tan sin x x =右边.故原命题成立。
18、已知函数),42sin(3)(π-=x x f 求:(1))(x f 的最小正周期;π(2)求 )(x f 在区间⎥⎦⎤⎢⎣⎡43,6ππ 的值域。
⎥⎦⎤⎢⎣⎡-3,223 19、如右图所示函数图象,求)sin()(ϕω+=x A x f (πϕω<>,0)的表达式。
解析:由图象可知A =2,37212-y ox8π-8π8π).42sin(2.4082)0,8(.22,)8(87ππϕϕππωπωππππ+==∴=+-⨯-=∴==--=x y T 为因此所求函数的表达式,)(因此,为五点作图的第一个点又,即。