a小学数学奥赛5-3-4 分解质因数(一).教师版
- 格式:doc
- 大小:1.47 MB
- 文档页数:8
5-5质数合数分解质因数教学目标本讲中的知识点在小学课本内已经有所涉及,并且多以判断题考察。
质数合数的出现是对自然数的另一种分类方式,但是相对于奇数偶数的划分要复杂许多。
质数本身的无规律性也是一个研究质数结构的难点。
在奥数数论知识体系中我们要帮助孩子树立对质数和合数的基本认识,在这个基础之上能够会与之前的一些知识点结合运用。
分解质因数法是一个数论重点方法,本讲另一个授课重点在于让孩子对这个方法能够熟练并且灵活运用。
知识点拨1.质数与合数一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数.要特别记住:0和1不是质数,也不是合数.常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7或9.考点:⑴值得注意的是很多题都会以质数2的特殊性为考点.⑵除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注意.2.质因数与分解质因数质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.互质数:公约数只有1的两个自然数,叫做互质数.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.3. 唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯其中为质数,12k a a a <<<为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式.例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.4. 部分特殊数的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.5. 判断一个数是否为质数的方法根据定义如果能够找到一个小于p 的质数q(均为整数),使得q 能够整除p ,那么p 就不是质数,所以我们只要拿所有小于p 的质数去除p 就可以了;但是这样的计算量很大,对于不太大的p ,我们可以先找一个大于且接近p 的平方数2K ,再列出所有不大于K 的质数,用这些质数去除p ,如没有能够除尽的那么p 就为质数.例如:149很接近1441212=⨯,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数.例题精讲模块一、质数合数的基本概念的应用【例 1】下面是主试委员会为第六届“华杯赛”写的一首诗:美少年华朋会友,幼长相亲同切磋;杯赛联谊欢声响,念一笑慰来者多;九天九霄志凌云,九七共庆手相握;聚起华夏中兴力,同唱移山壮丽歌.请你将诗中56个字第1行左边第一字起逐行逐字编为1—56号,再将号码中的质数由小到大找出来,将它们对应的字依次排成一行,组成一句话,请写出这句话.【解析】按要求编号排序,并画出质数号码:美少年华朋会友,幼长相亲同切磋;1 2 3 4 5 6 7 8 9 10 11 12 13 14杯赛联谊欢声响,念一笑慰来者多;15 16 17 18 19 20 21 22 23 24 25 26 27 28九天九霄志凌云,九七共庆手相握;29 30 31 32 33 34 35 36 37 38 39 40 41 42聚起华夏中兴力,同唱移山壮丽歌.43 44 45 46 47 48 49 50 51 52 53 54 55 56将质数对应的汉字依次写出就是:少年朋友亲切联欢;一九九七相聚中山.【巩固】(2008年南京市青少年“科学小博士”思维训练)炎黄骄子菲尔兹奖被誉为“数学界的诺贝尔奖”,只奖励40岁以下的数学家.华人数学家丘成桐、陶哲轩分别于1982年、2006年荣获此奖.我们知道正整数中有无穷多个质数(素数),陶哲轩等证明了这样一个关于质数分布的奇妙定理:对任何正整数k,存在无穷多组含有k个等间隔质数(素数)的数组.例如,3k 时,3,5,7是间隔为2的3个质数;5,11,17是间隔为6的3个质数:而,,是间隔为12的3个质数(由小到大排列,只写一组3个质数即可).【解析】最小的质数从2开始,现要求每两个质数间隔12,所以2不能在所要求的数组中.而且由于个位是5的质数只有一个5,所以个位是3的质数不能作为第一个质数和第二个质数,可参照下表:【巩固】(2003年“祖冲之杯”邀请赛)大约1500年前,我国伟大的数学家祖冲之,计算出π的值在3.1415926和3.1415927之间,成为世界上第一个把π的值精确到7位小数的人.现代人利用计算机已经将π的值计算到了小数点后515亿位以上.这些数排列既无序又无规律.但是细心的同学发现:由左起的第一位3是质数,31也是质数,但314不是质数,那么在3141,31415,314159,3141592,31415926,31415927中,哪些是质数?.【解析】注意到3141,31415,3141592,31415926,31415927依次能被3,5,2,2,31整除,所以,质数是314159.【巩固】(2004年全国小学奥林匹克)自然数N是一个两位数,它是一个质数,而且N的个位数字与十位数字都是质数,这样的自然数有多少个?【解析】这样的自然数有4个:23,37,53,73.【例 2】两个质数之和为39,求这两个质数的乘积是多少.【解析】因为和为奇数,所以这两个数必为一奇一偶,所以其中一个是2,另一个是37,乘积为74.我们要善于抓住此类题的突破口。
1. 本讲主要对课本中的:约数、公约数、最大公约数;倍数、公倍数、最小公倍数性质的应用。
2. 本讲核心目标:让孩子对数字的本质结构有一个深入的认识,例如:(1)约数、公约数、最大公约数;倍数、公倍数、最小公倍数的内在关系;(2)整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、 约数、公约数与最大公约数概念(1)约数:在正整数范围内约数又叫因数,整数a 能被整数b 整除,a 叫做b 的倍数,b 就叫做a 的约数;(2)公约数:如果一个整数同时是几个整数的约数,称这个整数为它们的“公约数”;(3)最大公约数:公约数中最大的一个就是最大公约数;(4)0被排除在约数与倍数之外1. 求最大公约数的方法①分解质因数法:先分解质因数,然后把相同的因数连乘起来.例如:2313711=⨯⨯,22252237=⨯⨯,所以(231,252)3721=⨯=;②短除法:先找出所有共有的约数,然后相乘.例如:2181239632,所以(12,18)236=⨯=;③辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数.用辗转相除法求两个数的最大公约数的步骤如下:先用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,得第二个余数;又用第二个余数除第一个余数,得第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是0为止.那么,最后一个除数就是所求的最大公约数.(如果最后的除数是1,那么原来的两个数是互质的).例如,求600和1515的最大公约数:151********÷=;6003151285÷=;315285130÷=;28530915÷=;301520÷=;所以1515和600的最大公约数是15. 2. 最大公约数的性质①几个数都除以它们的最大公约数,所得的几个商是互质数;②几个数的公约数,都是这几个数的最大公约数的约数;③几个数都乘以一个自然数n ,所得的积的最大公约数等于这几个数的最大公约数乘以n .3. 求一组分数的最大公约数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最小公倍数a ;求出各知识点拨教学目标5-4-3.约数与倍数(三)个分数的分子的最大公约数b ;b a即为所求. 4. 约数、公约数最大公约数的关系(1)约数是对一个数说的;(2)公约数是最大公约数的约数,最大公约数是公约数的倍数二、倍数的概念与最小公倍数(1)倍数:一个整数能够被另一整数整除,这个整数就是另一整数的倍数(2)公倍数:在两个或两个以上的自然数中,如果它们有相同的倍数,那么这些倍数就叫做它们的公倍数(3)最小公倍数:公倍数中最小的那个称为这些正整数的最小公倍数。
第23讲分解质因数(一)一、专题简析:1、一个自然数的因数中,为质数的因数叫做这个数的质因数。
把一个合数,用质因数相乘的形式表示出来,叫做分解质因数。
例如:24=2×2×2×3,75=3×5×5。
2、我们数学课本上介绍的分解质因数,是为求最大公约数和最小公倍数服务的。
其实,把一个数分解成质因数相乘的形式,能启发我们寻找解答许多难题的突破口,从而顺利解题。
二、精讲精练例题1 把18个苹果平均分成若干份,每份大于1个,小于18个。
一共有多少种不同的分法?练习一1、有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多于15人。
有哪几种分法?2、195个同学排成长方形队伍做早操,行数和列数都大于1,共有几种排法?例题2 有168颗糖,平均分成若干份,每份不得少于10颗,也不能多于50颗。
共有多少种分法?练习二把462名学生分成人数相等的若干组去参加课外活动小组,每小组人数在10至25人之间,求每组的人数及分成的组数。
例题3 将下面八个数平均分成两组,使这两组数的乘积相等。
2、5、14、24、27、55、56、991、下面四张小纸片各盖住一个数字,如果这四个数字是连续的偶数,请写出这个完整的算式。
□□×□□=12882、有三个自然数a、b、c,已知a×b=30,b×c=35,c×a=42,求a×b×c的积是多少?例题4 王老师带领一班同学去植树,学生恰好分成4组。
如果王老师和学生每人植树一样多,那么他们一共植了539棵。
这个班有多少个学生?每人植树多少棵?1、3月12日是植树节,李老师带领同学们排成两路人数相等的纵队去植树。
已知李老师和同学们每人植树的棵数相等,一共植了111棵树,求有多少个学生。
2、小青去看电影,他买的票的排数与座位号数的积是391,而且排数比座位号数大6。
小青买的电影票是几排几座?例题5 下面的算式里,□里数字各不相同,求这四个数字的和。
5-4-4.完全平方数及应用(一)教学目标1.学习完全平方数的性质;2.整理完全平方数的一些推论及推论过程3.掌握完全平方数的综合运用。
知识点拨一、完全平方数常用性质1.主要性质1.完全平方数的尾数只能是0,1,4,5,6,9。
不可能是2,3,7,8。
2.在两个连续正整数的平方数之间不存在完全平方数。
3.完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。
4.若质数p 整除完全平方数2a ,则p 能被a 整除。
2.性质性质1:完全平方数的末位数字只可能是0,1,4,5,6,9.性质2:完全平方数被3,4,5,8,16除的余数一定是完全平方数.性质3:自然数N 为完全平方数⇔自然数N 约数的个数为奇数.因为完全平方数的质因数分解中每个质因数出现的次数都是偶数次,所以,如果p 是质数,n 是自然数,N 是完全平方数,且21|n p N -,则2|n p N .性质4:完全平方数的个位是6⇔它的十位是奇数.性质5:如果一个完全平方数的个位是0,则它后面连续的0的个数一定是偶数.如果一个完全平方数的个位是5,则其十位一定是2,且其百位一定是0,2,6中的一个.性质6:如果一个自然数介于两个连续的完全平方数之间,则它不是完全平方数.3.一些重要的推论1.任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。
2.一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。
3.自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。
4.完全平方数个位数字是奇数(1,5,9)时,其十位上的数字必为偶数。
5.完全平方数个位数字是偶数(0,4)时,其十位上的数字必为偶数。
6.完全平方数的个位数字为6时,其十位数字必为奇数。
7.凡个位数字是5但末两位数字不是25的自然数不是完全平方数;末尾只有奇数个“0”的自然数不是完全平方数;个位数字为1,4,9而十位数字为奇数的自然数不是完全平方数。
第2讲 分解质因数一、教学目标1.掌握质因数及分解定义.2.学习短除法分解质因数.3.利用分解质因数解决实际问题.二、知识要点1.定义:质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.互质数:公约数只有1的两个自然数,叫做互质数.2.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数. 例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数.分解质因数往往是解数论题目的突破口,可以帮助我们分析数字的特征.3.短除法:短除符号与除式倒过来的符号十分相似,待分解的数放在被除数位置,除数位置放能整除待分解数的一个质数,一直除到商是质数为止.格式如图: ↓被除数待分解2 242 122 6 32 36 2 183 9 34.特殊数分解=⨯;10101371337=⨯⨯⨯.=⨯⨯;1000173137=⨯;1001711131113372017=______×______;2018=______×______;2019=______×______×______×______.三、例题精选【例1】对以下数进行质因数分解.(1)51=_______×_______(2)87=_______×_______(3)3528=______×______×______×______×______×______×______【★★★★★】【解析】51=3×17,87=3×29,3528=2×2×2×3×3×7×7.【巩固1】对以下数进行质因数分解.(1)57=_______×_______(2)91=_______×_______(3)1764=______×______×______×______×______×______【★★★★★】【解析】57=3×19,91=7×13,1764=2×2×3×3×7×7.【例2】如果两个自然数的和与差的积是23,那么这两个自然数分别是多少?【★★★★★】【解析】11和12.因为23是一个质数,23=1×23,故这连个自然数的和应为23,差应为1。
第二十三周分解质因数专题简析:一个自然数的因数中,为质数的因数叫做这个数的质因数。
把一个合数,用质因数相乘的形式表示出来,叫做分解质因数。
例如:24=2×2×2×3,75=3×5×5。
我们数学课本上介绍的分解质因数,是为求最大公约数和最小公倍数服务的。
其实,把一个数分解成质因数相乘的形式,能启发我们寻找解答许多难题的突破口,从而顺利解题。
例题1 把18个苹果平均分成若干份,每份大于1个,小于18个。
一共有多少种不同的分法?分析先把18分解质因数:18=2×3×3,可以看出:18的约数是1、2、3、6、9、18,除去1和18,还有4个约数,所以,一共有4种不同的分法。
练习一1,有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多于15人。
有哪几种分法?2,195个同学排成长方形队伍做早操,行数和列数都大于1,共有几种排法?3,甲数比乙数大9,两个数的积是792,求甲、乙两数分别是多少。
例题2 有168颗糖,平均分成若干份,每份不得少于10颗,也不能多于50颗。
共有多少种分法?分析先把168分解质因数,168=2×2×2×3×7,由于每份不得少于10颗,也不能多于50颗,所以,每份有2×2×3=12颗,2×7=14颗,3×7=21颗,2×2×2×3=24颗,2×3×7=42颗,共有5种分法。
练习二1,把462名学生分成人数相等的若干组去参加课外活动小组,每小组人数在10至25人之间,求每组的人数及分成的组数。
2,四个连续奇数的和是19305,这个四奇数分别是多少?3,把1、2、3、4、5、6、7、8、9九张卡片分给甲、乙、丙三人,每人各3张。
甲说:“我的三个数的积是48。
”乙说:“我的三个数的和是16。
1. 能够利用短除法分解 2. 整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...☆☆☆△△△的结构,而且表达形式唯一”
一、质因数与分解质因数 (1).质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数. (2).互质数:公约数只有1的两个自然数,叫做互质数. (3).分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.
例如:30235.其中2、3、5叫做30的质因数.又如21222323,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征. (4).分解质因数的方法:短除法
例如:212263,(┖是短除法的符号) 所以12223;
二、唯一分解定理 任何一个大于1的自然数n都可以写成质数的连乘积,即:312123kaaaaknppppL其中为质数,12kaaaLL为自然数,并且这种表示是唯一的.该式称为n的质因子分解式.
例如:三个连续自然数的乘积是210,求这三个数. 分析:∵210=2×3×5×7,∴可知这三个数是5、6和7. 三、部分特殊数的分解 111337;100171113;1111141271;1000173137;199535719;1998233337;200733223;2008222251;10101371337.
模块一、分解质因数 【例 1】 分解质因数20034= 。 【考点】分解质因数 【难度】1星 【题型】填空 【关键词】走美杯,决赛,5年级,决赛,第2题,10分 【解析】 原式323753
例题精讲
知识点拨 教学目标 5-3-4.分解质因数(一) 【答案】323753 【例 2】 三个连续自然数的乘积是210,求这三个数是多少? 【考点】分解质因数 【难度】1星 【题型】填空 【解析】 210分解质因数:2102357,可知这三个数是5、6和7。 【答案】5、6和7
【例 3】 两个连续奇数的乘积是111555,这两个奇数之和是多少? 【考点】分解质因数 【难度】2星 【题型】填空 【解析】 111555分解质因数:1115553353767(3337)(567)333335,所以和为668.本讲
不仅要求学生熟练掌握分解质因数,而且要注意一些技巧,例如本题中的111337。 【答案】668
【巩固】 已知两个自然数的积是35,差是2,则这两个自然数的和是_______. 【考点】分解质因数 【难度】2星 【题型】填空 【关键词】希望杯,四年级,二试,第8题 【解析】 35=1×35=5×7,5、7差2,两个自然数的和是5+7=12 【答案】12元
【例 4】 今年是2010年,从今年起年份数正好为三个连续正整数乘积的第一个年份是 。 【考点】分解质因数 【难度】3星 【题型】填空 【关键词】而思杯,6年级,1试,第3题 【解析】 1112131716,1213142184,所以是2184 【答案】2184
【例 5】 如果两个合数互质,它们的最小公倍数是126,那么,它们的和是 . 【考点】分解质因数 【难度】2星 【题型】填空 【关键词】迎春杯,五年级,初赛,第3题 【解析】 2126237,因为两个数互质且都是合数,所以这两个数只能为9和14,它们的和为23. 【答案】23
【例 6】 4个一位数的乘积是360,并且其中只有一个是合数,那么在这4个数字所组成的四位数中,最大的一个是多少? 【考点】分解质因数 【难度】2星 【题型】解答 【解析】 将360分解质因数得360222335,它是6个质因数的乘积.因为题述的四个数中只有一个是合数,所有该合数必至少为633个质因数的积,又只有3个2相乘才能是一位数,所以这4个乘数分别为3,3,5,8,所组成的最大四位数是8533. 【答案】8533
【例 7】 已知5个人都属牛,它们年龄的乘积是589225,那么他们年龄的和为多少? 【考点】分解质因数 【难度】2星 【题型】解答 【解析】 基本思路与上题一样,重点还是在“1”这个因数的使用上,所以分解因数得到 589225113253749,五个人的年龄和为125岁。 【答案】125岁
【例 8】 如果两个自然数的和与差的积是23,那么这两个自然数的和除以这两个数的差的商是___________。 【考点】分解质因数 【难度】2星 【题型】填空 【关键词】希望杯,4年级,初赛,4题 【解析】 根据题意列式子如下:23abab,因为23分解质因数是1与23,所以23,1abab,根据和差关系算出12a,11b,所以这两个自然数的和除以这两个自然数的差的商为23, 【答案】23 【例 9】 2004720的计算结果能够整除三个连续自然数的乘积,这三个连续自然数之和最小是多少? 【考点】分解质因数 【难度】2星 【题型】解答 【解析】 首先分解质因数,20047202222357167,其中最大的质因数是167,所以所要求的三个连续自然数中必定有167本身或者其倍数. 165351,166283,16822237,1691313,所以165166167,166167168,167168169都没有4个2,不满足题意.说明167不可行.尝试3341672,335567,336222237,3343353362222235767167,包括了2004720中的所有质因数,所以这组符合题意,以此三数之和最小为1005. 【答案】1005
【例 10】 A是乘积为2007的5个自然数之和,B是乘积为2007的4个自然数之和。那么A、B两数之差的最大值是 。 【考点】分解质因数 【难度】3星 【题型】填空 【关键词】华杯赛,五年级,决赛,第8题,10分 【解析】 2007=1×1×3×3×223=1×1×1×9×223=1×1×1×3×669=1×1×1×1×2007,所以A的可能值是231或235或675或2011,又2007=1×3×3×223=1×1×9×223=1×1×3×669=1×1×1×2007,所以B的可能值是230或
234或674或2010,A、B两数之差的最大值为 2011-230=1781。 【答案】1781
【例 11】 (老师可以先引入:小明一家四兄弟,大哥叫大毛,二哥叫二毛,三哥叫三毛,那老四叫什么?)大毛、二毛、三毛、小明四个人,他们的年龄一个比一个大2岁,他们四个人年龄的乘积是48384。问他们四个人的年龄各是几岁? 【考点】分解质因数 【难度】2星 【题型】填空 【解析】 题中告诉我们,48384是四个人年龄的乘积,只要我们把48384分解质因数,再按照每组相差2来分成四个数相乘,这四个数就是四个人的年龄了。 4838428337(223)(27)24(232)12141618,由此得出这四个人的年龄分别 是12岁、14岁、16岁、18岁。由题意可知,这四个数是相差2的四个整数。它们的积是偶数, 当然这四个数不是奇数,一定是偶数。又因为48384的个位数字不是0,显然这四个数中,没有
个位数字是0的,那么这四个数的个位数字一定是2、4、6、8。又因为41048384,而44838420, 所以可以断定,这四个数一定是12、14、16、18。也就是说,这四个人的年龄分别是12岁、14 岁、16岁、18岁。答:这四个人的年龄分别是12岁、14岁、16岁、18岁。 【答案】12岁、14岁、16岁、18岁
【例 12】 甲数比乙数大5,乙数比丙数大5,三个数的乘积是6384,求这三个数? 【考点】分解质因数 【难度】2星 【题型】解答 【解析】 将6384分解质因数,638422223719,则其中必有一个数是19或19的倍数;经试算,1951427,195242223,恰好1419246384,所以这三个数即为14,19,24.一般象这种类型的题,都是从最大的那个质因数去分析.如果这道题里19不符合要求,下一个该考虑38,再下一个该考虑57,依此类推. 【答案】14,19,24
【例 13】 四个连续自然数的乘积是3024,这四个自然数中最大的一个是多少? 【考点】分解质因数 【难度】2星 【题型】填空
【解析】 分解质因数433024237,考虑其中最大的质因数7,说明这四个自然数中必定有一个是7的倍数.若为7,因3024不含有质因数5,那么这四个自然数可能是6、7、8、9或7、8、9、10(10仍含有5,不行),经检验6、7、8、9恰符合. 【答案】9 【例 14】 植树节到了,某市举行大型植树活动,共有1430人参加植树,要把人数分成相等的若干队,且每队人数在100至200之间,则有分法( )。 A、3种 B、7种 C、11种 D、13种 【考点】分解质因数 【难度】3星 【题型】选择 【关键词】华杯赛,五年级,初赛,第4题 【解析】 只要找到100到200之间可以整除1430的数即可。1430可分解成2,5,11,13的乘积,所以可以按每组110人,130人,143人分组,共有3个方案。所以答案为A 【答案】A
【例 15】 a、b、c、d、e这五个无数各不相同,它们两两相乘后的积从小到大排列依次为:3,6,15,18,20,50,60,100,120,300.那么,这五个数中从小大大排列第2个数的平方是___________。 A. 1 B. 3 C. 5 D. 10 【考点】分解质因数 【难度】5星 【题型】选择 【关键词】迎春杯,中年级,复试,2题
【解析】 D,解:设abcde。由3,6abac推知2cb;由120,300cede推知552dcb。222bcbbb,255bdbbb,22510cdbbb。在15,18,20,50,60,100中,满足2:5:10的
三个数是20,50,100,所以21001010b。 【答案】D
【例 16】 a、b、c、d、e这五个数各不相同,他们两两相乘后的积从小到大排列依次为:0.3、0.6、1.5、1.8、2、5、6、10、12、30。将这五个数从小到大排成一行,那么,左起第2个数是_________。 (A)0.3 (B)0.5 (C)1 (D)1.5 【考点】分解质因数 【难度】5星 【题型】选择 【关键词】迎春杯,高年级,复试,2题 【解析】 C,设abcde。由题意知,0.3ab,0.6ac,推知2cb;由12ce,30de,推知3055122dccb,222bcbbb,255bdbbb,22510cdbbb,在1.5,1.8,2,5,6,10中,