二次函数的应用测试题2
- 格式:doc
- 大小:50.50 KB
- 文档页数:1
二次函数的应用测试题(含答案)一.选择题(共8小题)1.一个小球被抛出后,如果距离地面的高度h(米)和运行时间t(秒)的函数解析式为h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是()A.1米B.3米C.5米D.6米2.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(单位:万元)与销售量x(单位:辆)之间分别满足:y1=﹣x2 +10x,y2=2x,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为()A.30万元B.40万元C.45万元D.46万元3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的()A.第9.5秒B.第10秒C.第10.5秒D.第11秒4.如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x 轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm.则右轮廓线DFE所在抛物线的函数解析式为()A.y= (x+3)2B.y= (x+3)2C.y= (x﹣3)2D.y= (x﹣3)25.烟花厂为国庆观礼特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A.2sB.4sC.6sD.8s6一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣5t2+20t﹣14,则小球距离地面的最大高度是()A.2米B.5米C.6米D.14米7.烟花厂为成都春节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为()A.3sB.4sC.5sD.6s8.某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y= (x>0),若该车某次的刹车距离为5m,则开始刹车时的速度为()A.40 m/sB.20 m/sC.10 m/sD.5 m/s二.填空题(共6小题)9.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为_________米.10.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是_________.11.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为_________元.12.在平面直角坐标系中,点A、B、C的坐标分别为(0,1)、(4,2)、(2,6).如果P(x,y)是△ABC围成的区域(含边界)上的点,那么当w=xy取得最大值时,点P 的坐标是_________.13.如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数解析式,那么铅球运动过程中最高点离地面的距离为_________米.14.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图.这种工艺品的销售量为_________件(用含x的代数式表示).三.解答题(共8小题)15.某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现当销售价为24元时,平均每天能售出32件,而当销售价每上涨2元,平均每天就少售出4件.(1)若公司每天的现售价为x元时则每天销售量为多少?(2)如果物价部门规定这种零件的销售价不得高于每件28元,该公司想要每天获得150元的销售利润,销售价应当为多少元?16.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].17.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?18.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为yA℃、yB℃,yA、yB与x的函数关系式分别为yA=kx+b,yB= (x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求yA、yB关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?19.“丹棱冻粑”是眉山著名特色小吃,产品畅销省内外,现有一个产品销售点在经销时发现:如果每箱产品盈利10元,每天可售出50箱;若每箱产品涨价1元,日销售量将减少2箱.(1)现该销售点每天盈利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元?(2)若该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高?20.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)21.某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围.22.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx ﹣75.其图象如图所示.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?26.3.3二次函数的应用参考答案与试题解析一.选择题(共8小题)1.一个小球被抛出后,如果距离地面的高度h(米)和运行时间t(秒)的函数解析式为h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是()A. 1米B.3米C.5米D. 6米考点:二次函数的应用.分析:直接利用配方法求出二次函数最值进而求出答案.解答:解:h=﹣5t2+10t+1=﹣5(t2﹣2t)+1=﹣5(t﹣1)2+6,故小球到达最高点时距离地面的高度是:6m.故选:D.点评:此题主要考查了二次函数的应用,正确利用配方法求出是解题关键.2.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(单位:万元)与销售量x(单位:辆)之间分别满足:y1=﹣x2+10x,y2=2x,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为()A. 30万元B.40万元C.45万元D. 46万元考点:二次函数的应用.分析:首先根据题意得出总利润与x之间的函数关系式,进而求出最值即可.解答:解:设在甲地销售x辆,则在乙地销售(15﹣x)量,根据题意得出:W=y1+y2=﹣x2+10x+2(15﹣x)=﹣x2+8x+30,∴最大利润为:= =46(万元),故选:D.点评:此题主要考查了二次函数的应用,得出函数关系式进而利用最值公式求出是解题关键.3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的()A.第9.5秒B.第10秒C.第10.5秒D.第11秒考点:二次函数的应用.分析:根据题意,x=7时和x=14时y值相等,因此得到关于a,b的关系式,代入到x=﹣中求x的值.解答:解:当x=7时,y=49a+7b;当x=14时,y=196a+14b.根据题意得49a+7b=196a+14b,∴b=﹣21a,根据二次函数的对称性及抛物线的开口向下,当x=﹣=10.5时,y最大即高度最高.因为10最接近10.5.故选:C.点评:此题主要考查了二次函数的应用,根据对称性看备选项中哪个与之最近得出结论是解题关键.4.如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x 轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm.则右轮廓线DFE所在抛物线的函数解析式为()A. y= (x+3)2B.y= (x+3)2C.y= (x﹣3)2D. y= (x﹣3)2考点:二次函数的应用.专题:应用题.分析:利用B、D关于y轴对称,CH=1cm,BD=2cm可得到D点坐标为(1,1),由AB=4cm,最低点C在x轴上,则AB关于直线CH对称,可得到左边抛物线的顶点C的坐标为(﹣3,0),于是得到右边抛物线的顶点C的坐标为(3,0),然后设顶点式利用待定系数法求抛物线的解析式.解答:解:∵高CH=1cm,BD=2cm,而B、D关于y轴对称,∴D点坐标为(1,1),∵AB∥x轴,AB=4cm,最低点C在x轴上,∴AB关于直线CH对称,∴左边抛物线的顶点C的坐标为(﹣3,0),∴右边抛物线的顶点C的坐标为(3,0),设右边抛物线的解析式为y=a(x﹣3)2,把D(1,1)代入得1=a×(1﹣3)2,解得a= ,故右边抛物线的解析式为y= (x﹣3)2.故选C.点评:本题考查了二次函数的应用:利用实际问题中的数量关系与直角坐标系中线段对应起来,再确定某些点的坐标,然后利用待定系数法确定抛物线的解析式,再利用抛物线的性质解决问题.5.烟花厂为国庆观礼特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A. 2sB.4sC.6sD. 8s考点:二次函数的应用.分析:礼炮在点火升空到最高点处引爆,故求h的最大值.解答:解:由题意知礼炮的升空高度h(m)与飞行时间t(s)的关系式是:,∵<0∴当t=4s时,h最大为40m,故选B.点评:本题考查二次函数的实际应用,借助二次函数解决实际问题.6.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣5t2+20t﹣14,则小球距离地面的最大高度是()A. 2米B.5米C.6米D. 14米考点:二次函数的应用.分析:把二次函数的解析式化成顶点式,即可得出小球距离地面的最大高度.解答:解:h=﹣5t2+20t﹣14=﹣5(t2﹣4t)﹣14=﹣5(t2﹣4t+4)+20﹣14=﹣5(t﹣2)2+6,﹣5<0,则抛物线的开口向下,有最大值,当t=2时,h有最大值是6米.故选:C.点评:本题考查了二次函数的应用以及配方法求二次函数最值,把函数式化成顶点式是解题关键.7.烟花厂为成都春节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为()A. 3sB.4sC.5sD. 6s考点:二次函数的应用.专题:计算题;应用题.分析:到最高点爆炸,那么所需时间为﹣.解答:解:∵礼炮在点火升空到最高点引爆,∴t=﹣=﹣=4s.故选B.点评:考查二次函数的应用;判断出所求时间为二次函数的顶点坐标的横坐标的值是解决本题的关键.8.某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y= (x>0),若该车某次的刹车距离为5m,则开始刹车时的速度为()A. 40 m/sB.20 m/sC.10 m/sD. 5 m/s考点:二次函数的应用.专题:应用题.分析:本题实际是告知函数值求自变量的值,代入求解即可,另外实际问题中,负值舍去.解答:解:当刹车距离为5m时,即可得y=5,代入二次函数解析式得:5= x2.解得x=±10,(x=﹣10舍),故开始刹车时的速度为10m/s.故选C.点评:本题考查了二次函数的应用,明确x、y代表的实际意义,刹车距离为5m,即是y=5,难度一般.二.填空题(共6小题)9.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为米.考点:二次函数的应用.专题:函数思想.分析:根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=﹣1代入抛物线解析式得出水面宽度,即可得出答案.解答:解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x= ,所以水面宽度增加到米,故答案为:米.点评:此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.10.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是y=﹣(x+6)2+4.考点:二次函数的应用.专题:数形结合.分析:根据题意得出A点坐标,进而利用顶点式求出函数解析式即可.解答:解:由题意可得出:y=a(x+6)2+4,将(﹣12,0)代入得出,0=a(﹣12+6)2+4,解得:a=﹣,∴选取点B为坐标原点时的抛物线解析式是:y=﹣(x+6)2+4.故答案为:y=﹣(x+6)2+4.点评:此题主要考查了二次函数的应用,利用顶点式求出函数解析式是解题关键.11.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为25元.考点:二次函数的应用.专题:销售问题.分析:本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.解答:解:设最大利润为w元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案是:25.点评:本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.12.在平面直角坐标系中,点A、B、C的坐标分别为(0,1)、(4,2)、(2,6).如果P(x,y)是△ABC围成的区域(含边界)上的点,那么当w=xy取得最大值时,点P 的坐标是(,5).考点:二次函数的应用.专题:压轴题.分析:分别求得线段AB、线段AC、线段BC的解析式,分析每一条线段上横、纵坐标的乘积的最大值,再进一步比较.解答:解:线段AB的解析式是y= x+1(0≤x≤4),此时w=x(x+1)= +x,则x=4时,w最大=8;线段AC的解析式是y= x+1(0≤x≤2),此时w=x(x+1)= +x,此时x=2时,w最大=12;线段BC的解析式是y=﹣2x+10(2≤x≤4),此时w=x(﹣2x+10 )=﹣2x2+10x,此时x= 时,w最大=12.5 .综上所述,当w=xy取得最大值时,点P的坐标是(,5).点评:此题综合考查了二次函数的一次函数,能够熟练分析二次函数的最值.13.如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数解析式,那么铅球运动过程中最高点离地面的距离为2米.考点:二次函数的应用.分析:直接利用公式法求出函数的最值即可得出最高点离地面的距离.解答:解:∵函数解析式为:,∴y最值= = =2.故答案为:2.点评:此题主要考查了二次函数的应用,正确记忆最值公式是解题关键.14.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图.这种工艺品的销售量为(60+x)件(用含x的代数式表示).考点:二次函数的应用.分析:由函数的图象可知点(30,2700)和点(60,0)满足解析式w=mx2+n,设销售量为a,代入函数的解析式,即可得到a和x的关系.解答:解:由函数的图象可知点(30,2700)和点(60,0)满足解析式w=mx2+n,∴,解得:,∴w=﹣x2+3600,设销售量为a,则a(60﹣x)=w,即a(60﹣x)=﹣x2+3600,解得:a=(60+x ),故答案为:(60+x).点评:本题考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题,用的知识点为:因式分解,题目设计比较新颖,同时也考查了学生的逆向思维思考问题.三.解答题(共8小题)15.某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现当销售价为24元时,平均每天能售出32件,而当销售价每上涨2元,平均每天就少售出4件.(1)若公司每天的现售价为x元时则每天销售量为多少?(2)如果物价部门规定这种零件的销售价不得高于每件28元,该公司想要每天获得150元的销售利润,销售价应当为多少元?考点:二次函数的应用.分析:(1)由原来的销量﹣每天减少的销量就可以得出现在每天的销量而得出结论; (2)由每件的利润×数量=总利润建立方程求出其解即可.解答:解:(1)由题意,得32﹣×4=80﹣2x.答:每天的现售价为x元时则每天销售量为(80﹣2x)件;(2)由题意,得(x﹣20)(80﹣2x)=150,解得:x1=25,x2=35.∵x≤28,∴x=25.答:想要每天获得150元的销售利润,销售价应当为25元.点评:本题考查了销售问题的数量关系每件的利润×数量=总利润的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据销售问题的等量关系建立方程是关键.16.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].考点:二次函数的应用;一元二次方程的应用.专题:销售问题.分析:(1)根据销售量=240﹣(销售单价每提高5元,销售量相应减少20套)列函数关系即可;(2)根据月销售额=月销售量×销售单价=14000,列方程即可求出销售单价;(3)设一个月内获得的利润为w元,根据利润=1套球服所获得的利润×销售量列式整理,再根据二次函数的最值问题解答.解答:解:(1),∴y=﹣4x+480(x≥60);(2)根据题意可得,x(﹣4x+480)=14000,解得,x1=70,x2=50(不合题意舍去),∴当销售价为70元时,月销售额为14000元.(3)设一个月内获得的利润为w元,根据题意,得w=(x﹣40)(﹣4x+480),=﹣4x2+640x﹣19200,=﹣4(x﹣80)2+6400,当x=80时,w的最大值为6400∴当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.点评:本题考查了二次函数的应用以及一元二次方程的应用,并涉及到了根据二次函数的最值公式,熟练记忆公式是解题关键.17.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?考点:二次函数的应用.专题:销售问题.分析:(1)设函数关系式y=kx+b,把(10,40),(18,24)代入求出k和b即可,由成本价为10元/千克,销售价不高于18元/千克,得出自变量x的取值范围;(2)根据销售利润=销售量×每一件的销售利润得到w和x的关系,利用二次函数的性质得最值即可;(3)先把y=150代入(2)的函数关系式中,解一元二次方程求出x,再根据x的取值范围即可确定x的值.解答:解:(1)设y与x之间的函数关系式y=kx+b,把(10,40),(18,24)代入得,解得,∴y与x之间的函数关系式y=﹣2x+60(10≤x≤18);(2)W=(x﹣10)(﹣2x+60)=﹣2x2+80x﹣600,对称轴x=20,在对称轴的左侧y随着x的增大而增大,∵10≤x≤18,∴当x=18时,W最大,最大为192.即当销售价为18元时,每天的销售利润最大,最大利润是19 2元.(3)由150=﹣2x2+80x﹣600,解得x1=15,x2=25(不合题意,舍去)答:该经销商想要每天获得150元的销售利润,销售价应定为15元.点评:本题考查了二次函数的应用,得到每天的销售利润的关系式是解决本题的关键,结合实际情况利用二次函数的性质解决问题.18.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B 两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为yA℃、yB℃,yA、yB与x的函数关系式分别为yA=kx+b,yB= (x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求yA、yB关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?考点:二次函数的应用.专题:应用题;数形结合.分析:(1)首先求出yB函数关系式,进而得出交点坐标,即可得出yA函数关系式;(2)首先将y=120代入求出x的值,进而代入yB求出答案;(3)得出yA﹣yB的函数关系式,进而求出最值即可.解答:解:(1)由题意可得出:yB= (x﹣60)2+m经过(0,1000),则1000= (0﹣60)2+m,解得:m=100,∴yB= (x﹣60)2+100,当x=40时,yB= ×(40﹣60)2+100,解得:yB=200,yA=kx+b,经过(0,1000),(40,200),则,解得:,∴yA=﹣20x+1000;(2)当A组材料的温度降至120℃时,120=﹣20x+1000,解得:x=44,当x=44,yB= (44﹣60)2+100=164(℃),∴B组材料的温度是164℃;(3)当0<x<40时,yA﹣yB=﹣20x+1000﹣(x﹣60)2﹣100=﹣x2+10x=﹣(x﹣20) 2+100,∴当x=20时,两组材料温差最大为100℃.点评:此题主要考查了二次函数的应用以及待定系数法求一次函数解析式以及二次函数最值求法等知识,得出两种材料的函数关系式是解题关键.19.“丹棱冻粑”是眉山著名特色小吃,产品畅销省内外,现有一个产品销售点在经销时发现:如果每箱产品盈利10元,每天可售出50箱;若每箱产品涨价1元,日销售量将减少2箱.(1)现该销售点每天盈利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元?(2)若该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高?考点:二次函数的应用;一元二次方程的应用.专题:销售问题.分析:(1)设每箱应涨价x元,得出日销售量将减少2x箱,再由盈利额=每箱盈利×日销售量,依题意得方程求解即可;(2)设每箱应涨价x元,得出日销售量将减少2x箱,再由盈利额=每箱盈利×日销售量,依题意得函数关系式,进而求出最值.解答:解:(1)设每箱应涨价x元,则每天可售出(50﹣2x)箱,每箱盈利(10+x)元,依题意得方程:(50﹣2x)(10+x)=600,整理,得x2﹣15x+50=0,解这个方程,得x1=5,x2=10,∵要使顾客得到实惠,∴应取x=5,答:每箱产品应涨价5元.(2)设利润为y元,则y=(50﹣2x)(10+x),整理得:y=﹣2x2+30x+500,配方得:y=﹣2(x﹣7.5)2+612.5,当x=7.5元,y可以取得最大值,∴每箱产品应涨价7.5元才能获利最高.点评:此题考查了一元二次方程的应用以及二次函数应用,解答此题的关键是熟知等量关系是:盈利额=每箱盈利×日销售量.20.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)考点:二次函数的应用.专题:销售问题.分析:(1)根据“利润=(售价﹣成本)×销售量”列出方程;。
二次函数测试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是二次函数的一般形式?A. y = 2x + 1B. y = x^2 + 3x + 2C. y = 3x^3 - 5D. y = 4/x答案:B2. 二次函数y = ax^2 + bx + c的顶点坐标为(h, k),那么h的值为:A. -b/2aB. -b/aC. b/2aD. b/a答案:C3. 二次函数y = 2x^2 - 4x + 3的对称轴方程是:A. x = 1B. x = -1C. x = 2D. x = -2答案:A4. 如果二次函数y = ax^2 + bx + c的图象开口向上,那么a的值:A. 大于0B. 小于0C. 等于0D. 可以是任意实数答案:A5. 二次函数y = -x^2 + 4x - 3的顶点坐标是:A. (1, 2)B. (2, 1)C. (3, 0)D. (3, 4)答案:C6. 二次函数y = 3x^2 - 6x + 5的图象与x轴的交点个数是:A. 0个B. 1个C. 2个D. 3个答案:C7. 二次函数y = x^2 - 4x + 4的最小值是:A. 0B. 4C. -4D. 1答案:A8. 二次函数y = 2x^2 - 4x + 3的图象开口方向是:A. 向上B. 向下C. 向左D. 向右答案:A9. 二次函数y = -x^2 + 2x + 3的图象与y轴的交点坐标是:A. (0, 3)B. (0, -3)C. (0, 5)D. (0, -5)答案:A10. 二次函数y = 5x^2 - 10x + 8的图象与x轴的交点坐标是:A. (2, 0)B. (-2, 0)C. (1, 0)D. (-1, 0)答案:A二、填空题(每题4分,共20分)1. 二次函数y = ax^2 + bx + c的图象开口向上,且经过点(2, 0),则a的值至少为______。
答案:02. 二次函数y = 2x^2 - 4x + 3的顶点坐标是(______, ______)。
专题第02讲二次函数的实际应用(30题)1.(2022秋•泰兴市期末)一水果店售卖一种水果,以8元/千克的价格进货,经过往年销售经验可知:以12元/千克售卖,每天可卖60千克;若每千克涨价0.5元,每天要少卖2千克;若每千克降价0.5元,每天要多卖2千克,但不低于成本价.设该商品的价格为x元/千克时,一天销售总质量为y千克.(1)求y与x的函数关系式.(2)若水果店货源充足,每天以固定价格x元/千克销售(x≥8),试求出水果店每天利润W与单价x的函数关系式,并求出当x为何值时,利润达到最大.2.(2023•朝阳)某超市以每件10元的价格购进一种文具,销售时该文具的销售单价不低于进价且不高于19元.经过市场调查发现,该文具的每天销售数量y(件)与销售单价x(元)之间满足一次函数关系,部分数据如下表所示:销售单价x/元…121314……363432…每天销售数量y/件(1)直接写出y与x之间的函数关系式;(2)若该超市每天销售这种文具获利192元,则销售单价为多少元?(3)设销售这种文具每天获利w(元),当销售单价为多少元时,每天获利最大?最大利润是多少元?3.(2023•海淀区校级开学)电缆在空中架设时,两端挂起的电缆下垂可以近似的看成抛物线的形状.如图,在一个斜坡BD上按水平距离间隔60米架设两个塔柱,每个塔柱固定电缆的位置离地面高度为27米(AB =CD=27米),以过点A的水平线为x轴,水平线与电缆的另一个交点为原点O建立平面直角坐标系,如图所示.经测量,AO=40米,斜坡高度12米(即B、D两点的铅直高度差).结合上面信息,回答问题:(1)若以1米为一个单位长度,则D点坐标为,下垂电缆的抛物线表达式为.(2)若电缆下垂的安全高度是13.5米,即电缆距离坡面铅直高度的最小值不小于13.5米时,符合安全要求,否则存在安全隐患.(说明:直线GH⊥x轴分别交直线BD和抛物线于点H、G.点G距离坡面的铅直高度为GH的长),请判断上述这种电缆的架设是否符合安全要求?请说明理由.4.(2023春•江岸区校级月考)如图,在斜坡底部点O处安装一个的自动喷水装置,喷水头(视为点A)的高度(喷水头距喷水装置底部的距离)是1.8米,自动喷水装置喷射出的水流可以近似地看成抛物线.当喷射出的水流与喷水装置的水平距离为8米时,达到最大高度5米.以点O为原点,自动喷水装置所在的直线为y轴,建立平面直角坐标系.(1)求抛物线的解析式;(2)斜坡上距离O水平距离为10米处有一棵高度为1.75米的小树NM,MN垂直水平地面且M点到水平地面的距离为2米.①记水流的高度为y1,斜坡的高度为y2,求y1﹣y2的最大值(斜坡可视作直线OM);②如果要使水流恰好喷射到小树顶端的点N,直接写出自动喷水装置应向后平移(即抛物线向左)多少米?5.(2023•武汉模拟)如图,灌溉车为绿化带浇水,喷水口H离地竖直高度OH为1.2m.可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3m,竖直高度EF=0.5m.下边缘抛物线是由上边缘抛物线向左平移得到,上边抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.4m,灌溉车到绿化带的距离OD为d(单位:m).(1)求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;(2)求下边缘抛物线与x轴的正半轴交点B的坐标;(3)要使灌溉车行驶时喷出的水能浇灌到整个绿化带,直接写出d的取值范围.6.(2022秋•华容区期末)农户销售某农产品,经市场调查发现:若售价为6元/千克,日销售量为40千克,若售价每提高1元/千克,日销售量就减少2千克.现设售价为x元/千克(x≥6且为正整数).(1)若某日销售量为24千克,求该日产品的单价;(2)若政府将销售价格定为不超过18元/千克.设每日销售额为w元,求w关于x的函数表达式,并求w的最大值和最小值;(3)市政府每日给农户补贴a元后(a为正整数),发现最大日收入(日收入=销售额+政府补贴)还是不超过450元,并且只有5种不同的单价使日收入不少于440元,请直接写出所有符合题意的a的值.7.(2023春•蔡甸区月考)如图,抛物线AB,AC是某喷水器喷出的水抽象而成,抛物线AB由抛物线AC 向左平移得到,把汽车横截面抽象为矩形DEFG,其中DE=米,DG=2米,OA=h米,抛物线AC表达式为y=a(x﹣2)2+h+,h=,且点A,B,D,G,C均在坐标轴上.(1)求抛物线AC表达式.(2)求点B的坐标.(3)要使喷水器喷出的水能洒到整个汽车,记OD长为d米,直接写出d的取值范围.8.(2022秋•华容区期末)如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y 轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高.球第一次落地点后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式.(2)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取,)9.(2023•淮安一模)某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?10.(2023•盘锦)某工厂生产一种产品,经市场调查发现,该产品每月的销售量y(件)与售价x(万元/件)之间满足一次函数关系,部分数据如表:每件售价x/万元…2426283032…月销售量y/件…5248444036…(1)求y与x的函数关系式(不写自变量的取值范围).(2)该产品今年三月份的售价为35万元/件,利润为450万元.①求:三月份每件产品的成本是多少万元?②四月份工厂为了降低成本,提高产品质量,投资了450万元改进设备和革新技术,使每件产品的成本比三月份下降了14万元.若四月份每件产品的售价至少为25万元,且不高于30万元,求这个月获得的利润w(万元)关于售价x(万元/件)的函数关系式,并求最少利润是多少万元.11.(2023春•江都区月考)某企业生产并销售某种产品,假设销售量与产量相等,图中的线段AB表示该产品每千克生产成本y1(单位:元)与产量x(单位:kg)之间的函数关系;线段CD表示该产品销售价y2(单位:元)与产量x(单位:kg)之间的函数关系,已知0<x≤120,m>60.(1)求线段AB所表示的y1与x之间的函数表达式;(2)若m=90,该产品产量为多少时,获得的利润最大?最大利润是多少?(3)若60<m<70,该产品产量为多少时,获得的利润最大?最大利润是多少?12.(2023•梁溪区模拟)为加强劳动教育,各校纷纷落实劳动实践基地.某校学生在种植某种高产番茄时,经过试验发现:①当每平方米种植2株番茄时,平均单株产量为8.4千克;②在每平方米种植的株数不超过10的前提下,以同样的栽培条件,株数每增加1株,平均单株产量减少0.8千克.(1)求平均单株产量y(千克)与每平方米种植的株数x(x为整数,且2≤x<10)之间的函数关系式;(2)已知学校劳动基地共有10平方米的空地用于种植这种番茄.问:当每平方米种植多少株时,该学校劳动基地能获得最大的产量?最大产量为多少千克?13.(2023春•仓山区校级期末)根据以下素材,探索完成任务.如何设计大棚苗木种植方案?素材1:图1中有一个大棚苗木种植基地及其截面图,其下半部分是一个长为20m,宽为1m的矩形,其上半部分是一条抛物线,现测得,大棚顶部的最高点距离地面5m.素材2:种植苗木时,每棵苗木高1.76m,为了保证生长空间,相邻两棵苗木种植点之间间隔1m,苗木顶部不触碰大棚,且种植后苗木成轴对称分布.(1)任务1:确定大棚上半部分形状.根据图2建立的平面直角坐标系,通过素材1提供的信息确定点的坐标,求出抛物线的函数关系式;(2)任务2:探究种植范围.在图2的坐标系中,在不影响苗木生长的情况下,确定种植点的横坐标的取值范围.14.(2023•岳麓区校级二模)从2020年开始,越来越多的商家向线上转型发展,“直播带货”已经成为商家的一种促销的重要手段.某商家在直播间销售一种进价为每件10元的日用商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)满足y=﹣10x+400,设销售这种商品每天的利润为W(元).(1)求W与x之间的函数关系式;(2)该商家每天想获得1250元的利润,又要减少库存,应将销售单价定为多少元?(3)若销售单价不低于28元,且每天至少销售50件时,求W的最大值.15.(2022秋•蜀山区校级期末)某超市经销甲、乙两种商品.商品甲每千克成本为20元,经试销发现,该种商品每天销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系,商品乙的成本为4元/千克,销售单价为10元/千克,但每天供货总量只有80千克,且能当天销售完.为了让利消费者,超市开展了“买一送一”活动,即买1千克的商品甲,免费送1千克的商品乙.(1)直接写出销售量y与销售单价x之间的函数表达式;(2)设这两种商品的每天销售总额为S元,求出S(元)与x(元/千克)的函数关系式;(注:商品的销售额=销售单价×销售量)(3)设这两种商品销售总利润为W,若商品甲的售价不低于成本,不超过成本的150%,当销售单价定为多少时,才能使当天的销售总利润最大?最大利润是多少?(注:销售总利润=两种商品的销售总额﹣两种商品的总成本)16.(2023春•莲池区校级期中)为促进学生德智体美劳全面发展,推动文化学习与体育锻炼协调发展,某校举办了学生趣味运动会.该校计划用不超过5900元购买足球和篮球共36个,分别作为运动会团体一、二等奖的奖品.已知足球单价170元,篮球单价160元.(1)学校至多可购买多少个足球?(2)受卡塔尔世界杯的影响,学校商议决定按(1)问的结果购买足球作为一等奖奖品,以鼓励更多学生热爱足球,同时商场也对足球和篮球的价格进行调整,足球单价下降了a%,篮球单价上涨了,最终学校购买奖品的经费比计划经费的最大值节省了155元,求a的值.17.(2023春•宜都市期末)某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间具有一次函数关系:y=ax+b.当x=5时,y=40;当x=30时,y=140.B 城生产产品的每件成本为7万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本之和为660万元时,求A,B两城各生产产品多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D 两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,若A,B 两城总运费之和的最小值为150万元,求m的值.18.(2023•海淀区校级四模)某公园修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安装一个可调节角度的喷水头,从喷水头喷出的水柱形状是一条抛物线.建立如图所示的平面直角坐标系,抛物线形水柱的竖直高度y(单位:m)与到池中心的水平距离x(单位:m)满足的关系式近似为y=a (x﹣h)2+k(a<0).(1)在某次安装调试过程中,测得x与y的部分对应值如下表:水平距离x/m00.51 1.52 2.53竖直高度y/m 2.25 2.81253 2.8125 2.25 1.31250根据表格中的数据,解答下列问题:①水管的长度是m;②求出y与x满足的函数解析式y=a(x﹣h)2+k(a<0);(2)安装工人在上述基础上进行了下面两种调试:①不改变喷水头的角度,将水管长度增加1m,水柱落地时与池中心的距离为d1;②不改变水管的长度,调节喷水头的角度,使得水柱满足y=﹣0.6(x﹣1.5)2+3.6,水柱落地时与池中心的距离为d2.则比较d1与d2的大小关系是:d1d2(填“>”或“=”或“<”)19.(2023•罗山县三模)实心球是中考体育项目之一.在掷实心球时,实心球被掷出后的运动路线可以看作是抛物线的一部分.已知小军在一次掷实心球训练中,第一次投掷时出手点距地面1.8m,实心球运动至最高点时距地面3.4m,距出手点的水平距离为4m.设实心球掷出后距地面的竖直高度为y(m),实心球距出手点的水平距离为x(m).如图,以水平方向为x轴,出手点所在竖直方向为y轴建立平面直角坐标系.(1)求第一次掷实心球时运动路线所在抛物线的表达式.(2)若实心球投掷成绩(即出手点与着陆点的水平距离)达到12.4m为满分,请判断小军第一次投掷实心球能否得满分.(3)第二次投掷时,实心球运动的竖直高度y与水平距离x近似满足函数关系y=﹣0.08(x﹣5)2+3.8记小军第一次投掷时出手点与着陆点的水平距离为d1,第二次投掷时出手点与着陆点的水平距离为d2,则d1d2.(填“>”“<”“=”)20.(2023•花溪区校级一模)过山车是一项富有刺激性的娱乐工具,在乘坐过山车的过程中能够亲身体验由能量守恒、加速度和力交织在一起产生的效果,那感觉真是妙不可言.如图是合肥某乐园中部分过山车滑道所抽象出来的函数图象,线段AB是一段直线滑道,且AB长为米,点A到地面距离OA=6米,点B到地面距离BE=3米,滑道B﹣C﹣D可以看作一段抛物线,最高点为C(8,4).(1)求滑道B﹣C﹣D部分抛物线的函数表达式;(2)当小车(看成点)沿滑道从A运动到D的过程中,小车距离x轴的垂直距离为2.5米时,它到出发点A的水平距离是多少?(3)现在需要对滑道C﹣D部分进行加固,建造某种材料的水平和竖直支架CF,PH,PG.已知这种材料的价格是75000元/米,为了预算充足,至少需要申请多少元的资金.21.(2022秋•丰都县期末)抛实心球是丰都中考体育考试项目之一,如图1是一名男生投实心球情境,实心球行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图2所示,掷出时,起点处高度为1.9m,当水平距离为4m时,实心球行进至最高点3.5m处.(1)求y关于x的函数表达式;(2)根据中考体育考试评分标准(男生版),投掷过程中,实心球从起点到落地点的水平距离大于等于9.7m时,即可得满分10分.该男生在此项考试中能否得满分,请说明理由.22.(2022秋•建昌县期末)2022年11月,“中国传统制茶技艺及其相关习俗”申遗成功,弘扬茶文化,倡导“和美雅静”的生活方式已成时尚.某茶商经销某品牌茶,成本为50元/千克,经市场调查发现,每周的销量y(千克)与销售单价x(元/千克)满足一次函数关系,部分数据列表如下:566575…销售单价x(元/千克)销量y(千克)12811090…(1)求y与x的一次函数关系式;(2)求该茶商这一周销售该品牌茶叶所获利润w(元)的最大值.23.(2023•锦州二模)近年来国家出台政策要求电动车上牌照,“保安全、戴头盔”出行.某头盔专卖店购进一批单价为36元的头盔.在销售中,通过分析销售情况发现这种头盔的月销售量y(个)与售价x(元/个)(42≤x≤72)满足一次函数关系,下表是其中的两组对应值.售价x(元/个)…5055…月销售量y(个)…10090…(1)求y与x之间的函数关系式;(2)专卖店的优惠活动:若购买一个这种头盔,就赠送一个成本为6元的头盔面罩.请问这种头盔的售价定为多少元时,月销售利润最大,最大月销售利润是多少元?24.(2023•金湖县三模)某超市购进甲、乙两种商品,已知购进5件甲商品和2件乙商品,需80元:购进3件甲商品和4件乙商品,需90元.(1)甲、乙两种商品的进货单价分别是多少?(2)设甲商品的销售单价为x(单位:元/件),在销售过程中发现:当12≤x≤18时,甲商品的日销售量y(单位:件)与销售单价x之间存在一次函数关系,x、y之间的部分数值对应关系如表:销售单价x(元/件)1218日销售量y(件)164请写出当12≤x≤18时,y与x之间的函数关系式;(3)在(2)的条件下,设甲商品的日销售利润为w元,当甲商品的销售单价x(元/件)定为多少时,日销售利润最大?最大利润是多少?25.(2022秋•新抚区期末)疫情防控常态化,全国人民同心抗疫.某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售,市场调查发现,线下的月销量y(件)与线下售价x(元/件,且12≤x≤16)之间满足一次函数关系,部分数据如下表:x(元/件)12131415y(件)1000900800700(1)求y与x之间的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为600件.当x为何值时,线上和线下销售月利润总和W达到最大?最大利润是多少?(3)要使(2)中月利润总和W不低于4400元,请直接写出x的取值范围.26.(2023•嘉鱼县模拟)为巩固扶贫攻坚成果,我县政府督查各部门和单位对口扶贫情况.某单位的帮扶对象种植的农产品在某月(按30天计)的第x天(x为正整数)的销售价格p(元/千克)关于x的函数关系为p=,销售量y(千克)与x之间的关系如图所示.(1)直接写出y与x之间的函数关系式和x的取值范围;(2)求该农产品的销售量有几天不超过60千克?(3)当月第几天,该农产品的销售额最大,最大销售额是多少?(销售额=销售量×销售价格)27.(2023•云梦县校级三模)李丽大学毕业后回家乡创业,开了一家服装专卖店代理品牌服装的销售.已知该品牌服装进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),每天付员工的工资每人82元,每天应支付其他费用106元.(1)直接写出日销售y(件)与销售价x(元/件)之间的函数关系式;(2)当某天的销售价为48元/件时,收支恰好平衡(收入=支出),求该店员工人数;(3)若该店只有2名员工,则每天能获得的最大利润是多少元?此时,每件服装的价格应定为多少元?28.(2023•卧龙区二模)如图,在斜坡底部点O处安装一个自动喷水装置,喷水头(视为点A)的高度(喷水头距喷水装置底部的距离)是1.8米,自动喷水装置喷射出的水流可以近似地看成抛物线.当喷射出的水流与喷水装置的水平距离为8米时,达到最大高度5米.以点O为原点,自动喷水装置所在的直线为y轴,建立平面直角坐标系.(1)求抛物线的函数关系式;(2)斜坡上距离O水平距离为10米处有一棵高度为1.75米的小树NM,MN垂直水平地面,且M点到水平地面的距离为2米,绿化工人向左水平移动喷水装置后,水流恰好喷射到小树顶端的点N,求自动喷水装置向左水平平移(即抛物线向左)了多少米?29.(2023•竞秀区二模)过山车是一项富有刺激性的娱乐工具,深受年轻游客的喜爱.某游乐场修建了一款大型过山车.如图所示,A→B→C为这款过山车的一部分轨道(B为轨道最低点),它可以看成一段抛物线,其中OA=16.9米,OB=13米(轨道厚度忽略不计).(1)求抛物线A→B→C的函数表达式;(2)在轨道上有两个位置P和C到地面的距离均为n米,当过山车运动到C处时,又进入下坡段C→E (接口处轨道忽略不计,E为轨道最低点),已知轨道抛物线C→E→F的形状与抛物线A→B→C完全相同,E点坐标为(33,0),求n的值;(3)现需要对轨道下坡段A→B进行安全加固,建造某种材料的水平和竖直支架GD、GM、HI、HN,且要求MN=2OM,已知这种材料的价格是100000元/米,请计算OM多长时,造价最低?最低造价为多少元?30.(2023•利辛县模拟)如图,某小区的景观池中安装一雕塑OA,OA=2米,在点A处安装喷水装置,喷出两股水流,两股水流可以抽象为平面直角坐标系中的两条抛物线(图中的C1,C2)的部分图象,两条抛物线的形状相同且顶点的纵坐标相同,且经测算发现抛物线C2的最高点(顶点)C距离水池面2.5米,且与OA的水平距离为2米.(1)求抛物线C2的解析式;(2)求抛物线C1与x轴的交点B的坐标;(3)小明同学打算操控微型无人机在C1,C2之间飞行,为了无人机的安全,要求无人机在竖直方向上的活动范围不小于0.5米,设无人机与OA的水平距离为m,求m的取值范围.。
初中数学二次函数的应用培优练习题2(附答案详解)1.一位篮球运动员在距离篮圈中心水平距离4m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m 时,达到最大高度3.5m ,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m ,在如图所示的平面直角坐标系中,下列说法正确的是( )A .此抛物线的解析式是y=﹣15x 2+3.5B .篮圈中心的坐标是(4,3.05)C .此抛物线的顶点坐标是(3.5,0)D .篮球出手时离地面的高度是2m2.如图,在平面直角坐标系中,抛物线y =ax 2+6与y 轴交于点A ,过点A 与x 轴平行的直线交抛物线y =2x 2于B 、C 两点,则BC 的长为( )A .2B .3C .22D .233.一学生推铅球,铅球行进的高度()y m 与水平距离()x m 之间的关系为21251233y x x =-++,则学生推铅球的距离为( ) A .35m B .3m C .10m D .12m 4.直线5y x 22=-与抛物线21y x x 2=-的交点个数是( ) A .0个 B .1个 C .2个 D .互相重合的两个 5.如图,隧道的截面是抛物线,可以用y= 21416x -+表示,该隧道内设双行道,限高为3m ,那么每条行道宽是( )6.某超市将进货单价为l8元的商品按每件20元销售时,每日可销售100件,如果每件提价1元,日销售就要减少10件,那么把商品的售出价定为多少元时,才能使每天获得的利润最大?( )A .22元B .24元C .26元D .28元7.函数2y ax bx c =++与y kx =的图象如图所示,有以下结论:①240b ac ->;②10a b c +++>;③9360a b c +++>;④当13x <<时,2()0ax b k x c +-+<.其中正确的结论有( )A .1个B .2个C .3个D .4个8.某商人将单价为8元的商品按每件10元出售,每天可销售100件,已知这种商品每提高2元,其销量就要减少10件,为了使每天所赚利润最多,该商人应将销售价(为偶数)提高( )A .8元或10元B .12元C .8元D .10元9.如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上,C 点在斜边上.设矩形的一边AB =x m ,矩形的面积为y m 2,则y 的最大值为________.10.某建筑物的窗户如图所示,它的上半部分是半圆,下半部分是矩形,•制造窗框的材料的总长为15m ,若AB=xm ,BC=ym ,则y 与x 的函数解析式为______,窗户的面积S 与x 的函数解析式为_____,当x≈______时,S 最大≈_____,此时通过的光线最多(结果精确到0.01m )11.如图,已知等腰直角△ABC 的直角边长与正方形MNPQ 的边长均为20厘米,AC 与MN 在同一直线上,开始时点A 与点N 重合,让△ABC 以每秒2厘米的速度向左运动,最终点A 与点M 重合,则重叠部分面积y (厘米2)与时间t (秒)之间的函数关系式为____12.农贸市场拟建两间长方形储藏室,储藏室的一面靠墙(墙长30m),中间用一面墙隔开,如图所示,已知建筑材料可建墙的长度为42m,则这两间长方形储藏室的总占地面积的最大值为_______m 2.13.已知,二次函数y=x 2+bx ﹣2017的图象与x 轴交于点A (x 1,0)、B (x 2,0)两点,则当x=x 1+x 2时,则y 的值为___________.14.若函数y=ax 2+3x-1的图像与x 轴有交点,则a 的取值范围是________.15.从地面竖直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是h=9.8t ﹣4.9t 2.若小球的高度为4.9米,则小球的运动时间为_____.16.如图,在正方形ABCD 中,O 是对角线AC 与BD 的交点,M 是BC 边上的动点(点M 不与B ,C 重合),过点C 作CN 垂直DM 交AB 于点N ,连结OM ,ON ,MN .下列五个结论:①CNB DMC ∆≅∆;②ON OM =;③ON OM ⊥;④若2AB =,则OMN S ∆的最小值是1;⑤222AN CM MN +=.其中正确结论是_________.(只填序号)17.江汉路一服装店销售一种进价为50元/件的衬衣,生产厂家规定每件定价为60~150元.当定价为60元/件时,每星期可卖出70件,每件每涨价10元,一星期少卖出5件.(1)当每件衬衣定价为多少元时(定价为10元的正整数倍),服装店每星期的利润最大?最大利润为多少元?(2)请分析每件衬衣的定价在哪个范围内时,每星期的销售利润不低于2 700元. 18.某单位为响应政府发出的全民健身的号召,打算在长和宽分别为20 m 和11 m 的矩形大厅内修建一个60 m 2的矩形健身房ABCD .该健身房的四面墙壁中有两侧沿用大厅的旧墙壁(如图为平面示意图),已知装修旧墙壁的费用为20元/m 2,新建(含装修)墙壁的费用为80元/m 2.设健身房的高为3 m ,一面旧墙壁AB 的长为x m ,修建健身房墙壁的总投入为y 元.(1)求y 与x 的函数关系式;(2)为了合理利用大厅,要求自变量x 必须满足条件:8≤x≤12,当投入的资金为4800元时,问利用旧墙壁的总长度为多少.19.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y 1(元/件),销量y 2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价-成本)×销量).(1)求y 1与y 2的函数解析式.(2)求每天的销售利润W 与x 的函数解析式.(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?20.如图,抛物线y=﹣212x 2x +2与x 轴相交于A ,B 两点,(点A 在B 点左侧)与y 轴交于点C . (1)求A ,B 两点坐标.(2)连结AC ,若点P 在第一象限的抛物线上,P 的横坐标为t ,四边形ABPC 的面积为S .试用含t 的式子表示S ,并求t 为何值时,S 最大.(3)在(2)的基础上,在整条抛物线上和对称轴上是否分别存在点G和点H,使以A,G,H,P四点构成的四边形为平行四边形?若存在,请直接写出G,H的坐标;若不存在,请说明理由.21.如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△PAD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△PAD为直角三角形?若存在,直接写出t 的值;若不存在,说明理由.22.如图:在平面直角坐标系中,直线l:y=13x﹣43与x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=32.(1)求抛物线的解析式;(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF,求证:PE⊥PF;(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF 时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.23.如图,Rt △ABC 中,90C ∠=︒,AC =BC ,AB =4cm .动点D 沿着A →C →B 的方向从A 点运动到B 点.DE ⊥AB ,垂足为E .设AE 长为x cm ,BD 长为y cm (当D 与A 重合时,y =4;当D 与B 重合时y =0).小云根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小云的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:补全上面表格,要求结果保留一位小数.则t ≈__________.(2)在下面的网格中建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当DB =AE 时,AE 的长度约为 cm .24.如图,在△ABC 中,∠C=90°,AC=4,BC=3.点E 从点A 出发,以每秒4个单位长度的速度沿折线AC-CB运动,到点B停止.当点E不与△ABC的顶点重合时,过点E作其所在直角边的垂线交AB于点F,将△AEF绕点F沿逆时针方向旋转得到△NMF,使点A的对应点N落在射线FE上.设点E的运动时间为t(秒).(1)用含t的代数式表示线段CE的长.(2)求点M落到边BC上时t的值.(3)当点E在边AC上运动时,设△NMF与△ABC重叠部分图形为四边形时,四边形的面积为S(平方单位),求S与t之间的函数关系式.(4)直接写出点M到AC、BC所在直线的距离相等时t的值.参考答案1.A【解析】【分析】A、设抛物线的表达式为y=ax2+3.5,依题意可知图象经过的坐标,由此可得a的值;B、根据函数图象判断;C、根据函数图象判断;D、设这次跳投时,球出手处离地面hm,因为(1)中求得y=﹣0.2x2+3.5,当x=﹣2.5时,即可求得结论.【详解】解:A、∵抛物线的顶点坐标为(0,3.5),∴可设抛物线的函数关系式为y=ax2+3.5.∵篮圈中心(1.5,3.05)在抛物线上,将它的坐标代入上式,得 3.05=a×1.52+3.5,∴a=﹣15,∴y=﹣15x2+3.5.故本选项正确;B、由图示知,篮圈中心的坐标是(1.5,3.05),故本选项错误;C、由图示知,此抛物线的顶点坐标是(0,3.5),故本选项错误;D、设这次跳投时,球出手处离地面hm,因为(1)中求得y=﹣0.2x2+3.5,∴当x=﹣2.5时,h=﹣0.2×(﹣2.5)2+3.5=2.25m.∴这次跳投时,球出手处离地面2.25m.故本选项错误.故选A.【点睛】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,体现了数学建模的数学思想,难度不大,能够结合题意利用二次函数不同的表达形式求得解析式是解答本题的关键.2.D【解析】∵抛物线y=ax 2+6与y 轴交于点A ,∴A(0,6),∵当y=6时,2x 2=6,∴x=∴B 点坐标(6),C 6),-(,故选D.【点睛】本题考查了二次函数图象上点的坐标特征,两函数交点坐标的求法,平行于x 轴的直线上两点间的距离等,解题的关键是先确定出点A 的坐标.3.C【解析】【分析】铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值.【详解】 令函数式21251233y x x =-++中,y =0, 即21251233x x -++=0, 解得1210,2x x ==- (舍去),即铅球推出的距离是10m.故选C.【点睛】考查二次函数的应用以及函数式中自变量与函数表达式的实际意义,需要结合题意. 4.C【解析】【分析】 抛物线212y x x =-与直线522y x =-交点函数值为同时满足两个解析式的点的函数值,即满足方程212x x -=522x -,解出方程的根即可求交点个数.解:抛物线212y x x =-与直线522y x =-相交, ∴212x x -=522x -,,即:2320x x -+=,解得:11x =,22x =. ∴抛物线212y x x =-与直线522y x =-的交点个数是2个. 故答案为C.【点睛】抛物线与直线的交点问题实质是一元二次方程的性质问题,联立直线与抛物线方程,可以求一元二次方程的根,也可以通过判别式判断:(1)当0,抛物线与直线有两个交点;(2)当=0,抛物线与直线有一个交点;(3)当0时抛物线与直线有无交点. 5.A【解析】把y =3代入y = 21416x -+中得: x =4,x = -4(舍去).∴每条行道宽应不大于4m .故选A .点睛;本题考查二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.由题意可知,直接把y=3代入解析式求解即可.6.B【解析】【分析】设利润为y ,售价定为每件x 元,根据:利润=每件利润×销售量,列方程求解,然后利用配方法求二次函数取最大值时x 的值即可.【详解】设利润为y ,售价定为每件x 元,由题意得,y=(x-18)×[100-10(x-20)], 整理得:y=-10x 2+480x-5400=-10(x-24)2+360,∴开口向下,故当x=24时,y有最大值.故选B.【点睛】本题考查了二次函数的应用,难度适中,解答本题的关键是根据题意列出二次函数,要求同学们掌握求二次函数最大值的方法.7.C【解析】【分析】由函数y=x2+bx+c与x轴无交点,可得b2-4c<0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.【详解】①由图象可知:抛物线与x轴无交点,即△<0,∴△=b2-4ac<0,故此选项错误;②由图象可知:抛物线过点(1,1)即当x=1时,y=a+b+c=1,a+b+c+1=2>0,故此选项正确;③由点(3,3)在抛物线上,得到9a+3b+c=3,∴9a+3b+c+3=6>0,正确;④由图象可知,当1<x<3时,抛物线在直线y=kx的下方,即当1<x<3时,x2+bx+c<kx,∴x2+(b-k)x+c<0,故此选项正确.故选C.【点睛】主要考查了二次函数与一元二次方程的关系,二次函数图像上点的坐标特征,利用函数图像解不等式.此题难度适中,注意掌握数形结合思想的应用.8.A【解析】【分析】每件利润为(x-8)元,销售量为(100-10×102x),根据利润=每件利润×销售量,得出销售利润y (元)与售单价x (元)之间的函数关系;再根据函数关系式,利用二次函数的性质求最大利润.【详解】解:(1)依题意,得y=(x-8)•(100-10×102x -)=-5x 2+190x-1200=-5(x-19)2+605, -5<0,∴抛物线开口向下,函数有最大值,即当x=19时,y 的最大值为605,∵售价为偶数,∴x 为18或20,当x=18时,y=600,当x=20时,y=600,∴x 为18或20时y 的值相同,∴商品提高了18-10=8(元)或20-10=10(元)故选A .【点睛】本题考查了二次函数的应用.此题为数学建模题,借助二次函数解决实际问题.9.300【解析】由题意可得:DC ∥AF ,则△EDC ∽△EAF , 故30,3040ED DC AD x AE AF -==则, 解得12034x AD -=, 故S=AD•AB=22120333•30(20)300444x x x x x -=-+=--+, 所以当x=20时,即y 的最大值为300m 2.故答案是:300m 2.10.y=1574x x π-- S=-3.5x 2+7.5x 1.07 4.02 【解析】因为半圆的半径AB =x m,矩形的宽BC =y m,材料的总长为15m,所以4y +7x +πx =15,所以1574x x y π--=, 所以窗户的面积2215712 3.57.542x x S x r x x ππ--=⨯+=-+, 所以当7.5152 3.514x =-=⨯≈1.07时,()()27.5 4.024 3.5S -=≈⨯-最大, 故答案为:1574x x y π--=,2 3.57.5S x x =-+, 1.07, 4.02. 11.y=12(20-2t )2 【解析】A M =20-2t ,则重叠部分面积y =12×AM 2= 12(20-2t )2 12.147【解析】分析:设中间隔开的墙EF 的长为xm,建成的储藏室总占地面积为sm²,根据题意可知AD 的长度等于BC 的长度,列出式子AD-2+3X=28,得出用x 的代数式表示AD 的长,再根据矩形的面积=AD·AB 得出S 关于x 的解析式,再利用二次函数的性质即可求解. 详解:设中间隔开的墙EF 的长为xm,建成的储藏室总占地面积为sm²,根据题意得AD+3x=42,解得AD=42-3x,则S=x(42-3x)= -3x²+42x=-3(x-7)²+147,故这两间长方形储藏室的总占地面积的最大值为:147m²,故答案为147. 点睛:本题考查了二次函数的应用,配方法,矩形的面积,有一定的难度,解答本题的关键是得到建成的储藏室的总占地面积的解析式.13.−2017.【解析】【分析】因为二次函数y=x 2+bx-2017的图象与x 轴交于点A (x 1,0)、B (x 2,0)两点,所以x 1+x 2=-b ,当x =x 1+x 2=−b 时,y =(−b )2+b ⋅(−b )−2017=−2017,由此即可解决问题.【详解】∵二次函数y =x 2+bx −2017的图象与x 轴交于点A (x 1,0)、B (x 2,0)两点,∴x 1+x 2=−b ,∴当x =x 1+x 2=−b 时,y =(−b )2+b ⋅(−b )−2017=−2017.故答案为:−2017.【点睛】考查二次函与x轴的交点问题,熟练掌握根与系数的关系是解题的关键.14.a≥-【解析】【分析】二次函数与x轴的交点个数,即令y=0时,方程的解个数即为与x轴的交点个数;当有交点时,则方程的判别式≥0,代入相应的数据求解即可.【详解】令y=0,则ax2+3x-1=0,因为函数y=ax2+3x-1的图像与x轴有交点,所以=9+4a≥0,解得a≥-.故答案为:a≥-.【点睛】本题考查了二次函数图像与x轴的交点问题,熟知二次函数图像与x轴的交点与的关系是解决本题的关键.15.1s.【解析】小球的高度h与小球运动时间t的函数关系式是:h=9.8t﹣4.9t2.把h=4.9代入得4.9=9.8t﹣4.9t2,解得t=1s,故答案为1s.16.①②③⑤【解析】分析:根据正方形的性质,依次判定△CNB≌△DMC,△OCM≌△OBN,△CON≌△DOM,根据全等三角形的性质以及勾股定理进行计算即可得出结论.详解:∵正方形ABCD中,CD=BC,∠BCD=90°,∴∠BCN+∠DCN=90°,又∵CN⊥DM,∴∠CDM+∠DCN=90°,∴∠BCN=∠CDM,又∵∠CBN=∠DCM=90°,∴△CNB≌△DMC(ASA),故①正确;根据△CNB≌△DMC,可得CM=BN,又∵∠OCM=∠OBN=45°,OC=OB,∴△OCM≌△OBN(SAS),∴OM=ON,故②正确;∵△OCM≌△OBN∴∠COM=∠BON∴∠COM+∠BOM=∠BON+∠BOM=90°∴ON⊥OM故③正确;∵△OCM≌△OBN,∴四边形BMON的面积=△BOC的面积=1,即四边形BMON的面积是定值1,∴当△MNB的面积最大时,△MNO的面积最小,设BN=x=CM,则BM=2-x,∴△MNB的面积=12x(2-x)=-12x2+x,∴当x=1时,△MNB的面积有最大值12,此时S△OMN的最小值是1-12=12,故④不正确;∵AB=BC,CM=BN,∴BM=AN,又∵Rt△BMN中,BM2+BN2=MN2,∴AN2+CM2=MN2,故⑤正确;点睛:本题属于四边形综合题,主要考查了正方形的性质、全等三角形的判定与性质,相似三角形的判定以及勾股定理的综合应用,解题时注意二次函数的最值的运用.17.(1)当每件衬衣定价为120元或130元时,服装店每星期的利润最大,最大利润为2 800元.(2)每件衬衣的定价在110~140元之间时(定价为10元的正整数倍),每星期的销售利润不低于2 700元.【解析】试题分析:(1)设每件衬衣定价为x元,服装店每星期的利润为W元,利用每一件的利润乘卖出的件数列出二次函数,利用二次函数的性质即可解决问题;(2)根据(2)中求出的二次函数,建立一元二次方程求出方程的解,确定出涨价最少时的x的值,根据二次函数的性质即可求得x的取值范围.试题解析:(1)设每件衬衣定价为x元,服装店每星期的利润为W元.由题意得,W=(x-50)=-x2+125x-5 000=-(x-125)2+2 812.5.∵60≤x≤150,且x是10的正整数倍,∴当x取120或130时,W有最大值2 800.因此,当每件衬衣定价为120元或130元时,服装店每星期的利润最大,最大利润为2 800元.(2)令W=2 700,即-x2+125x-5 000=2 700,解得x1=110,x2=140.∴每件衬衣的定价在110~140元之间时(定价为10元的正整数倍),每星期的销售利润不低于2 700元.18.(1)y=30060xx⎛⎫+⎪⎝⎭,(0<x≤20);(2)利用旧墙壁的总长度为16 m.【解析】【分析】(1)根据题意可得AB=x,AB·BC=60,所以BC=60x.求得y与x的函数解析式;(2)把y=4800代入函数解析式整理,可解得x的值.【详解】解:(1)根据题意,AB=x,AB·BC=60,所以BC=60x,y=20×360xx⎛⎫+⎪⎝⎭+80×360xx⎛⎫+⎪⎝⎭,即y=30060xx⎛⎫+⎪⎝⎭(0<x≤20)(2)把y=4800代入y=30060xx⎛⎫+⎪⎝⎭,得4800=30060xx⎛⎫+⎪⎝⎭,整理得x2-16x+60=0,解得x1=6,x2=10经检验x1=6,x2=10都是原方程的根.由8≤x≤12,只取x=10所以利用旧墙壁的总长度10+6010=16 m.【点睛】本题考查的是二次函数的实际应用, 同时也考查了矩形的面积计算公式, 关键是熟练掌握二次函数的性质和公式,并能用其解决一些基本的有关二次函数的题目.19.(1)y2与x的函数关系式为y2=-2x+200(1≤x<90);(2)W=22x180x2?000(1x50),120?x12?000(50x90).⎧-++≤<⎨-+≤<⎩(3)销售这种文化衫的第45天,销售利润最大,最大利润是6050元.【解析】【分析】(1)待定系数法分别求解可得;(2)根据:销售利润=(售价-成本)×销量,分1≤x<50、50≤x<90两种情况分别列函数关系式可得;(3)当1≤x<50时,将二次函数关系式配方后依据二次函数性质可得此时最值情况,当50≤x<90时,依据一次函数性质可得最值情况,比较后可得答案.【详解】(1)当1≤x<50时,设y1=kx+b,将(1,41),(50,90)代入,得k b41,50k b90,+=⎧⎨+=⎩解得k1,b40,=⎧⎨=⎩∴y1=x+40,当50≤x<90时,y1=90,故y1与x的函数解析式为y1=x40(1x50), 90(50x90);+≤<⎧⎨≤<⎩ 设y2与x的函数解析式为y2=mx+n(1≤x<90),将(50,100),(90,20)代入,得50m n100,90m n20,+=⎧⎨+=⎩解得:m2,n200,=-⎧⎨=⎩故y 2与x 的函数关系式为y 2=-2x+200(1≤x<90).(2)由(1)知,当1≤x<50时,W=(x+40-30)(-2x+200)=-2x 2+180x+2000;当50≤x<90时,W=(90-30)(-2x+200)=-120x+12000;综上,W=22x 180x 2?000(1x 50),120?x 12?000(50x 90).⎧-++≤<⎨-+≤<⎩ (3)当1≤x<50时,∵W=-2x 2+180x+2000=-2(x-45)2+6050,∴当x=45时,W 取得最大值,最大值为6050元;当50≤x<90时,W=-120x+12000,∵-120<0,W 随x 的增大而减小,∴当x=50时,W 取得最大值,最大值为6000元;综上,当x=45时,W 取得最大值6050元.答:销售这种文化衫的第45天,销售利润最大,最大利润是6050元.20.(1)A,0),B (,0);(2)当时,S 最大;(3)满足条件的点P 的坐标为G(﹣2,﹣14),H(2,﹣14)或G(2,﹣154),H(2,﹣154)或G(﹣2,14),H(2,14). 【解析】【分析】(1)令y=0,则2120,2x x -+=解得x =x =A ,B 两点坐标.(2)点P 作PQ ⊥x 轴于Q ,P 的横坐标为t ,设P (t ,p ),则21222p t =-++,PQ p BQ t OQ t ===,,, 根据S=S △AOC +S 梯形OCPQ +S △PQB 列出S 与t 的函数关系式,根据二次函数的性质t 为何值时,S 最大.(3)抛物线的对称轴为:2,x =分别画出示意图,根据平行四边形的性质即可求出G ,H 的坐标.【详解】解:(1)针对于抛物线212222y x x =-++, 令y=0,则21220,22x x -++= 解得2x =-或22x =∴()()20220A B -,,,; (2)针对于抛物线212222y x x =-++令x=0,∴y=2,∴C (0,2),如图1,点P 作PQ ⊥x 轴于Q ,∵P 的横坐标为t ,∴设P (t ,p ),∴21222p t =-++,22PQ p BQ t OQ t ===,,, ∴S=S △AOC +S 梯形OCPQ +S △PQB()()11122222222p t t p =++⨯+⨯⨯,11,22t pt pt =+-t =++21222t t t ⎫=-++++⎪⎪⎭2t =-+(0t <<,∴当t =时,S 最大=(3)满足条件的点的坐标为G ,﹣14),H 14)或G 154),H 154)或G ,14),H ,14). 【点睛】属于二次函数的综合题,会求二次函数与x 轴的交点坐标,二次函数的最值,以及平行四边形的性质,综合性比较强,难度较大.21.(1)y=﹣x 2+2x+3;(2)当t=32时,l 有最大值,l 最大=94;(3)t=32时,△PAD 的面积的最大值为278;(4)t=12+. 【解析】 试题分析:(1)利用待定系数法即可解决问题;(2)易知直线AD 解析式为y=-x+3,设M 点横坐标为m ,则P (t ,-t 2+2t+3),M (t ,-t+3),可得l=-t 2+2t+3-(-t+3)=-t 2+3t=-(t-32)2+94,利用二次函数的性质即可解决问题; (3)由S △PAD =12×PM×(x D -x A )=32PM ,推出PM 的值最大时,△PAD 的面积最大; (4)如图设AD 的中点为K ,设P (t ,-t 2+2t+3).由△PAD 是直角三角形,推出PK=12AD ,可得(t-32)2+(-t 2+2t+3-32)2=14×18,解方程即可解决问题; 试题解析:(1)把点 B (﹣1,0),C (2,3)代入y=ax 2+bx+3,则有304233a b a b -+=⎧⎨++=⎩,解得12ab=-⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3.(2)在y=﹣x2+2x+3中,令y=0可得0=﹣x2+2x+3,解得x=﹣1或x=3,∴D(3,0),且A(0,3),∴直线AD解析式为y=﹣x+3,设M点横坐标为m,则P(t,﹣t2+2t+3),M(t,﹣t+3),∵0<t<3,∴点M在第一象限内,∴l=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t=﹣(t﹣32)2+94,∴当t=32时,l有最大值,l最大=94;(3)∵S△PAD=12×PM×(x D﹣x A)=32PM,∴PM的值最大时,△PAD的面积中点,最大值=32×94=278.∴t=32时,△PAD的面积的最大值为278.(4)如图设AD的中点为K,设P(t,﹣t2+2t+3).∵△PAD 是直角三角形,∴PK=12AD , ∴(t ﹣32)2+(﹣t 2+2t+3﹣32)2=14×18, 整理得t (t ﹣3)(t 2﹣t ﹣1)=0,解得t=0或3, ∵点P 在第一象限,∴22.(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6).【解析】【分析】(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=32列出关于a 、c 的方程组求解即可;(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22y y y y Q P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可.【详解】(1)当y=0时,14033x -=,解得x=4,即A (4,0),抛物线过点A ,对称轴是x=32,得161203322a c a -+=⎧⎪-⎨-=⎪⎩, 解得14a c =⎧⎨=-⎩,抛物线的解析式为y=x 2﹣3x ﹣4;(2)∵平移直线l 经过原点O ,得到直线m ,∴直线m 的解析式为y=13x . ∵点P 是直线1上任意一点,∴设P (3a ,a ),则PC=3a ,PB=a .又∵PE=3PF ,∴PC PB PF PE=. ∴∠FPC=∠EPB .∵∠CPE+∠EPB=90°, ∴∠FPC+∠CPE=90°, ∴FP ⊥PE .(3)如图所示,点E 在点B 的左侧时,设E (a ,0),则BE=6﹣a .∵CF=3BE=18﹣3a ,∴OF=20﹣3a .∴F (0,20﹣3a ).∵PEQF 为矩形,∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=4或a=8(舍去).∴Q (﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18,∴OF=3a ﹣20.∴F (0,20﹣3a ).∵PEQF 为矩形, ∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去).∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键. 23.(1)2.9;(2)答案见解析;(3)2.3.【解析】试题分析:(1)通过取点、画图、测量,可得到结果;(2)通过描点,连线即可作出函数的图象;(3)根据题意可得当DB=AE 时,AE 的长度约为2.3cm .试题解析:(1)2.9(2)如图所示:(3)2.3 24.(1)当点E 在边AC 上时,44CE t =-,当点E 在边BC 上时,44CE t =-;(2)t 的值为58;(3)当508t <≤时,292S t =,当8111t ≤<时,218246S t t =-+-;(4)1019t =或1013t =或1913t =. 【解析】分析:(1)分当点E 在边AC 上时和当点E 在边BC 上时两种情况进行讨论.(2)当点M 落在边BC 上时,画出示意图,4AE t =,3FE MF t ==.根据,FMB B ∠=∠ 3BF MF t ==.根据BF AF AB +=,列出方程求解即可.(3)分当508t <≤时和当8111t ≤<时两种情况进行讨论. 详解:(1)当点E 在边AC 上时,44CE t =-.当点E 在边BC 上时,44CE t =-.(2)如图①,当点M 落在边BC 上时,3BF MF t ==.∵BF AF AB +=,∴355t t +=.∴58t =. ∴点M 落到边BC 上时t 的值为58.(3)当508t <≤时,如图②.2113934222242S t t t t t =⋅⋅-⋅⋅⋅=. 当8111t ≤<时,如图③.()()2163344182462S t t t t t =-+-=-+-. 点睛:属于图形的运动题,涉及知识点较多,综合性比较强,难度较大,注意分类讨论思想在数学中的应用.。
二次函数应用题专题(带答案)0)时,可用交点式y=a(x-x1x-x2求其解析式。
4)根据问题要求,利用解析式求出所需的未知量。
三、练1、一枚炮弹在发射点上空爆炸,爆炸点离发射点水平距离1800米,爆炸高度为400米,求炮弹的初速度和仰角。
2、一架飞机以900km/h的速度飞行,飞行高度为2km,发现前方有一座山峰,山顶离飞机水平距离为10km,求飞机的爬升率和俯冲率。
3、一个人从距离地面20米的悬崖上抛出一个物体,物体抛出初速度为20m/s,抛出角度为60度,求物体落地点到悬崖的水平距离。
XXX:1、设炮弹飞行时间为t,初速度为v,仰角为θ,则可列出方程组:x=vtcosθy=vtsinθ-1/2gtx2y21800)2400)=xxxxxxx解得v600m/s,θ≈48.6°。
2、设飞机的爬升率和俯冲率分别为a和b,则可列出方程组:tan(θ-a)=4000/tan(θ+b)=2000/解得a≈2.5°,b≈1.4°。
3、设物体落地点到悬崖的水平距离为d,则可列出方程:d=vcosθtt=2vsinθ/g代入可得d≈40.8m。
评析:二次函数应用题需要学生熟练掌握建立坐标系、求解析式、利用解析式求未知量的方法,同时也需要学生对物理知识有一定的掌握,如抛物线运动、平抛运动等。
练中的例题和练题都体现了这些要点,可以帮助学生加深对二次函数应用的理解和掌握。
在教学过程中,可以引导学生多思考实际问题中的数学应用,提高他们的应用能力和解决问题的能力。
例2、某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.1)求y与x之间的关系式;2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?解:(1)依题意设y=kx+b,则有 y= -30x+960 (16≤x≤32).2)每月获得利润P=(-30x+960)(x-16)=30(-x+32)(x-16)=-30+48x-512+1920.所以当x=24时,P有最大值,最大值为1920.答:当价格为24元时,才能使每月获得最大利润,最大利润为1920元.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用一次函数求最值.例3、在体育测试时,初三的一名高个子男同学推铅球,已知铅球所经过的路线是某个二次函数图像的一部分,如图所示,如果这个男同学的出手处A点的坐标为(0,2),铅球路线的最高处B点的坐标为(6,5)1)求这个二次函数的解析式;2)该男同学把铅球推出去多远?(精确到0.01米)解:(1)设二次函数的解析式为 y=ax^2+bx+c。
初中数学二次函数应用题型分类——抛物线形物体问题2(附答案)1.如图,池中心竖直水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管的长为()A.2.1m B.2.2m C.2.3m D.2.25m2.烟花厂某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣2t2+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A.3s B.4s C.5s D.10s3.某建筑物,从10m高的窗口A,用水管向外喷水,喷出的水呈抛物线状(抛物线所在的平面与墙面垂直),如图所示,如果抛物线的最高点M离墙1m,离地面403m,则水流落地点B离墙的距离OB是()A.2m B.3m C.4m D.5m4.如图,公园中一正方形水池中有一喷泉,喷出的水流呈抛物线状,测得喷出口高出水面0.8m,水流在离喷出口的水平距离1.25m处达到最高,密集的水滴在水面上形成了一个半径为3m的圆,考虑到出水口过高影响美观,水滴落水形成的圆半径过大容易造成水滴外溅到池外,现决定通过降低出水口的高度,使落水形成的圆半径为2.75m,则应把出水口的高度调节为高出水面()A.0.55米B.1130米C.1330米D.0.4米5.如图,某幢建筑物从2.25米高的窗口A用水管向外喷水,喷的水流呈抛物线型(抛物线所在平面与墙面垂直),如果抛物线的最高点M 离墙1米,离地面3米,则水流下落点B 离墙的距离OB 是( )A .2.5米B .3米C .3.5米D .4米6.广场上水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y (米)关于水珠和喷头的水平距离x (米)的函数解析式是()236042y x x x =-+≤≤,那么水珠的高度达到最大时,水珠与喷头的水平距离是( )A .1米B .2米C .5米D .6米 7.同学发现在宾馆房间的洗手盘台面上有一瓶洗手液(如图①).于是好奇的小王同学进行了实地测量研究.当小王用一定的力按住顶部A 下压如图②位置时,洗手液从喷口B 流出,路线近似呈抛物线状,且a =﹣118.洗手液瓶子的截面图下部分是矩形CGHD .小王同学测得:洗手液瓶子的底面直径GH =12cm ,喷嘴位置点B 距台面的距离为16cm ,且B 、D 、H 三点共线.小王在距离台面15.5cm 处接洗手液时,手心Q 到直线DH 的水平距离为3cm ,若学校组织学生去南京进行研学实践活动,若小王不去接,则洗手液落在台面的位置距DH 的水平距离是( )cm .A .3B .2C .3D .2 8.某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y =-x 2+4x(单位:米)的一部分,则水喷出的最大高度是( )A .4米B .3米C .2米D .1米9.某公园有一个圆形喷水池,喷出的水流的高度h (单位:m)与水流运动时间t (单位:s)之间的关系式为2305h t t =-,那么水流从喷出至回落到地面所需要的时间是( ) A .6 s B .4 s C .3 s D .2 s10.某公园一喷水池喷水时水流的路线呈抛物线(如图).若喷水时水流的高度y (m )与水平距离x (m )之间的函数关系式是y=﹣x 2+2x+1.25,则水池在喷水过程中水流的最大高度为( )A .1.25米B .2.25米C .2.5米D .3米11.市政府大楼前广场有一喷水池,水从地面喷出,喷出水的路径是一条抛物线.如果以水平地面为x 轴,建立如图所示的平面直角坐标系,水在空中划出的曲线是抛物线y =-x 2+4x(单位:米)的一部分.则水喷出的最大高度是____米.12.如图,在喷水池的中心A 处竖直安装一个水管AB ,水管的顶端安有一个喷水池,使喷出的抛物线形水柱在与池中心A 的水平距离为1m 处达到最高点C ,高度为3m ,水柱落地点D 离池中心A 处3m ,以水平方向为x 轴,建立平面直角坐标系,若选取A 点为坐标原点时的抛物线的表达式为()()2313034y x x =--+≤≤,则选取点D 为坐标原点时的抛物线表达式为______,水管AB 的长为______m .13.某市民广场有一个直径16米的圆形喷水池,喷水池的周边有一圈喷水头(喷水头高度忽略不计),各方向喷出的水柱恰好在喷水池中心的装饰物OA 的顶端A 处汇合,水柱离中心3米处达最高5米,如图所示建立直角坐标系.王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的他站立时必须在离水池中心O________米以内.14.某公园有一个圆形喷水池,喷出的水流呈抛物线,水流的高度h (单位:m )与水流喷出时间t (单位:s )之间的关系式为2305h t t =-,那么水流从喷出至回落到水池所需要的时间是__________s .15.如图,是某公园一圆形喷水池,在池中心竖直安装一根水管OA =1.25m ,A 处是喷头,水流在各个方向沿形状相同的抛物线落下,水落地后形成一个圆,圆心为O ,直径为线段CB .建立如图所示的平面直角坐标系,若水流路线达到最高处时,到x 轴的距离为2.25m ,到y 轴的距离为1m ,则水落地后形成的圆的直径CB =_____m .16.如图,公园里喷水池中的水柱的形状可以看成是抛物线,小明想知道水柱的最大高度,于是画出示意图,并测出了一些数据:水柱上的点C,D 到地面的距离都是1.6米,即 1.6BC OD ==米,1AB =米,5AO =米,则水柱的最大高度是______米.17.消防员的水枪喷出的水流可以用抛物线212y x bx =-+来描述,已知水流的最大高度为20m ,则b 的值为________. 18.某体育公园的圆形喷水池的水柱如图①所示,如果曲线APB 表示落点B 离点O 最远的一条水流(如图②),其上的水珠的高度y(米)关于水平距离x(米)的函数解析式为y =-x 2+4x +94,那么圆形水池的半径至少为_______米时,才能使喷出的水流不落在水池外.19.某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线是抛物线y =﹣x 2+4x (单位:米)的一部分.则水喷出的最大高度是_____米.20.两幢大楼的部分截面及相关数据如图,小明在甲楼A 处透过窗户E 发现乙楼F 处出现火灾,此时A ,E ,F 在同一直线上.跑到一楼时,消防员正在进行喷水灭火,水流路线呈抛物线,在1.2m 高的D 处喷出,水流正好经过E ,F . 若点B 和点E 、点C 和F 的离地高度分别相同,现消防员将水流抛物线向上平移0.4m ,再向左后退了____m ,恰好把水喷到F 处进行灭火.21.要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷头,使喷出的抛物线形水柱在与水池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离中心3m.(1)在给定的坐标系中画出示意图;(2)求出水管的长度.22.如图1,已知水龙头喷水的初始速度v0可以分解为横向初始速度v x和纵向初始速度v y,θ是水龙头的仰角,且v02=v x2+v y2.图2是一个建在斜坡上的花圃场地的截面示意图,水龙头的喷射点A在山坡的坡顶上(喷射点离地面高度忽略不计),坡顶的铅直高度OA为15米,山坡的坡比为13.离开水龙头后的水(看成点)获得初始速度v0米/秒后的运动路径可以看作是抛物线,点M是运动过程中的某一位置.忽略空气阻力,实验表明:M与A的高度之差d(米)与喷出时间t(秒)的关系为d=v y t-5t2;M与A 的水平距离为v x t米.已知该水流的初始速度v0为15米/秒,水龙头的仰角θ为53°.(1)求水流的横向初始速度v x和纵向初始速度v y;(2)用含t的代数式表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x 的取值范围);(3)水流在山坡上的落点C离喷射点A的水平距离是多少米?若要使水流恰好喷射到坡脚B处的小树,在相同仰角下,则需要把喷射点A沿坡面AB方向移动多少米?(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)23.如图,斜坡AB长10米,按图中的直角坐标系可用y=3+5表示,点A,B分别在x轴和y轴上.在坡上的A处有喷灌设备,喷出的水柱呈抛物线形落到B处,抛物线可用y =13-x 2+bx +c 表示.(1)求抛物线的函数关系式(不必写自变量取值范围);(2)求水柱离坡面AB 的最大高度;(3)在斜坡上距离A 点2米的C 处有一颗3.5米高的树,水柱能否越过这棵树? 24.游乐园新建的一种新型水上滑道如图,其中线段PA 表示距离水面(x 轴)高度为5m 的平台(点P 在y 轴上).滑道AB 可以看作反比例函数图象的一部分,滑道BCD 可以看作是二次函数图象的一部分,两滑道的连接点B 为二次函数BCD 的顶点,且点B 到水面的距离2BE m =,点B 到y 轴的距离是5m.当小明从上而下滑到点C 时,与水面的距离3m 2CG =,与点B 的水平距离2m CF =.(1)求反比例函数的关系式及其自变量的取值范围;(2)求整条滑道ABCD 的水平距离;(3)若小明站在平台上相距y 轴1m 的点M 处,用水枪朝正前方向下“扫射”,水枪出水口N 距离平台3m 2,喷出的水流成抛物线形,设这条抛物线的二次项系数为p ,若水流最终落在滑道BCD 上(包括B 、D 两点),直接写出p 的取值范围.25.如图,在喷水池的中心A 处竖直安装一个水管AB .水管的顶端安有一个喷水管、使喷出的抛物线形水柱在与池中心A 的水平距离为1m 处达到最高点C .高度为3m .水柱落地点D 离池中心A 处3m .建立适当的平面直角坐标系,解答下列问题.(1)求水柱所在抛物线的函数解析式;(2)求水管AB 的长.26.某小区有一半径为8m 的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线.在距水池中心3m 处达到最高,高度为5m ,且各个方向喷出的水柱恰好在喷水池中心的装饰物处汇合.以水平方向为x 轴,喷水池中心为原点建立如图所示的平面直角坐标系.(1)求水柱所在抛物线对应的函数关系式;(2)王师傅在喷水池维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8m 的王师傅站立时必须在离水池中心多少米以内?27.某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个柱子OA ,点O 恰好在水面中心,安装在柱子顶端A 处的圆形喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA 的任意平面上,水流喷出的高度()y m 与水平距离()x m 之间的关系如图所示,建立平面直角坐标系,右边抛物线的关系式为2y x 2x 3=-++.请完成下列问题:(1)将2y x 2x 3=-++化为()2y a x h k =-+的形式,并写出喷出的水流距水平面的最大高度是多少米;(2)写出左边那条抛物线的表达式;(3)不计其他因素,若要使喷出的水流落在池内,水池的直径至少要多少米? 28.现代城市绿化带在不断扩大,绿化用水的节约是一个非常重要的问题.如图1、图2所示,某喷灌设备由一根高度为0.64 m 的水管和一个旋转喷头组成,水管竖直安装在绿化带地面上,旋转喷头安装在水管顶部(水管顶部和旋转喷头口之间的长度、水管在喷灌区域上的占地面积均忽略不计),旋转喷头可以向周围喷出多种抛物线形水柱,从而在绿化带上喷灌出一块圆形区域.现测得喷的最远的水柱在距离水管的水平距离3 m 处达到最高,高度为1 m .(1)求喷灌出的圆形区域的半径;(2)在边长为16 m 的正方形绿化带上固定安装三个该设备,喷灌区域可以完全覆盖该绿化带吗?如果可以,请说明理由;如果不可以,假设水管可以上下调整高度,求水管高度为多少时,喷灌区域恰好可以完全覆盖该绿化带.(以上需要画出示意图,并有必要的计算、推理过程)29.某广场喷泉的喷嘴安装在平地上.有一喷嘴喷出的水流呈抛物线状,喷出的水流高度y (m )与喷出水流喷嘴的水平距离x (m )之间满足2122y x x =-+ (l )喷嘴能喷出水流的最大高度是多少?(2)喷嘴喷出水流的最远距离为多少?30.图1是一个倾斜角为α的斜坡的横截面,1tan 2α=.斜坡顶端B 与地面的距离BC 为3米.为了对这个斜坡上的绿地进行喷灌,在斜坡底端安装了一个喷头A ,喷头A喷出的水珠在空中走过的曲线可以看作抛物线的一部分.设喷出水珠的竖直高度为y (单位:米)(水珠的竖直高度是指水珠与地面的距离),水珠与喷头A 的水平距离为x (单位:米),y 与x 之间近似满足函数关系2y ax bx =+(a ,b 是常数,0a ≠),图2记录了x 与y 的相关数据.(1)求y关于x的函数关系式;(2)斜坡上有一棵高1.8米的树,它与喷头A的水平距离为2米,通过计算判断从A 喷出的水珠能否越过这棵树.参考答案1.D【解析】【分析】设抛物线的解析式为y= a(x-1)2+3(0≤x≤3),将(3,0)代入求得a值,则x=0时得的y值即为水管的长.【详解】解:由于在距池中心的水平距离为1m时达到最高,高度为3m,则设抛物线的解析式为:y=a(x-1)2+3(0≤x≤3),代入(3,0)得,0=a×(3-1)2+3,求得:a=34.将a值代入得到抛物线的解析式为:y=-34(x-1)2+3(0≤x≤3),令x=0,则y=94=2.25.则水管长为2.25m,故选:D.【点睛】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,利用顶点式求出解析式是解题关键.2.C【解析】【分析】将h关于t的函数关系式变形为顶点式,即可得出升到最高点的时间,从而得出结论.【详解】解:∵h=﹣2t2+20t+1=﹣2(t﹣5)2+51,∴当t=5时,礼炮升到最高点.故选:C.【点睛】本题考查了二次函数的应用,解题的关键是将二次函数的关系式变形为顶点式.本题属于基础题,难度不大,解决该题型题目时,将函数的关系式进行变换找出顶点坐标即可.3.B【解析】【分析】以OB为x轴,OA为y轴建立平面直角坐标系,A点坐标为(0,10),M点的坐标为(1,403),设出抛物线的解析式,代入解答球的函数解析式,进一步求得问题的解.【详解】解:设抛物线的解析式为y=a(x﹣1)2+403,把点A(0,10)代入a(x﹣1)2+403,得a(0﹣1)2+403=10,解得a=﹣103,因此抛物线解析式为y=﹣103(x﹣1)2+403,当y=0时,解得x1=3,x2=﹣1(不合题意,舍去);即OB=3米.故选B.【点睛】本题是一道二次函数的综合试题,考查了利用待定系数法求函数的解析式的运用,运用抛物线的解析式解决实际问题.解答本题是时设抛物线的顶点式求解析式是关键.4.B【解析】【分析】如图,以O为原点,建立平面直角坐标系,由题意得到对称轴为x=1.25=54,A(0,0.8),C(3,0),列方程组求得函数解析式,即可得到结论.【详解】解:如图,以O为原点,建立平面直角坐标系,由题意得,对称轴为x=1.25=54,A(0,0.8),C(3,0),设解析式为y=ax2+bx+c,∴9305240.8a b cbac++=⎧⎪⎪-=⎨⎪=⎪⎩,解得:8154345abc⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩,所以解析式为:y=815-x2+43x+45,当x=2.75时,y=13 30,∴使落水形成的圆半径为2.75m,则应把出水口的高度调节为高出水面08﹣1330=1130,故选:B.【点睛】本题考查了二次函数的实际应用,根据题意建立合适的坐标系,找到点的坐标,用待定系数法解出函数解析式是解题的关键5.B【解析】【分析】由题意可以知道M(1,3),A(0,2.25),用待定系数法就可以求出抛物线的解析式,当y=0时就可以求出x的值,这样就可以求出OB的值.【详解】解:设抛物线的解析式为y=a(x-1)2+3,把A(0,2.25)代入,得2.25=a+3,a=-0.75.∴抛物线的解析式为:y=-0.75(x-1)2+3.当y=0时,0=-0.75(x-1)2+3,解得:x1=-1(舍去),x2=3.OB=3米.故选:B.【点睛】本题是一道二次函数的综合试题,考查了利用待定系数法求函数的解析式的运用,运用抛物线的解析式解决实际问题,解答本题是求出抛物线的解析式.6.B【解析】【分析】先把函数关系式配方,即可求出函数取最大值时自变量的值.【详解】解:∵y=-32x2+6x=-32(x2-4x)=-32[(x-2)2-4]=-32(x-2)2+6,∴当x=2时,y有最大值,∴水珠的高度达到最大时,水珠与喷头的水平距离是2.故选B.【点睛】本题考查了二次函数的实际应用,关键是把二次函数变形,求出当函数取最大值时自变量的值,此题为数学建模题,借助二次函数解决实际问题.7.B【解析】【分析】根据题意得出各点坐标,利用待定系数法求抛物线解析式进而求解.【详解】解:如图:根据题意,得Q (9,15.5),B (6,16),OH =6,设抛物线解析式为y =﹣118x 2+bx +c , 12×81915.5,,183114.×36616,18b c b c b c ⎧-++=⎧⎪=⎪⎪⎨⎨⎪⎪=-++=⎩⎪⎩解得, 所以抛物线解析式为y =﹣118x 2+23x +14. 当y =0时,即0=﹣118x 2+23x +14, 解得:x =2(负值舍去),又OH=6, 所以洗手液落在台面的位置距DH 的水平距离是2cm .故选:B .【点睛】本题考查了二次函数的应用,解决本题的关键是明确待定系数法求二次函数的解析式及准确进行计算.8.A【解析】)∵y=-x 2+4x=2x-24-+(),∴当x=2时,y 有最大值4,∴最大高度为4m9.A【解析】由于水流从抛出至回落到地面时高度h 为0,把h =0代入h =30t -5t 2即可求出t ,也就求出了水流从抛出至回落到地面所需要的时间.解:水流从抛出至回落到地面时高度h 为0,把h =0代入h =30t −5t 2得:5t 2−30t =0,解得:t 1=0(舍去),t 2=6.故水流从抛出至回落到地面所需要的时间6s.故选A.10.B【解析】试题分析:直接利用二次函数解析式得出水流离地面的最大高度.解:∵y=﹣x 2+2x+1.25=﹣(x ﹣1)2+2.25,∴水池在喷水过程中水流的最大高度为2.25米.故选B .考点:二次函数的应用.11.4【解析】【分析】根据题意可以得到喷水的最大高度就是水在空中划出的抛物线24y x x =-+的顶点坐标的纵坐标,利用配方法或公式法求得其顶点坐标的纵坐标即为本题的答案.【详解】水在空中划出的曲线是抛物线24y x x =-+, ∴喷水的最大高度就是水在空中划出的抛物线24y x x =-+的顶点坐标的纵坐标, ∴()22424y x x x =-+=--+,∴顶点坐标为:()2,4, ∴喷水的最大高度为4米.故答案为:4.【点睛】本题考查了二次函数的应用,解决此类问题的关键是从实际问题中整理出函数模型,利用函数的知识解决实际问题.12.()()2323304y x x =-++-≤≤ 2.25. 【解析】【分析】直接利用二次函数的平移规律进而得出答案,再由题意可得,3x =-时得到的y 值即为水管的长.【详解】以喷水池中心A 为原点,竖直安装的水管为y 轴,与水管垂直的为x 轴建立直角坐标系. 抛物线的解析式为:()23134y x =--+, 当选取点D 为坐标原点时,相当于将原图象向左平移3个单位, 故平移后的抛物线表达式为:()()2323304y x x =-++-≤≤; 令3x =-,则33 2.254y =-+=. 故水管AB 的长为2.25m . 故答案为:()()2323304y x x =-++-≤≤;2.25. 【点睛】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,直接利用二次函数的平移性质是解题关键.13.7【解析】【分析】根据顶点坐标可设二次函数的顶点式,代入点(8,0),求出a 值,求出函数解析式,利用二次函数图象上点的坐标特征,求出当y=1.8时x 的值,由此即可得出结论;【详解】设水柱所在抛物线(第一象限部分)的函数表达式为y=a (x -3)2+5(a≠0),将(8,0)代入y=a (x -3)2+5,得:25a+5=0,解得:a=-15,∴水柱所在抛物线(第一象限部分)的函数表达式为y=-15(x-3)2+5(0<x<8).当y=1.8时,有-15(x-3)2+5=1.8,解得:x1=-1(舍去),x2=7,∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.故答案为:7【点睛】本题考查了待定系数法求二次函数解析式以及二次函数图象上点的坐标特征,解题的关键是:根据点的坐标,用利用待定系数法求出二次函数表达式并利用二次函数图象上点的坐标特征求出当y=1.8时x的值.14.6【解析】【分析】由于水流从抛出至回落到地面时高度h为0,把h=0代入h=30t-5t2即可求出t,也就求出了水流从抛出至回落到地面所需要的时间.【详解】水流从抛出至回落到地面时高度h为0,把h=0代入h=30t-5t2得:5t2-30t=0,解得:t1=0(舍去),t2=6.故水流从抛出至回落到地面所需要的时间6s.故答案为:6【点睛】本题考查的是二次函数在实际生活中的应用,关键是正确理解题意,利用函数解决问题,结合实际判断所得出的解.15.5【解析】【分析】设y轴右侧的抛物线解析式为:y=a(x−1)2+2.25,将A(0,1.25)代入,求得a,从而可得抛物线的解析式,再令函数值为0,解方程可得点B 坐标,从而可得CB 的长.【详解】解:设y 轴右侧的抛物线解析式为:y =a (x ﹣1)2+2.25∵点A (0,1.25)在抛物线上∴1.25=a (0﹣1)2+2.25解得:a =﹣1∴抛物线的解析式为:y =﹣(x ﹣1)2+2.25令y =0得:0=﹣(x ﹣1)2+2.25解得:x =2.5或x =﹣0.5(舍去)∴点B 坐标为(﹣2.5,0)∴OB =OC =2.5∴CB =5故答案为:5.【点睛】本题考查了二次函数在实际问题中的应用,明确二次函数的相关性质及正确的解方程,是解题的关键.16.7225【解析】【分析】设解析式为2y ax bx c =++,由题意可知点D 为(0,1.6),点C 为(4,1.6),点A 为(5,0),代入后得到三元一次方程组,解方程组即可求出抛物线解析式,再求顶点坐标即可.【详解】解:设解析式为2y ax bx c =++,由题意可知点D 为(0,1.6),点C 为(4,1.6),点A 为(5,0), ∴ 1.6164 1.62550c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得825322585a b c ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩, ∴解析式为:2832825255y x x =-++, ∴当3225282()25x =-=⨯-时,y 有最大值为7225. ∴水柱的最大高度是7225米. 【点睛】此题主要考查了二次函数的应用,用待定系数法求出二次函数的解析式是解题关键. 17.±【解析】【分析】利用二次函数的性质列出关于b 的方程,求出方程的解即可得到b 的值.【详解】解:抛物线y =12-x 2+bx , 根据题意得: 2b a - =122b -⎛⎫⨯- ⎪⎝⎭=b ,当x =b 时,取得最大值为20,21202b b b -+=, 12b 2=20, b =±. 故答案为:b =±. 【点睛】本题主要考查了二次函数的应用,解决本题的关键是要熟练掌握二次函数的性质. 18.92【解析】【详解】当y=0时,即-x2+4x+94=0,解得x1=92,x2=-12(舍去).答:水池的半径至少92米时,才能使喷出的水流不落在水池外.故答案是:92.19.4米【解析】【分析】根据题意可以得到喷水的最大高度就是水在空中划出的抛物线y=﹣x2+4x的顶点坐标的纵坐标,利用配方法或公式法求得其顶点坐标的纵坐标即为本题的答案.【详解】解:∵水在空中划出的曲线是抛物线y=﹣x2+4x,∴喷水的最大高度就是水在空中划出的抛物线y=﹣x2+4x的顶点坐标的纵坐标,∴y=﹣x2+4x=﹣(x﹣2)2+4,∴顶点坐标为:(2,4),∴喷水的最大高度为4米,故选A.【点睛】考点:二次函数的应用.理解二次函数性质是关键.2010【解析】设直线AE的解析式为:y=kx+21.2.把E(20,9.2)代入得,20k+21.2=9.2,∴k=-0.6,∴y =-0.6x +21.2. 把y =6.2代入得, -0.6x +21.2=6.2, ∴x =25, ∴F (25,6.2).设抛物线解析式为:y=ax 2+bx +1.2, 把E (20,9.2), F (25,6.2)代入得,40020 1.29.262525 1.2 6.2a b a b ++=⎧⎨++=⎩解之得0.041.2a b =-⎧⎨=⎩ , ∴y =-0.04x 2+1.2x +1.2,设向上平移0.4m ,向左后退了h m, 恰好把水喷到F 处进行灭火由题意得 y =-0.04(x +h )2+1.2(x+h )+1.2+0.4, 把F (25,6.2)代入得,6.2=-0.04×(25+h )2+1.2(25+h )+1.2+0.4, 整理得 h 2+20h -10=0, 解之得110x =-,210x =-(舍去).∴向后退了10)m点睛:本题考查了二次函数和一次函数的实际应用,设直线AE 的解析式为:y =kx +21.2. 把E (20,9.2)代入求出直线解析式,从而求出点F 的坐标.把E (20,9.2), F (25,6.2)代入y=ax 2+bx +1.2求出二次函数解析式.设向左平移了h m ,表示出平移后的解析式,把点F 的坐标代入可求出k 的值.21.(1)详见解析;(2)水管长为2.25m . 【解析】 【分析】(1)以池中心为原点,竖直安装的水管为y 轴,与水管垂直的为x 轴建立直角坐标系; (2)设抛物线的解析式为y =a (x ﹣1)2+3(0≤x ≤3),将(3,0)代入求得a 值,则x =0时得的y 值即为水管的长. 【详解】解:(1)建立以池中心为原点,竖直安装的水管为y 轴,与水管垂直的为x 轴建立直角坐标系;(2)由于在距池中心的水平距离为1m 时达到最高,高度为3m , 则设抛物线的解析式为: y =a (x ﹣1)2+3(0≤x ≤3), 代入(3,0)求得:a =﹣34. 将a 值代入得到抛物线的解析式为: y =﹣34(x ﹣1)2+3(0≤x ≤3), 令x =0,则y =94=2.25. 故水管长为2.25m .【点睛】此题主要考查二次函数的应用,解题的关键是根据图形建立合适的直角坐标系. 22.(1)水流的横向初始速度v x 是9米/秒,纵向初始速度v y 是12米/秒;(2)y=-2581x +43x+15;(3)水流在山坡上的落点C 离喷射点A 的水平距离是27米,需要把喷射点A 沿坡面AB 方向移动610 【解析】【分析】(1)根据题意利用θ的正弦和余弦定义可得结论;(2)由(1)的表示出v x 表示出x ,OA 已知,利用y=d+OA ,代入OA 的值和d 与t 的函数关系式,可以得解;(3)先求得点A 和点B 的坐标,进而写出其直线解析式,再将其与(2)中抛物线解析式联立,从而求得落点C 的坐标,再利用平移知识及勾股定理可以求解. 【详解】解:(1)∵v 0为15米/秒,水龙头的仰角θ为53°,∴cosθ=0xv v ,sinθ=0y v v ,∴v x =15cos53°=15×35=9,v y =15sin53°=15×45=12;答:水流的横向初始速度v x 是9米/秒,纵向初始速度v y 是12米/秒; (2)x=v x t=9t , ∴t=9x , 又M 与A 的高度之差d (米)与喷出时间t (秒)的关系为d=v y t-5t 2∴y=d+OA=12t-5t 2+15=-5×2()9x +12×9x +15=-2581x +43x+15;∴y 与x 的关系式为:y=-2581x +43x+15.(3)∵坡顶的铅直高度OA 为15米,山坡的坡比为13,∴OB=45米,点A (0,15)点B (45,0)∴直线AB 的解析式为:y=13x -+15,将其与抛物线解析式联立得:254158131153y x x y x ⎧=-++⎪⎪⎨⎪=-+⎪⎩, 解得015x y =⎧⎨=⎩(舍)或276x y =⎧⎨=⎩,∴水流在山坡上的落点C 坐标为(27,6),喷射点A 沿坡面AB 方向移动的距离等于BC 的距离,而答:水流在山坡上的落点C 离喷射点A 的水平距离是27米,需要把喷射点A 沿坡面AB 方向移动 【点睛】本题考查了二次函数的应用以及坡度问题和解直角三角形的应用等知识,正确构造出直角三角形是解题关键. 23.(1)y =-13x 2+3x +5;(2)当x=2时,水柱离坡面的距离最大,最大距离为254;(3)水柱能越过树,理由见解析 【解析】 【分析】(1)根据题意先求出A,B 的坐标,再把其代入解析式即可 (2)由(1)即可解答(3)过点C 作CD ⊥OA 于点D ,求出ODOD 代入解析式即可 【详解】(1)∵AB =10、∠OAB =30°, ∴OB =12AB =5、OA则A (0)、B (0,5),将A 、B 坐标代入y =-13x 2+bx +c,得:175035c c ⎧-⨯++=⎪⎨⎪=⎩,解得:5b c ⎧=⎪⎨⎪=⎩,∴抛物线解析式为y =-13x 2+5; (2)水柱离坡面的距离d =-13x 2+3x +5-(-3x +5)=-13x 2+533x =-13(x 2-53x ) =-13(x -532)2+254, ∴当x =532时,水柱离坡面的距离最大,最大距离为254; (3)如图,过点C 作CD ⊥OA 于点D ,∵AC =2、∠OAB =30°, ∴CD =1、AD 3 则OD 3, 当x 3时,y =-13×(32+33×3>1+3.5, 所以水柱能越过树. 【点睛】此题考查二次函数的应用,解题关键在于求出A,B 的坐标 24.(1)10y x=,25x ≤≤;(2)7m ;(3)91332128p -≤≤-. 【解析】 【分析】(1)在题中,BE=2,B 到y 轴的距离是5,即反比例函数图象上一点的横坐标和纵坐标都已告知,则可求出比例系数k ;(2)根据B ,C 的坐标求出二次函数解析式,得到点D 坐标,即OD 长度再减去AP 长度,可得滑道ABCD 的水平距离;(3)由题意可知点N 为抛物线的顶点,设水流所成抛物线的表达式为213(1)2y p x =-+,通过计算水流分别落到点B 和点D 可以得出p 的取值范围.。
二次函数应用一.解答题(共6小题)1.跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0),如图记录了甲运动员起跳后的三组数据.(1)直接写出甲运动员起跳后的y与x的函数关系式为;(2)运动员起跳后,裁判根据跳跃后的水平距离打出跳跃得分,其总分为60+1.4(x﹣90)分,求甲运动员完成本次动作的跳跃得分.(3)乙运动员的跳跃轨迹近似抛物线,满足函数关系y=a′x2﹣60a′x+c(a′≠0),若乙运动员的跳跃成绩要超过甲运动员,直接写出a′的取值范围.2.某公园有一个截面由抛物线和矩形构成的观景拱桥,如图1所示,示意图如图2,且已知图2中矩形的长AD为16米,宽AB为6米,抛物线的最高处E距地面BC为10米.(1)请根据题意建立恰当的平面直角坐标系,并求出抛物线的函数解析式.(2)若观景拱桥下放置两根长为7.5米的对称安置的立柱,求这两根立柱之间的水平距离.3.掷实心球是河南省2022年中考体育考试选考项目.一名女生投实心球,实心球行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图所示,掷出时起点处高度为,当水平距离为3m时,实心球行进至最高点3m处.设抛物线的表达式为y=a(x﹣h)2+k.(1)求y关于x的函数表达式;(2)下表是2022年新乡市体育考试女生标准,若你是评分员,请你为该女生打分.2022年新乡市中招体育考试女生标准掷实心7.87.77.67.57.47.27.17.06.96.86.66.56.46.36.26.05.85.45.04.54.0球(米)得分109.89.69.49.29.08.78.48.17.87.57.26.96.66.36.05.04.03.02.01.0(注:4.0以下均按“0”分)4.如图是小智用数学软件模拟弹球运动轨迹的部分示意图,已知弹球P从x轴上的点A向右上方弹射出去,沿抛物线l1:y=﹣x2+2x+15运动,落到图示的台阶S1﹣S5某点Q处后,又立即向右上方弹起,运动轨迹形成另一条与L1,形状相同的抛物线L2,抛物线L2的顶点N与点Q的垂直距离为4,点A到台阶底部O的距离为3,最高一是台阶S1到x 轴的距离为9,S1~S5每层台阶的高和宽均分别为1和1.5.台阶的各拐角均为直角.(1)求弹球P上升到最高点M时,弹球到x轴的距离;(2)①指出落点Q在哪一层台阶上,并求出点Q的坐标;②求出抛物线L2的解析式;(3)已知△BCD的BC边紧贴x轴,∠C=90°,BC=1,CD=2,当弹球沿粘物线L2下落能击中△BCD时,求点C的横坐标的最大值与最小值.5.小明进行实心球训练,他尝试利用数学模型来研究实心球的运动情况,建立了如图所示的平面直角坐标系,实心球从y轴上的点A处出手,运动路径可看作抛物线,在点B处达到最高位置,落在x轴上的点C处.小明某次试投时的数据如图所示.(1)根据图中信息,求出实心球路径所在抛物线的表达式.(2)若实心球投掷距离(实心球落地点C与出手点A的水平距离OC的长度)不小于9.6m,成绩为满分,请通过计算,判断小明此次试投的成绩是否能达到满分.6.在2016年巴西里约奥运会上,中国女排克服重重困难,凭借顽强的毅力和超强的实力先后战胜了实力同样超强的巴西队,荷兰队和塞尔维亚队,获得了奥运冠军,为祖国和人民争了光.如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度为2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE为6米时,到达最高点F,以O为原点建立如图所示的平面直角坐标系.(1)当排球运行的最大高度为2.8米时,求排球飞行的高度y(单位:米)与水平距离x (单位:米)之间的函数关系式.(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.(3)喜欢打排球的李明同学经研究后发现,发球要想过网,球运行的最大高度h(米)应满足h>2.32,但是他不知道如何确定h的取值范围,使排球不会出界(排球压线属于没出界),请你帮忙解决并指出使球既能过网又不会出界的h的取值范围.。
二次函数的应用练习题二次函数是高中数学中的一个重要概念,它在现实生活中有着广泛的应用。
本文将通过一些练习题来探讨二次函数的应用,帮助读者更好地理解和掌握这一知识点。
题目一:某物体自由落体运动的高度与时间的关系可以用二次函数表示。
已知物体从某高度自由落下,经过2秒钟时,高度为10米;经过4秒钟时,高度为2米。
求物体自由落体的二次函数表达式,并计算经过6秒钟时物体的高度。
解析:设物体自由落体的二次函数表达式为y=ax^2+bx+c。
已知经过2秒钟时,高度为10米,代入得10=4a+2b+c;经过4秒钟时,高度为2米,代入得2=16a+4b+c。
解这个方程组可以得到a=-2,b=12,c=-10。
所以物体自由落体的二次函数表达式为y=-2x^2+12x-10。
代入x=6,可以计算得到物体经过6秒钟时的高度为y=-2(6)^2+12(6)-10=52米。
题目二:某公司生产一种产品,销售量与售价之间存在着一定的关系。
已知当售价为10元时,销售量为100个;当售价为20元时,销售量为60个。
假设销售量与售价之间的关系可以用二次函数表示,求销售量与售价之间的二次函数表达式,并计算当售价为15元时的销售量。
解析:设销售量与售价之间的二次函数表达式为y=ax^2+bx+c。
已知售价为10元时,销售量为100个,代入得100=a(10)^2+b(10)+c;售价为20元时,销售量为60个,代入得60=a(20)^2+b(20)+c。
解这个方程组可以得到a=-0.5,b=15,c=50。
所以销售量与售价之间的二次函数表达式为y=-0.5x^2+15x+50。
代入x=15,可以计算得到售价为15元时的销售量为y=-0.5(15)^2+15(15)+50=112.5个。
题目三:某地区的温度变化与季节之间存在一定的关系。
已知该地区1月份的平均温度为5摄氏度,7月份的平均温度为30摄氏度。
假设温度变化与季节之间的关系可以用二次函数表示,求温度变化与季节之间的二次函数表达式,并计算4月份的平均温度。
二次函数应用题1、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.1求商家降价前每星期的销售利润为多少元2降价后,商家要使每星期的销售利润最大,应将售价定为多少元最大销售利润是多少2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.1假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;不要求写自变量的取值范围2商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元3每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高最高利润是多少3、张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米.矩形ABCD 的面积为S 平方米.1求S 与x 之间的函数关系式不要求写出自变量x 的取值范围.2当x 为何值时,S 有最大值并求出最大值.参考公式:二次函数2y ax bx c =++0a ≠,当2b x a =-时,244ac b y a -=最大(小)值 4、某电视机生产厂家去年销往农村的某品牌电视机每台的售价y 元与月份x 之间满足函数关系502600y x =-+,去年的月销售量p 万台与月份x 之间成一次函数关系,其中两个月的销售情况如下表:月份 1月 5月销售量 万台 万台1求该品牌电视机在去年哪个月销往农村的销售金额最大最大是多少2由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m ,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m 的值保留一位小数. 34 5.83135 5.91637 6.08338 6.1645、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y 件与销售单价x 元符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =.1求一次函数y kx b =+的表达式;2若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元3若该商场获得利润不低于500元,试确定销售单价x 的范围.6、某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周7天涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售;1请建立销售价格y 元与周次x 之间的函数关系;2若该品牌童装于进货当周售完,且这种童装每件进价z 元与周次x 之间的关系为12)8(812+--=x z , 1≤ x ≤11,且x 为整数,那么该品牌童装在第几周售出后,每件获得利润最大并求最大利润为多少71设该车间每月生产甲、乙两种塑料各x 吨,利润分别为1y 元和2y 元,分别求1y 和2y 与x 的函数关系式注:利润=总收入-总支出;2已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,求该月生产甲、乙塑料各多少吨,获得的总利润最大最大利润是多少8、某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价1y 元与销售月份x 月满足关系式3368y x =-+,而其每千克成本2y 元与销售月份x 月满足的函数关系如图所示. 1试确定b c 、的值;2求出这种水产品每千克的利润y 元与销售月份x 月之间的函数关系式;3“五·一”之前,几月份出售这种水产品每千克的利润最大最大利润是多少二次函数应用题答案1、解:1 130-100×80=2400元2设应将售价定为x 元,则销售利润 130(100)(8020)5x y x -=-+⨯ 24100060000x x =-+-24(125)2500x =--+.y 2元月当125x =时,y 有最大值2500. ∴应将售价定为125元,最大销售利润是2500元.2、解:1(24002000)8450x y x ⎛⎫=--+⨯⎪⎝⎭,即2224320025y x x =-++. 2由题意,得22243200480025x x -++=.整理,得2300200000x x -+=. 得12100200x x ==,.要使百姓得到实惠,取200x =.所以,每台冰箱应降价200元. 3对于2224320025y x x =-++,当241502225x =-=⎛⎫⨯- ⎪⎝⎭时, 150(24002000150)8425020500050y ⎛⎫=--+⨯=⨯= ⎪⎝⎭最大值. 所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.3、4、解:1设p 与x 的函数关系为(0)p kx b k =+≠,根据题意,得3.954.3.k b k b +=⎧⎨+=⎩,解得0.13.8.k b =⎧⎨=⎩,所以,0.1 3.8p x =+. 设月销售金额为w 万元,则(0.1 3.8)(502600)w py x x ==+-+.化简,得25709800w x x =-++,所以,25(7)10125w x =--+. 当7x =时,w 取得最大值,最大值为10125.答:该品牌电视机在去年7月份销往农村的销售金额最大,最大是10125万元.2去年12月份每台的售价为501226002000-⨯+=元,去年12月份的销售量为0.112 3.85⨯+=万台,根据题意,得2000(1%)[5(1 1.5%) 1.5]13%3936m m -⨯-+⨯⨯=.令%m t =,原方程可化为27.514 5.30t t -+=.t ∴==.10.528t ∴≈,2 1.339t ≈舍去 答:m 的值约为.5、解:1根据题意得65557545.k b k b +=⎧⎨+=⎩,解得1120k b =-=,. 所求一次函数的表达式为120y x =-+.2(60)(120)W x x =--+ 21807200x x =-+- 2(90)900x =--+, 抛物线的开口向下,∴当90x <时,W 随x 的增大而增大,而6087x ≤≤,∴当87x =时,2(8790)900891W =--+=.∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元.3由500W =,得25001807200x x =-+-,整理得,218077000x x -+=,解得,1270110x x ==,. 由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而6087x ≤≤,所以,销售单价x 的范围是7087x ≤≤.6、 解:1202(1)218(16)()......(2)30 (611)()......(4)x x x x y x x +-=+≤<⎧=⎨≤≤⎩为整数分为整数分 2设利润为w综上知:在第11周进货并售出后,所获利润最大且为每件1198元…10分 7.解: 1依题意得:1(2100800200)1100y x x =--=,2(24001100100)20000120020000y x x =---=-,2设该月生产甲种塑料x 吨,则乙种塑料(700)x -吨,总利润为W 元,依题意得:11001200(700)20000100820000W x x x =+--=-+. ∵400700400x x ⎧⎨-⎩≤,≤,解得:300400x ≤≤. ∵1000-<,∴W 随着x 的增大而减小,∴当300x =时,W 最大=790000元此时,700400x -=吨.因此,生产甲、乙塑料分别为300吨和400吨时总利润最大,最大利润为790000元.8、解:1由题意:22125338124448b c b c ⎧=⨯++⎪⎪⎨⎪=⨯++⎪⎩解得7181292b c ⎧=-⎪⎪⎨⎪=⎪⎩212y y y =-23115136298882x x x ⎛⎫=-+--+ ⎪⎝⎭21316822x x =-++; 321316822y x x =-++2111(1236)46822x x =--+++21(6)118x =--+ ∵108a =-<,∴抛物线开口向下.在对称轴6x =左侧y 随x 的增大而增大.由题意5x <,所以在4月份出售这种水产品每千克的利润最大. 最大利润211(46)111082=--+=元.。
二次函数的应用练习题及答案一:知识点利润问题:总利润=总售价–总成本总利润=每件商品的利润×销售数量二:例题1、将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个形,则这两个形面积之和的最小值是cm2.2、某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程正确的是________________3、用48米长的竹篱笆围建一矩形养鸡场,养鸡场一面用砖砌成,另三面用竹篱笆围成,并且在与砖墙相对的一面开2米宽的门,问养鸡场的边长为多少米时,养鸡场占地面积最大?最大面积是多少?4、某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取降价措施,经调查发现,若每件衬衫每降价1元,商场平均每天可以多售出2件.若每件降价x 元,每天盈利y 元,求y 与x 的关系式.若商场平均每天要盈利1200元,每件衬衫应降价多少元?每件衬衫降价多少元时,商场每天盈利最多?盈利多少元?5、某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元.求:房间每天的入住量y关于x的函数关系式.该宾馆每天的房间收费z关于x的函数关系式.该宾馆客房部每天的利润w关于x的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?6、某商店经营一批进价每件为2元的小商品,在市场营销的过程中发现:如果该商品按每件最低价3元销售,日销售量为18件,如果单价每提高1元,日销售量就减少2件.设销售单价为x,日销售量为y.写出日销售量y与销售单价x之间的函数关系式;设日销售的毛利润为P,求出毛利润P与销售单价x之间的函数关系式;在下图所示的坐标系中画出P关于x的函数图象的草图,并标出顶点的坐标;观察图象,说出当销售单价为多少元时,日销售的毛利润最高?是多少?7、我州有一种可食用的野生菌,上市时,外商经理按市场价格20元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160元,同时,平均每天有3千克的野生菌损坏不能出售.设x到后每千克该野生菌的市场价格为y元,试写出y 与x之间的函数关系式.O若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出P与x之间的函数关系式.经理将这批野生茵存放多少天后出售可获得最大利润W元?8、为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y与销售单价x之间的函数关系如图所示.求月销售量y与销售单价x之间的函数关系式;当销售单价定为50元时,为保证公司月利润达到5万元,该公司可安排员工多少人?若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?9、大学毕业生响应“自主创业”的号召,投资开办了一个装饰品商店.该店采购进一种今年新上市的饰品进行了30天的试销售,购进价格为20元/件.销售结束后,得知日销售量P与销售时间x之间有如下关系:P=-2x+80;又知前20天的销售价格Q1 与销售时间x之间有如下关系:Q1?1x?30 ,后10天的销售价格Q与2销售时间x之间有如下关系:Q2=45.试写出该商店前20天的日销售利润R1和后l0天的日销售利润R2分别与销售时间x之间的函数关系式;请问在这30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润.注:销售利润=销售收入一购进成本.10、红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天的日销售量m与时间t的关系如下表:未来40天,前20天每天的价格y1与时间t的函数关系式为y1?t?25,后20天每天的价格y2与时间t的函数关系式为y2??1t?40。