基于脱铁铁蛋白纳米复合体系的研究进展
- 格式:pdf
- 大小:422.41 KB
- 文档页数:6
生物技术进展2019年㊀第9卷㊀第3期㊀240~245CurrentBiotechnology㊀ISSN2095 ̄2341进展评述Reviews㊀收稿日期:2018 ̄12 ̄26ꎻ接受日期:2019 ̄02 ̄22㊀基金项目:国家重点研发计划项目(2017YFD0500706ꎻ2016YFD0500108)ꎻ国家自然科学基金项目(31670156)资助ꎮ㊀作者简介:魏珍珍ꎬ硕士研究生ꎬ研究方向为病毒微生物ꎮE ̄mail:646122815@qq.comꎮ∗通信作者:易咏竹ꎬ副研究员ꎬ研究方向为病毒微生物ꎮE ̄mail:Yiyongzhu@126.com自组装铁蛋白在纳米疫苗领域的应用进展魏珍珍1ꎬ㊀刘兴健2ꎬ㊀王㊀朋1ꎬ㊀张志芳2ꎬ㊀易咏竹3∗1.江苏科技大学生物技术学院ꎬ江苏镇江212003ꎻ2.中国农业科学院生物技术研究所ꎬ北京100081ꎻ3.中国农业科学院蚕业研究所ꎬ江苏镇江212018摘㊀要:自组装蛋白在真核细胞及原核细胞中是普遍存在的ꎬ其对生命体的正常运转具有重要意义ꎬ甚至关系到生命体的进化ꎮ常见的自组装蛋白包括病毒颗粒(virusparticles)㊁血清白蛋白(serumalbumin)㊁丝蛋白(silkprotein)及铁蛋白(ferritin)ꎮ其中ꎬ铁蛋白可形成粒径均一㊁生物相容性良好的纳米材料ꎬ还具有独特的理化性质ꎬ如pH敏感㊁高温耐受㊁大多数变性剂耐受ꎬ即可通过调节pH来控制铁蛋白的自组装特性ꎮ铁蛋白是存在于大多数生物体内的天然蛋白ꎬ在肿瘤的诊断成像及治疗㊁药物载体和纳米疫苗等领域具有广阔的应用前景ꎮ重点探讨了铁蛋白的仿生合成及其在纳米疫苗领域的应用进展ꎬ以期为新型动物纳米疫苗的研发提供参考ꎮ关键词:自组装蛋白ꎻ重组铁蛋白ꎻ纳米疫苗DOI:10.19586/j.2095 ̄2341.2018.0139ApplicationProgressofSelf ̄assembledFerritininNano ̄vaccineWEIZhenzhen1ꎬLIUXingjian2ꎬWANGPeng1ꎬZHANGZhifang2ꎬYIYongzhu3∗1.CollegeofBiotechnologyꎬJiangsuUniversityofScienceandTechnologyꎬJiangsuZhenjiang212003ꎬChinaꎻ2.BiotechnologyResearchInstituteꎬChineseAcademyofAgriculturalSciencesꎬBeijing100081ꎬChinaꎻ3.SericulturalResearchInstituteꎬChineseAcademyofAgriculturalSciencesꎬJiangsuZhenjiang212018ꎬChinaAbstract:Self ̄assembledproteinsareubiquitousineukaryoticandprokaryoticcellsꎬandtheyareimportantforlivingorganismstomaintainthenormaloperationꎬandevenrelatedtotheevolutionoflivingorganisms.Commonself ̄assembledproteinsincludevirusparticlesꎬserumalbuminꎬsilkproteinandferritin.Amongthemꎬferritincanformnanomaterialswithuniformparticlesizeandgoodbiocompatibility.ItalsohasuniquephysicalandchemicalpropertiesꎬsuchaspHsensitivityꎬhightemperaturetoleranceꎬandresistancetomostdenaturantsꎬsoastocontroltheself ̄assemblycharacteristicsofferritinbypHregulation.Ferritinisanaturalproteinfoundinmostlivingorganismsꎬandithasabroadapplicationprospectintumordiagnosticimagingandtherapyꎬdrugcarrierandnano ̄vaccine.Thebionicsynthesisofferritinanditsapplicationinnano ̄vaccineweremainlydiscussedinordertoprovidereferencesfortheresearchanddevelopmentofnovelanimalnano ̄vaccine.Keywords:self ̄assembledproteinꎻrecombinantferritinꎻnano ̄vaccine㊀㊀自组装蛋白在真核细胞及原核细胞中是普遍存在的ꎬ蛋白质亚基间会自发组装构成高度有序的结构ꎬ这是维持机体正常运转的保证ꎬ也是机体进化的推动力[1]ꎮ由自组装蛋白形成的纳米材料ꎬ不仅具有生物相容性良好以及粒径均一㊁稳定的特性ꎬ还在细胞成像㊁病灶检测和药物缓释等方面具有广阔的应用前景ꎮ到目前为止ꎬ研究最多的自组装蛋白纳米颗粒包括病毒颗粒(virusparticles)㊁血清白蛋白(se ̄rumalbumin)㊁丝蛋白(silkprotein)及铁蛋白(fer ̄ritin)ꎮ其中ꎬ病毒颗粒侵染宿主细胞并在宿主细胞内的自组装行为ꎬ是自然界中典型的生物纳米. All Rights Reserved.材料的形成方式ꎬ主要用于特异性检测以及病毒侵染宿主细胞的机制和路径的研究[2ꎬ3]ꎬ经基因修饰后还可用于研制借助病毒释放基因的药物等方面的研究[4]ꎻ血清白蛋白是脊椎动物血浆中含量最高的蛋白质ꎬ其分子的弹性良好ꎬ结构改变后也极易恢复ꎬ不同来源的血清白蛋白的空间构造均十分保守[5]ꎬ在药物传递系统领域拥有潜在的应用前景[6]ꎻ丝蛋白是一类线状蛋白的生物高分子材料ꎬ可抗紫外线ꎬ也可抗蛋白水解酶ꎬ其柔韧性好㊁抗疲劳度高ꎬ有着与钢材类似的张力强度ꎬ还具有良好的热㊁酸㊁碱稳定性和生物相容性ꎬ在生物材料[7]和药物载体[8]领域应用广泛ꎮ而铁蛋白是存在于大多数生物体内的天然蛋白ꎬ具有独特的理化性质:①铁蛋白对pH不耐受ꎬ较为敏感ꎬ在酸性条件(pH2.0)下铁蛋白外壳会解体成亚基ꎬ而当pH回升到生理条件(pH7.4)时ꎬ各亚基又重组形成完整的铁蛋白[9ꎬ10]ꎻ②铁蛋白的天然高级结构不受多种变性剂的影响ꎬ一般蛋白质在1~4mol/L的低浓度盐酸胍或者脲溶液中就会发生变性ꎬ而铁蛋白在6mol/L的盐酸胍或8mol/L的脲溶液中才会发生蛋白质解聚ꎬ即铁蛋白对变性剂的耐受性高[11]ꎻ③铁蛋白对高温具有较高的耐受性ꎬ大多数蛋白质在温度高于生理条件后极易变性ꎬ但铁蛋白在高温(70ħ~80ħ)时可维持10min以上不会发生变性ꎬ且其高级结构维持完好[12]ꎮ基于铁蛋白独特的理化性质ꎬ本文主要对铁蛋白的仿生合成及其在肿瘤的诊断成像及治疗㊁药物载体和纳米疫苗领域的应用进展进行了综述ꎬ阐述了天然铁蛋白的结构及修饰㊁人工制备重组铁蛋白的研究进程ꎬ分析了重组铁蛋白在各领域中的应用ꎬ以期为研发对机体无害㊁适应不同生物体的新型疫苗提供参考ꎮ1㊀铁蛋白的结构及其修饰在生命体中ꎬ天然的铁蛋白主要由水合氧化铁核和蛋白质外壳2个部分组成ꎬ其结构是高度对称的ꎬ封闭的笼形结构由24个亚基组成ꎮ哺乳动物铁蛋白外壳的分子量约为480kDaꎬ外直径约为12nmꎬ可容纳约4500个铁原子的内腔直径约为8nmꎮ哺乳动物机体中的铁蛋白外壳是由H亚基和L亚基组成的ꎬ但亚铁氧化酶活性中心(ferroxidasecenter)只存在于H亚基上[13]ꎮ许多在机体中发挥重要作用的蛋白质和辅酶的组成成分都含有铁元素ꎻ而广泛存在于机体中的铁蛋白在铁离子代谢中起着至关重要的作用ꎬ可维持铁的稳态ꎬ抵抗氧化应激ꎻ此外ꎬ铁蛋白还可以捕捉游离二价铁将其氧化并形成稳定的铁核ꎬ从而消除过量金属离子的其他毒性作用[14]ꎮ自然界中的铁蛋白都含有铁核ꎬ其组分是水铁矿(5Fe2O3 9H2O)ꎬ也可称之为全铁蛋白(ho ̄loferritin)ꎬ即铁蛋白(ferritin)ꎬ而不含铁内核的铁蛋白ꎬ称为去铁铁蛋白(apoferritin)ꎮ铁蛋白的球形中空结构有3个界面:内表面㊁外表面及亚基间接触面(图1)[15]ꎮ在对铁蛋白进行修饰改造时ꎬ其内表面可将材料包裹于铁蛋白内核ꎬ作为纳米复合材料合成的纳米反应器ꎻ外表面可连接配体ꎬ赋予铁蛋白特殊功能ꎻ亚基间接触面可通过调节溶液pH完成解聚与重组ꎬ开发铁蛋白的新功能ꎮ图1㊀可用于修饰的铁蛋白3个界面[16]Fig.1㊀Threeinterfacesofferritinthatcanbeusedformodification[16].2㊀重组铁蛋白的人工制备随着交叉学科的快速发展㊁生物学与纳米技术的联用ꎬ仿生合成铁蛋白技术也逐渐得到改善ꎮ1991年ꎬ英国巴斯大学首次合成了磁性铁蛋白ꎬ他们以天然马脾铁蛋白为模板ꎬ人工除去了水铁矿(5Fe2O3 9H2O)的天然内核ꎬ并将磁性铁核在马脾铁蛋白的空腔内合成[17]ꎬ这项工作开辟了一个新领域 仿生合成纳米颗粒ꎮ但这同样也存在着问题ꎬ在利用天然马脾铁蛋白外壳作为模板142魏珍珍ꎬ等:自组装铁蛋白在纳米疫苗领域的应用进展. All Rights Reserved.合成纳米颗粒前ꎬ首先要除去蛋白质内的天然水铁矿内核ꎬ而去核的过程需要利用可破坏蛋白质外壳的强还原剂处理铁蛋白ꎬ以致亚铁离子不能全部进入蛋白质外壳的内核中ꎬ而是吸附到蛋白质外壳的表面被氧化ꎬ从而导致合成的铁蛋白聚集[18]ꎮ天然铁蛋白的自组装特性ꎬ使得在大肠杆菌中批量表达重组铁蛋白成为可能ꎮ利用大肠杆菌表达的铁蛋白亚基可以自组装形成24聚体的铁蛋白外壳ꎬ与天然铁蛋白相比ꎬ结构一致㊁分散性好㊁粒径均一ꎬ所以在不破坏铁蛋白外壳完整性的前提下ꎬ可将大肠杆菌作为优良的模式生物来仿生合成铁蛋白纳米颗粒ꎮ2006年ꎬ美国蒙大拿州立大学首次利用大肠杆菌成功获得几乎纯的铁蛋白外壳ꎬ并以这些铁蛋白外壳为模板ꎬ仿生合成了磁性铁蛋白[19]ꎮ这种新技术不仅极大地简化了分离纯化天然铁蛋白外壳的过程ꎬ而且避免了强还原剂对蛋白质外壳的破坏ꎬ保持了蛋白质外壳良好的完整性ꎬ使得整个合成过程高效且快速ꎮ值得注意的是ꎬ虽然利用大肠杆菌可仿生合成与天然铁蛋白结构相似的铁蛋白ꎬ但是二者内核晶型不同ꎬ仿生合成铁蛋白的内核为Fe3O4ꎬ具有超顺磁性ꎬ这也是仿生合成的铁蛋白被称为磁性铁蛋白的原因ꎮ目前ꎬ已能够成功构建基于大肠杆菌的铁蛋白原核表达体系ꎬ利用IPTG诱导表达后ꎬ经过纯化㊁复性等步骤ꎬ即可获得与天然结构相同的铁蛋白纳米颗粒ꎬ其在生物医药领域具有广泛的应用前景[20]ꎮ仿生合成的铁蛋白纳米颗粒与其他纳米颗粒相比ꎬ具有以下优点:①粒径小ꎬ约为12nmꎬ有利于其在病灶组织(如肿瘤)的渗透和积累[21]ꎻ②粒径均一ꎬ在大肠杆菌中能仿生合成理想的粒径均匀且分散性良好的铁蛋白纳米颗粒ꎻ③生物相容性良好ꎬ利用大肠杆菌表达的人重组铁蛋白纳米颗粒制成的生物技术药物ꎬ应用于机体后ꎬ不易引起免疫排斥反应ꎬ对机体的毒性有较大程度的降低ꎻ④易于靶向性修饰ꎬ铁蛋白纳米颗粒在合成时可直接通过基因修饰ꎬ在外壳及亚基间接触面上修饰所需肽段等ꎬ使其成为纳米载体ꎮ此外ꎬ仿生合成的磁性铁蛋白纳米颗粒内核为Fe3O4ꎬ具有超顺磁性和过氧化物酶活性的双功能特性ꎮFe3O4的内核直径在4~7nmꎬ具有超顺磁性ꎬ使其成为潜在的MRI造影剂[22]ꎮ而我国科学家于2007年发现ꎬFe3O4磁性纳米颗粒还具有过氧化物酶的活性[23]ꎬ即在显色底物中含有H2O2时ꎬFe3O4磁性纳米颗粒可以将其催化氧化发生颜色反应ꎮ已有研究表明ꎬ铁蛋白的表达量在病变的脑组织和多种类型的肿瘤细胞中都较正常组织细胞多[24]ꎮ目前ꎬ检测脑神经退化性疾病及各种肿瘤的无创伤性的手段即为磁共振成像(magneticresonanceimagingꎬMRI)ꎬ可以对病变组织内的铁含量进行定量检测[25]ꎮ因此ꎬ仿生合成的磁性铁蛋白纳米颗粒在病灶诊断及治疗中具有巨大的应用前景(图2)ꎮ3㊀铁蛋白纳米颗粒的应用3.1㊀铁蛋白纳米颗粒在药物载体领域的应用铁蛋白纳米颗粒在药物载体领域ꎬ不仅可作为载体ꎬ同时还可作为信号分子ꎮ基于铁蛋白纳米颗粒具有的良好的生物相容性和特殊的球形空腔结构ꎬ其可成为铁氰化物㊁荧光素等各类小分子探针的理想载体ꎮ英国诺丁汉大学以无内核的铁蛋白外壳作为纳米材料的载体ꎬ系统地评估了铁蛋白包装对纳米材料稳定性及生物相容性的影响ꎮ实验结果表明ꎬ包装有探针的纳米颗粒不仅具有量子点优异的荧光性质ꎬ同时ꎬ还因为被铁蛋白包裹而降低了相应的毒性ꎻ通过进一步对铁蛋白外壳的修饰ꎬ包裹有量子点的铁蛋白纳米颗粒还可实现靶向细胞识别ꎬ并使得靶向过程可视[28]ꎬ为后期的临床诊断及病灶组织治疗提供了重要的技术支持ꎮ此外ꎬ铁蛋白也可作为信号分子ꎬ在生物传感器中利用其纳米材料的特性ꎬ双向放大电信号ꎬ构建一种电化学免疫检测方法ꎮ如利用金纳米颗粒与rGO ̄AuNPs材料修饰的玻碳电极合成AuNPs ̄Ab2 ̄Ferritin复合物ꎬ通过2次免疫反应可形成AuNPs ̄Ab2 ̄ferritin/Ag/Ab1/rGO ̄Au ̄chi/GCꎬ一种特殊的夹心免疫结构ꎬ该结构能实现检测人血浆硝化铜蓝蛋白(nitratedceruloplasmin)的目的[29]ꎮ3.2㊀铁蛋白纳米颗粒在纳米疫苗领域的应用研究人员基于铁蛋白特殊的空间结构ꎬ对其进行改造ꎬ结果表明ꎬ生物基因改造不会影响铁蛋白亚基间的自组装ꎬ而且24个亚基的基因均可进242生物技术进展CurrentBiotechnology. All Rights Reserved.图2㊀可用于靶向肿瘤并使其可视化的磁性铁蛋白纳米颗粒Fig.2㊀Magneticferritinnanoparticlesthatcanbeusedtotargetandvisualizetumors.注:A:仿生合成磁性铁蛋白[26]ꎻB:磁性铁蛋白的双功能特性ꎻC:常规免疫组化方法ꎻD:磁性铁蛋白检测肿瘤新技术[27]ꎮ行改造ꎬ这一发现使得铁蛋白纳米颗粒成为一个疫苗开发和抗原递呈的平台[30]ꎮ2006年ꎬ美国新世纪医药公司首次利用铁蛋白外壳作为呈递抗原的疫苗研发平台ꎬ在铁蛋白L亚基的N端融合表达HIV ̄1病毒的Tat肽段ꎬ利用铁蛋白的自组装特性生成融合蛋白ꎬ随后进行动物免疫实验ꎬ实验结果表明ꎬ该融合蛋白在动物机体内可激起免疫应答反应[30]ꎮ2013年ꎬ美国国家卫生研究所和过敏与传染病研究所将铁蛋白应用于流感疫苗的研发ꎬ将幽门螺杆菌铁蛋白亚基的N端与流感病毒的血凝素蛋白(hemagglutininꎬHA)基因融合ꎬ当铁蛋白自组装形成融合蛋白时ꎬ由蛋白核心向外伸出引入的血凝素HAꎬ由于铁蛋白具有三重对称轴ꎬ因而可形成8个HA突起ꎬ与流感病毒表面的突起相似(图3)[32]ꎮ将该融合蛋白纳米颗粒作为抗原进行动物免疫实验ꎬ在动物体内成功诱导了中和性抗体ꎬ达到了流感病毒疫苗的作用ꎮ同时ꎬ与传统灭活病毒疫苗相比ꎬ这种流感血凝素融合蛋白纳米颗粒在动物体内产生的中和性抗体水平高10倍以上ꎬ而且存在于铁蛋白表面的HA突起能特异性识别流感病毒HA三聚体蛋白的茎部和头部这2个高度保守的位点ꎮ此外ꎬ这种新型疫苗的免疫范围更广ꎬ能中和绝大多数同型病毒ꎮ通过基因修饰ꎬ铁蛋白自组装纳米图3㊀流感病毒HA的铁蛋白纳米颗粒的分子设计和表征[32]Fig.3㊀ThemoleculardesignandcharacterizationofferritinnanoparticlesfrominfluenzavirusHA[32].注:纳米粒子的负面染色TEM图像ꎮ1~6代表了HA尖峰在图像中的编号ꎮ342魏珍珍ꎬ等:自组装铁蛋白在纳米疫苗领域的应用进展. All Rights Reserved.颗粒还可以融合表达其他病毒抗原作为抗原递呈的制备疫苗平台ꎬ为各类动物病毒病的防治提供了较好的技术支持ꎮ目前ꎬ在制备双组分铁蛋白纳米颗粒ꎬ即同时表达多种抗原的铁蛋白纳米颗粒方面也做了尝试(图4)ꎬ纳米颗粒上的抗原多聚化可以使中和抗体响应得到改善[33]ꎮ在此研究中ꎬ设计了双组分铁蛋白变体ꎬ允许在1个颗粒上以确定的比例和几何图案黏着2种不同的抗原ꎮ双组分铁蛋白专门设计用于三聚体抗原ꎬ每个抗原接受每个颗粒图4㊀双组分铁蛋白纳米粒子的设计ꎬ用于附着不同的三聚体抗原[33]Fig.4㊀Designoftwo ̄componentferritinnanoparticlesforattachmentofdifferenttrimericantigens[33].注:单组分铁蛋白的示意图ꎮ其具有8个拷贝的三聚体抗原A(黑色)和双组分铁蛋白ꎬ每个三聚体抗原A具有4个拷贝(黑色)和B(灰色)ꎮ4个三聚体ꎬ并用来自HIV ̄1包膜(Env)和流感血凝素(HA)的抗原进行测试ꎮ用具有不同Env㊁HA或2种抗原的双组分铁蛋白颗粒对豚鼠进行免疫ꎬ引发针对各病毒的中和抗体应答ꎮ该结果证明了铁蛋白表面可展示不只1种抗原ꎬ也提供了双组分纳米颗粒自组装原理的证据ꎬ将来可作为三聚体抗原的多聚体免疫原呈递的一般技术ꎮ此研究的成功展开ꎬ为后期新型疫苗的制备开拓了新的思路ꎮ相比于直接在铁蛋白表面表达抗原ꎬ也可在铁蛋白表面或者空腔内连接衍生自卵清蛋白的抗原肽OT ̄1(SIINFEKL)或OT ̄2(ISQAVHAA ̄HAEINEAGR)ꎬ然后再将重组铁蛋白作用于树突细胞ꎬ其可启动和控制抗原特异性免疫应答ꎮ树突细胞在其中起着重要作用ꎬ即将抗原内化ꎬ再加工和呈递给原始T淋巴细胞并诱导其增殖和分化为效应细胞(图5)ꎬ导致抗原特异性靶细胞的选择性杀伤[21]ꎬ同时ꎬIFN ̄γ/IL ̄2和IL ̄10/IL ̄13细胞因子的产生可证实铁蛋白纳米疫苗会增强机体的免疫反应ꎮ基于树突细胞的铁蛋白纳米颗粒疫苗的开发已成为体内直接抗原特异性适应性免疫的非常有前景的一种方法ꎮ图5㊀携带OT肽的铁蛋白蛋白笼纳米颗粒诱导的抗原特异性T细胞增殖和随后的免疫应答[34]Fig.5㊀FerroproteinproteincagenanoparticlescarryingOTpeptideinducedantigen ̄specificTcellproliferationandsubsequentimmuneresponse[34].4㊀展望自组装蛋白广泛存在于机体中ꎬ与其他自组装蛋白相比ꎬ自组装铁蛋白具有独特的解聚与重组方式ꎬ可耐受高热和高浓度变性剂ꎬ同时其独特的高级空间结构也便于进行基因定向修饰ꎬ可在一定程度上对修饰过程实现精准控制ꎮ通过生物手段与化学方法相结合的修饰方法ꎬ如在铁蛋白表面共价连接各类大分子ꎬ可实现特异性修饰特定位点ꎬ还可赋予铁蛋白更多新的性能ꎬ铁蛋白的应用范围也被拓宽ꎻ而通过将标记蛋白与铁蛋白亚基融合表达ꎬ使融合蛋白有序的展示在铁蛋白外壳的外表面ꎬ可提高抗体或药物等目标蛋白的载量和效率ꎬ从而作为一种潜在的新型疫苗ꎮ同时ꎬ基于铁蛋白的纳米颗粒特性ꎬ其也可作为信号442生物技术进展CurrentBiotechnology. All Rights Reserved.分子在生物传感器中双向放大信号ꎬ构建电化学免疫检测方法ꎬ在疾病诊治方面具有广阔的应用前景ꎮ因而ꎬ实现铁蛋白的改造及修饰多功能化是未来研究的重要方向ꎮ不过ꎬ有关自组装铁蛋白的研究仍有以下3个方面亟待深入探究:①铁蛋白的磁学性质及生理机制ꎻ②铁蛋白表面展示融合蛋白后ꎬ其具体的作用机制及通路ꎻ③目前作为抗原载体的铁蛋白多为昆虫的铁蛋白及马脾铁蛋白ꎬ其他生物体内的铁蛋白的具体分类及差异ꎮ使用从机体提取的天然无害蛋白来生产各种疫苗是值得期待的ꎬ并且生产纳米级疫苗是近期的研究重点ꎬ利用铁蛋白表面表达单种融合抗原甚至可能是多种融合抗原来生产新型疫苗必将成为未来的研究热点ꎮ参㊀考㊀文㊀献[1]㊀BergerBꎬWaldispühlJ.Novelperspectivesonproteinstructureprediction[A].In:ProblemSolvingHandbookinComputationalBiologyandBioinformatics[M].Boston:Spring ̄erꎬ2010ꎬ179-207.[2]㊀BeecherJF.Organicmaterials:Woodꎬtreesandnanotechnology[J].Nat.Nanotechnol.ꎬ2007ꎬ2(8):466-467. [3]㊀DouglasTꎬYoungM.Host ̄guestencapsulationofmaterialsbyassembledvirusproteincages[J].Natureꎬ1998ꎬ393(6681):152-155.[4]㊀WeaverJꎬZakeriRꎬAouadiSꎬetal..Synthesisandcharacter ̄izationofquantumdot ̄polymercomposites[J].J.Mater.Chem.ꎬ2009ꎬ19(20):3198-3206.[5]㊀BeattieWGꎬDugaiczykA.Structureandevolutionofhumanα ̄fetoproteindeducedfrompartialsequenceofclonedcDNA[J].Geneꎬ1982ꎬ20(3):415-422.[6]㊀何乃普ꎬ潘素娟ꎬ王荣民.热诱导白蛋白与壳聚糖在溶液中的自组装[J].高分子学报ꎬ2015(1):61-69. [7]㊀吴蕾.丝素蛋白取向凝胶/羟基磷灰石复合支架的设计及对骨髓间充质干细胞成骨性能的调控研究[D].江苏苏州:苏州大学ꎬ硕士学位论文ꎬ2017.[8]㊀雷容.多孔丝素蛋白颗粒的制备及其作为阿霉素药物载体的研究[D].杭州:浙江理工大学ꎬ硕士学位论文ꎬ2018. [9]㊀KangSꎬOltroggeLMꎬBroomellCCꎬetal..Controlledas ̄semblyofbifunctionalchimericproteincagesandcompositionanalysisusingnoncovalentmassspectrometry[J].J.Am.Chem.Soc.ꎬ2008ꎬ130(49):16527-16529.[10]㊀王占通.基于铁蛋白纳米颗粒的诊断治疗一体化探针研究[D].福建厦门:厦门大学ꎬ博士学位论文ꎬ2017. [11]㊀SantambrogioPꎬPintoPꎬSoniaLꎬetal..Effectsofmodifica ̄tionsnearthe2 ̄ꎬ3 ̄and4 ̄foldsymmetryaxesonhumanfer ̄ritinrenaturation[J].Biochem.J.ꎬ1997ꎬ322(2):461-468. [12]㊀StefaniniSꎬCavalloSꎬWangCQꎬetal..ThermalstabilityofhorsespleenapoferritinandhumanrecombinantHapoferritin[J].Arch.Biochem.Biophys.ꎬ1996ꎬ325(1):58-64. [13]㊀StillmanTJꎬHempsteadPDꎬArtymiukPJꎬetal..Thehigh ̄resolutionX ̄raycrystallographicstructureoftheferritin(EcFt ̄nA)ofEscherichiacoliꎻcomparisonwithhumanHferritin(HuHF)andthestructuresoftheFe3+andZn2+derivatives[J].J.Mol.Biol.ꎬ2001ꎬ307(2):587-603.[14]㊀AlkhateebAAꎬConnorJR.Nuclearferritin:Anewroleforferritinincellbiology[J].BBAGeneSubjectsꎬ2010ꎬ1800(8):793-797.[15]㊀UchidaMꎬKangSꎬReichhardtCꎬetal..Theferritinsuper ̄family:Supramoleculartemplatesformaterialssynthesis[J].BBAGeneSubjectsꎬ2010ꎬ1800(8):834-845.[16]㊀胡有生ꎬ邹国林.用铁蛋白合成纳米粒子的研究进展[J].氨基酸和生物资源ꎬ2003ꎬ25(3):34-36.[17]㊀MeldrumFCꎬWadeVJꎬNimmoDLꎬetal..Synthesisofin ̄organicnanophasematerialsinsupramolecularproteincages[J].Natureꎬ1991ꎬ349(6311):684-687.[18]㊀MoskowitzBMꎬFrankelRBꎬWaltonSAꎬetal..Determina ̄tionofthepreexponentialfrequencyfactorforsuper ̄paramagneticmaghemiteparticlesinmagnetoferritin[J].J.Geophys.Res.Sol.Ea.ꎬ1997ꎬ102(B10):22671-22680. [19]㊀OkudaMꎬKobayashiYꎬSuzukiKꎬetal..Self ̄organizedinor ̄ganicnanoparticlearraysonproteinlattices[J].NanoLett.ꎬ2005ꎬ5(5):991-993.[20]㊀李志鹏ꎬ刘福航ꎬ崔奎青ꎬ等.铁蛋白Ferritin原核表达和纯化及纳米颗粒胞外自组装[J].畜牧兽医学报ꎬ2018ꎬ49(1):75-82.[21]㊀DreherMRꎬLiuWꎬMichelichCRꎬetal..Tumorvascularpermeabilityꎬaccumulationꎬandpenetrationofmacromoleculardrugcarriers[J].J.NatlCancerI.ꎬ2006ꎬ98(5):335-344. [22]㊀UchidaMꎬTerashimaMꎬCunninghamCHꎬetal..Ahumanferritinironoxidenano ̄compositemagneticresonancecontrastagent[J].Magnet.Reson.Med.ꎬ2008ꎬ60(5):1073-1081. [23]㊀阎锡蕴ꎬ高利增ꎬ聂棱ꎬ等.磁性纳米材料的新功能及新用途:中国ꎬ101037676B[P].2011-05-04.[24]㊀SabbahENꎬKadoucheJꎬEllisonDꎬetal..InvitroandinvivocomparisonofDTPA ̄andDOTA ̄conjugatedantiferritinmono ̄clonalantibodyforimagingandtherapyofpancreaticcancer[J].Nucl.Med.Biol.ꎬ2007ꎬ34(3):293-304.[25]㊀HammondKEꎬMetcalfMꎬCarvajalLꎬetal..Quantitativeinvivomagneticresonanceimagingofmultiplesclerosisat7Teslawithsensitivitytoiron[J].Ann.Neurol.ꎬ2008ꎬ64(6):707-713.[26]㊀FanKꎬCaoCꎬPanYꎬetal..Magnetoferritinnanoparticlesfortargetingandvisualizingtumourtissues[J].Nat.Nanotechnol.ꎬ2012ꎬ7(7):459-464.[27]㊀FanKꎬGaoLꎬYanX.Humanferritinfortumordetectionandtherapy[J].WIRESNanomed.Nanobiotechnol.ꎬ2013ꎬ5(4):287-298.[28]㊀TuryanskaLꎬBradshawTDꎬSharpeJꎬetal..Thebiocompati ̄bilityofapoferritin ̄encapsulatedPbSquantumdots[J].Smallꎬ2009ꎬ5(15):1738-1741.[29]㊀刘碧荣.基于纳米技术的免疫传感器在生物标志物检测中的应用[D].武汉:华中师范大学ꎬ硕士学位论文ꎬ2014. [30]㊀张婷婷.基于铁蛋白的纳米结构可控自组装与功能化[D].河南开封:河南大学ꎬ硕士学位论文ꎬ2016.[31]㊀CarterDCꎬLiCQ.Ferritinfusionproteinsforuseinvaccinesandotherapplications:USꎬ20040006001A1[P].2004-01-08. [32]㊀KanekiyoMꎬWeiCJꎬYassineHMꎬetal..Self ̄assemblinginfluenzananoparticlevaccineselicitbroadlyneutralizingH1N1antibodies[J].Natureꎬ2013ꎬ499(7456):102-106. [33]㊀GeorgievISꎬJoyceMGꎬChenREꎬetal..Two ̄componentferritinnanoparticlesformultimerizationofdiversetrimericanti ̄gens[J].ACSInfect.Dis.ꎬ2018ꎬ4(5):788-796. [34]㊀HanJAꎬKangYJꎬShinCꎬetal..Ferritinproteincagenano ̄particlesasversatileantigendeliverynanoplatformsfordendriticcell(DC) ̄basedvaccinedevelopment[J].Nanomedicineꎬ2014ꎬ10(3):561-569.542魏珍珍ꎬ等:自组装铁蛋白在纳米疫苗领域的应用进展. All Rights Reserved.。
P.G. Kremsner, J.F.J. Kun, Recognition of Plasmodium falciparum proteins by mannan-binding lectin, a component of the human innate immune system, Parasitol. Res.2002,88 :113~117.13 G raudal N, Madsen H0, Tarp U, et al. The association of variant mannose-binding lectin genotypes with radiographic outcome in rheumatoid arthritis.Arthritis Rheum, 2000,43(3):515~521.14 T urner MW. Mannose-binding lectin:the pluripotent molecule of the innate immune system.Immunol Today,1996,17(11):532-540.15 T re'goat V, Montagne P, Be'ne'M.C, and Faure G. Changes in the Mannan Binding Lectin (MBL) Concentration in Human Milk During Lactation.Journal of Clinical Laboratory analysis,2002,16:304~307.16 R antala A,Lajunen T,Juvonen R et al.Low mannose-binding lectin levels and MBL2 gene polymorphisms associate with Chlamydia pneumoniae antibodies.Innate Immun,2011,17(1):35~40.17 F idler K.J,Wilson P,Davies J.C,et al.Increased incidence andseverity of the systemic inflammatory response syndrome in patients deficient in mannose-binding lectin.Intensive Care Med,2004,30:1438~1445.18 Y tting H,Christensen I J,Christian J.et al.Preoperative mannose-lectin pathway and prognosis in colorectal cancer.Cancer Immunol Immunother,2005,54:265~272.19 B onioto M, Braida L, Spano A, et al. Variant mannose-binding lectin aleles are associated with celiac disease .Immunogenetics, 2002, 54(8):596~598.20 M atsushita M,Hijikata M,Ohta Y. et al.Hepatitis C virus infection and mutations of mannose-binding lectin gene MBL.Arch Virol,1998,143:645~651.21 H alla MC,do Carmo RF,Silva Vasconcelos LR et al.Association of hepatitis C virus infection and liver fibrosis severity with the variants alleles of MBL2 gene in a Brazilian population.Hum Immunol, 2010,71(9):883~887.作者单位: 510282 南方医科大学珠江医院2009级本科(刘印) 510282 南方医科大学珠江医院 (田京) *通讯作者 纳米技术是当前生物医学研究的热点。
纳米零价铁的应用研究进展摘要:纳米零价铁结合了零价铁还原性强和纳米材料比表面积大的特点,可以通过不同机制降解各类环境污染物。
本文介绍了纳米零价铁在今后的研究重点和方向进行分析和展望。
关键词:纳米零价铁;重金属;污染物去除纳米零价铁可通过还原氧化、吸附沉淀等反应降解各类污染物,包括无机污染物(重金属、无机阴离子等)和有机污染物(卤代有机化合物、有机染料等),广泛应用于水处理和土壤修复方面。
1去除有毒重金属重金属主要包括汞、铬、铅、砷等难以被生物降解但却具有显著毒性的金属元素。
它们在水环境中的具有高度溶解性,有毒重金属可被活生物体吸收,一旦进入食物链,最终会进入人体并在器官中累积,如果摄入的有毒重金属超过允许的浓度,则可能导致严重的健康失调。
因此,有必要在将金属污染的废水排放到环境中之前对其进行处理。
Du等[1]引入人工腐殖酸(AHA)与nZVI协同作用,Pb2+与AHA-nZVI样品之间发生还原、络合和共沉淀反应,去除率高达99.2%。
当Hg2+,Cu2+,Cr3+等金属的E0远高于Fe的时,则还原作用为主导。
Akram等[2用生物炭基铁纳米复合材料(nZVI-BC)来去除水样中的砷,其去除机理主要包括表面特定的静电作用、氢键作用和氧化还原反应,其中氧化还原反应使剧毒As(III)转化为As(0)和As(V),As(III)和As(V)的最佳去除率分别为99.1%和96.1%。
2去除有机卤代物有机卤代物是水体环境中广泛存在的污染物之一,具有较强毒性和致癌性,并难以被生物所降解,等够长时间、长距离的迁移,在动植物身体和环境介质中均能检出,对环境危害较大。
与重金属不同的是,有机污染物可以改变官能团结构,使危害较大的污染物转换为危害较小的污染物。
氯代有机物在去除时,Ou等[3]发现加入短链有机酸(SCOAs)可以在酸性条件下促进nZVI降解五氯苯酚(PCP)。
草酸(OA)可以与PCP脱氯过程中产生的亚铁离子强烈地络合,并减少沉淀在nZVI表面的亚铁(氢)氧化物的形成。
材料快报尺寸控制合成的纳米粒子的蛋白质笼,脱铁蛋白及其复合半导体纳米粒子(纳米)准备在7纳米的内腔脱铁蛋白,一笼形蛋白由24个亚基形成的笼状结构,直径在12纳米。
平均直径的纳米合成中的脱铁蛋白腔是5纳米粒度分布窄。
合成微粒内核进行分析,证实了X射线衍射和高分辨透射电子显微镜,为六聚结晶。
本CuS NP合成了3小时,和合成的方式是全有或全无核心的形成。
这种水溶性和均匀,由于半导体微粒有可能被用于建造纳米结构。
1. 介绍;该生物模板方法是有效的控制合成纳米材料具有不同大小和形态。
研究人员已经提出了大力发展和应用的纳米材料的各种利用不同种类的生物模板;例如,蛋白质,病毒,核酸链和微生物。
许多应用的纳米材料的模板法合成生物研究者们已提出。
其中的一个生物模板,脱铁蛋白,已发现有能力合成金属,金属西德,半导体或贵金属纳米粒子。
脱铁蛋白是一个球形超分子蛋白质的直径为12纳米和7纳米的腔。
蛋白质外壳,限制纳米模具,是由24个多肽亚基有8个通道通过离子可进入腔形成纳米。
合成的核动力源的脱铁蛋白腔是均匀的。
因为尺寸半导体纳米确定有趣的性质,如发光与量子影响,合成均匀的半导体核动力源的脱铁蛋白腔是非常有吸引力。
利用这种优势,我们已合成四氧化三钴Co3O4微粒,宽禁带半导体,在脱铁蛋白和应用作为电荷储存节点的浮栅存储器,具有高耐用性高达10000次的读/写和长期保留时间(估计为10年)。
然而,有几个出版物有关的合成化合物半导体纳米的脱铁蛋白腔。
我们已经设计了一个缓慢的化学反应系统(占卜),到目前为止,我们已合成半导体纳米如硫化镉,硒化镉,硒化锌,和硫化亚铜在脱铁蛋白腔。
CuS NP是一个p型化合物半导体与窄带隙。
这是用在太阳能电池,光器件和原子开关装置。
此外,由于粒子最近已用于金属诱导横向晶化(金属横向诱导法)技术制备多晶硅薄膜的薄膜晶体管,大大降低处理温度。
由于大小和化学计量学的粒子影响其带隙和光致发光特性,控制的纳米大小和化学计量学是非常重要的。
多发性硬化患者颅内铁沉积与MRI的研究进展卢金婧【摘要】多发性硬化是一种中枢神经系统炎症和脱髓鞘性疾病,以髓鞘的损伤和修复,同时伴有轴索损伤为主要病理特点.以往研究指出,除常见的白质受累,多发性硬化常常累及皮质和深部灰质核团,且深部灰质核团的铁沉积受到了越来越多的关注.本文主要对多发性硬化患者颅内铁代谢情况及磁共振成像的研究进展进行综述.%Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the central nervous system,with repair and injury of myelin sheath as its main pathological features,as well as injury of axonal.Previous studies indicated that besides white matter,cortex and deep grey matter nuclei were also involved in multiple sclerosis,iron deposition in deep grey matter nuclei won more and more attention.In this paper,we reviewed the study progress on iron metabolism in the brain and the MRI of the patients with multiple sclerosis.【期刊名称】《实用药物与临床》【年(卷),期】2017(000)003【总页数】4页(P345-348)【关键词】多发性硬化;铁代谢;磁共振成像【作者】卢金婧【作者单位】中国医科大学附属盛京医院,沈阳 110004【正文语种】中文多发性硬化(Multiple sclerosis,MS)是一种以中枢神经系统白质炎性脱髓鞘为主要病理特点的自身免疫性疾病,以髓鞘的损伤和修复,同时伴有轴索损伤为主要病理特点,可导致间歇和累积的神经功能缺失,其自身免疫性发病机制尚不明确[1]。