24.2命题的证明(2)
- 格式:ppt
- 大小:264.50 KB
- 文档页数:8
初中数学目录、知识点-(冀教版)七年级上册第一章几何图形的初步认识1.1 几何图形1.2 图形中的点、线、面1.3 几何体的表面展开图1.4 从不同方向看几何体1.5 用平面截几何体第二章有理数2.1 正数和负数2.2 数轴2.3 绝对值2.4 有理数的大小比较2.5 有理数的加法2.6 有理数的减法2.7 有理数的加减混合运算2.8 有理数的乘法2.9 有理数的除法2.10 有理数的乘方2.11 有理数的混合运算第三章估算与近似数3.1 估算3.2 近似数3.3 科学记数法3.4 用计算器进行数的计算3.5 感受大数第四章线段角4.1 点和线4.2 线段长短的比较4.3 角和角的度量4.4 角的比较4.5 角的运算第五章数量和数量之间的关系5.1用字母表示数5.2代数式5.3数量的表示5.4代数式的值5.5两个数量之间关系的初步认识第六章整式的加减6.1 整式6.2 合并同类项6.3 去括号6.4 整式的加减七年级下册第七章一元一次方程7.1 一元一次方程7.2 解一元一次方程7.3 用一元一次方程解决实际问题第八章相交线与平行线8.1 相交线8.2 两条直线平行的条件8.3 平行线的特征第九章二元一次方程组9.1 二元一次方程组9.2 二元一次方程组的解法9.3 二元一次方程组的应用第十章整式乘法与因式分解10.1 同底数幂的乘法10.2 幂的乘方与积的乘方10.3 同底数幂的除法10.4 整式的乘法10.5 乘法公式10.6 因式分解10.7 提公因式法10.8 公式法第十一章三角形11.1 三角形的再认识11.2 三角形的内角与外角11.3 三角形的角平分线、中线和高11.4全等图形11.5两个三角形全等的条11.6直角三角形全等的条件11.7 用尺规作在三角形第十二章统计的初步认识12.1 数据的收集12.2 数据的整理12.3 统计图形八年级上册第十三章一元一次不等式和一元一次不等式组13.1 不等式13.2 不等式的基本性质13.3 一元一次不等式13.4 一元一次不等式组第十四章分式14.1 分式14.2 分式的乘除14.3 分式的加减第十五章轴对称15.1生活中的对称轴15.2简单的轴对称图形15.3 轴对称的性质15.4 利用轴对称设计图案15.5 等腰三角形第十六章勾股定理16.1 勾股定理16.2 由边的数量关系识别直角三角形16.3 勾股定理的应用第十七章实数17.1 平方根17.2 立方根17.3 实数17.4 用计算器开平(立)方17.5 实数的运算第十八章平面直角坐标系18.1 确定平面上物体的位置18.2 平面直角坐标系18.3 图形与坐标18.4 二元一次方程(组)的解和点的坐标第十九章随机事件与概率19.1 确定事件和随机事件19.2 可能性大小19.3 频率与概率的关系(共2页第1页)八年级下册第二十章平移与旋转20.1 平移20.2 旋转20.3 中心对称与中收对称图形20.4 图案的设计与欣赏第二十一章函数21.1 变量与函数21.2 函数关系的表示法21.3 函数的应用第二十二章四边形22.1 平行四边形的性质22.2 平行四边形的识别22.3 三角形的中位线22.4 矩形22.5 菱形22.6 正方形22.7 梯形22.8 多边形的内角和与外角和22.9 平面图形的镶嵌第二十三章分式方程23.1 分式方程23.2 分式方程的应用第二十四章命题与证明(一)24.1 命题24.2 命题的证明24.3 平行线的判定定理24.4 平行线的性质定理24.5 三角形内角和定理24.6 直角三角形全等的判定定理24.7 线段垂直平分线的性质定理及其逆定理27.8 角平分线的性质定理及其逆定理第二十五章一次函数25.1 一次函数25.2 一次函数的图像和性质25.3 确定一次函数表达式的方法25.4一次函数与方程、不等式的关系25.5一次函数的应用第二十六章数据的代表值与离散程度261 平均数与加权平均数26.2 中位数和众数26.3 方差和标准差九年级上册第二十七章圆(一)27.1 圆的基本概念和性质27.2 圆心角和圆周角27.3 过三点的圆27.4 弧长和扇形面积第二十八章一元二次方程28.1 一元二次方程28.2 解一元二次方程28.3 用一元二次方程解决实际问题28.4 方程的近似解第二十九章相似形29.1 形状相同的图形29.2 比例线段29.3 相似三角形29.4 三角形相似的条件29.5 相似三角形的性质29.6 相似多边形及其性质29.7 位似图形29.8 相似三角形的应用第三十章反比例函数30.1 反比例函数30.2 反比例函数的图像和性质30.3 反比例函数的应用第三十一章锐角三角函数31.1 锐角三角函数31.2 锐角三角函数值的求法31.3 锐角三角函数的应用第三十二章命题与证明(二)32.1 等腰三角形的性质定理和判定定理及其证明32.2 平行四边形的性质定理和判定定理及其证明32.3 矩形、菱形的性质定理和判定定理及其证明32.4 等腰梯形的性质定理和判定定理及其证明第三十三章概率的计算和估计33.1 用列举法求概率33.2 概率树形图33.3 概率的估计33.4 几何概率九年级下册第三十四章二次函数34.1 认识二次函数34.2 二次函数的三种表示方法34.3 二次函数的图像和性质34.4 二次函数的应用第三十五章圆(二)35.1 点与圆的位置关系35.2 直线与圆的位置关系35.3 探索切线的性质35.4 切线的判定35.5 圆与圆的位置关系第三十六章抽样调查与估计36.1 抽样调查36.2 数据的整理与表示36.3 由样本推断总体第三十七章投影与视图37.1 平行投影37.2 中心投影37.3 视点、视线、盲区37.4 三视图37.5 几何体的展开图及其应用(共2页第2页)有理数知识归纳1、数轴“三要素”是 , ,数轴上的点与实数之间是 关系2、实数a 的相反数可表示为 。
(冀教版)义务教育课程标准实验教科书《数学》目录冀教版七年级上册第一章几何图形的初步认识1.1 几何图形1.2 图形中的点、线、面1.3 几何体的表面展开图1.4 从不同方向看几何体1.5 用平面截几何体第二章有理数2.1 正数和负数2.2 数轴2.3 绝对值2.4 有理数的大小比较2.5 有理数的加法2.6 有理数的减法2.7 有理数的加减混合运算2.8 有理数的乘法2.9 有理数的除法2.10 有理数的乘方2.11 有理数的混合运算第三章估算与近似数3.1 估算3.2 近似数3.3 科学记数法3.4 用计算器进行数的计算3.5 感受大数第四章线段角4.1 点和线4.2 线段长短的比较4.3 角和角的度量4.4 角的比较4.5 角的运算第五章数量和数量之间的关系5.1用字母表示数5.2代数式5.3数量的表示5.4代数式的值5.5两个数量之间关系的初步认识第六章整式的加减6.1 整式6.2 合并同类项6.3 去括号6.4 整式的加减七年级下册第七章一元一次方程7.1 一元一次方程7.2 解一元一次方程7.3 用一元一次方程解决实际问题第八章相交线与平行线8.1 相交线8.2 两条直线平行的条件8.3 平行线的特征第九章二元一次方程组9.1 二元一次方程组9.2 二元一次方程组的解法9.3 二元一次方程组的应用第十章整式乘法与因式分解10.1 同底数幂的乘法10.2 幂的乘方与积的乘方10.3 同底数幂的除法10.4 整式的乘法10.5 乘法公式10.6 因式分解10.7 提公因式法10.8 公式法11.1 三角形的再认识11.2 三角形的内角与外角11.3 三角形的角平分线中线和高11.4全等图形11.5两个三角形全等的条11.6直角三角形全等的条件11.7 用尺规作在三角形第十二章统计的初步认识12.1 数据的收集12.2 数据的整理12.3 统计图形八年级上册第十三章一元一次不等式和一元一次不等式组13.1 不等式13.2 不等式的基本性质13.3 一元一次不等式13.4 一元一次不等式组第十四章分式14.1 分式14.2 分式的乘除14.3 分式的加减15.1生活中的对称轴15.2简单的轴对称图形15.3 轴对称的性质15.4 利用轴对称设计图案15.5 等腰三角形第十六章勾股定理16.1 勾股定理16.2 由边的数量关系识别直角三角形16.3 勾股定理的应用第十七章实数17.1 平方根17.2 立方根17.3 实数17.4 用计算器开平(立)方17.5 实数的运算第十八章平面直角坐标系18.1 确定平面上物体的位置18.2 平面直角坐标系18.3 图形与坐标18.4 二元一次方程(组)的解和点的坐标第十九章随机事件与概率19.1 确定事件和随机事件19.2 可能性大小19.3 频率与概率的关系第二十章平移与旋转20.1 平移20.2 旋转20.3 中心对称与中收对称图形20.4 图案的设计与欣赏第二十一章函数21.1 变量与函数21.2 函数关系的表示法21.3 函数的应用第二十二章四边形22.1 平行四边形的性质22.2 平行四边形的识别22.3 三角形的中位线22.4 矩形22.5 菱形22.6 正方形22.7 梯形22.8 多边形的内角和与外角和22.9 平面图形的镶嵌第二十三章分式方程23.1 分式方程23.2 分式方程的应用第二十四章命题与证明(一)24.1 命题24.2 命题的证明24.3 平行线的判定定理24.4 平行线的性质定理24.5 三角形内角和定理24.6 直角三角形全等的判定定理24.7 线段垂直平分线的性质定理及其逆定理24.8 角平分线的性质定理及其逆定理第二十五章一次函数25.1 一次函数25.2 一次函数的图像和性质25.3 确定一次函数表达式的方法25.4一次函数与方程、不等式的关系25.5一次函数的应用第二十六章数据的代表值与离散程度26.1 平均数与加权平均数26.2 中位数和众数26.3 方差和标准差九年级上册第二十七章圆(一)27.1 圆的基本概念和性质27.2 圆心角和圆周角27.3 过三点的圆27.4 弧长和扇形面积第二十八章一元二次方程28.1 一元二次方程28.2 解一元二次方程28.3 用一元二次方程解决实际问题28.4 方程的近似解第二十九章相似形29.1 形状相同的图形29.2 比例线段29.3 相似三角形29.4 三角形相似的条件29.5 相似三角形的性质29.6 相似多边形及其性质29.7 位似图形29.8 相似三角形的应用第三十章反比例函数30.1 反比例函数30.2 反比例函数的图像和性质30.3 反比例函数的应用第三十一章锐角三角函数31.1 锐角三角函数31.2 锐角三角函数值的求法31.3 锐角三角函数的应用第三十二章命题与证明(二)32.1 等腰三角形的性质定理和判定定理及其证明32.2 平行四边形的性质定理和判定定理及其证明32.3 矩形、菱形的性质定理和判定定理及其证明32.4 等腰梯形的性质定理和判定定理及其证明第三十三章概率的计算和估计33.1 用列举法求概率33.2 概率树形图33.3 概率的估计33.4 几何概率九年级下册第三十四章二次函数34.1 认识二次函数34.2 二次函数的三种表示方法34.3 二次函数的图像和性质34.4 二次函数的应用第三十五章圆(二)35.1 点与圆的位置关系35.2 直线与圆的位置关系35.3 探索切线的性质35.4 切线的判定35.5 圆与圆的位置关系第三十六章抽样调查与估计36.1 抽样调查36.2 数据的整理与表示36.3 由样本推断总体第三十七章投影与视图37.1 平行投影37.2 中心投影37.3 视点、视线、盲区37.4 三视图37.5 几何体的展开图及其应用11。
证明的格式证明是数学推理的基础,它用于表达和验证某种数学命题的正确性。
在证明中,我们通过逻辑推理和数学知识来展示一个命题为真的理由。
在数学领域中,有许多不同的证明方法和格式,本文将介绍一些常见的证明格式和如何使用Markdown 文本格式来书写证明。
1. 直接证明直接证明是最常见的证明方法,它直接展示了一个命题的证据。
在直接证明中,我们通常假设前提条件为真,并通过一系列逻辑推理的步骤来得出结论。
以下是一个简单的直接证明的例子:定理:若a和b都是偶数,则ab也是偶数。
证明:假设a和b都是偶数,则可以写成a=2m和b=2n 的形式,其中m和n是整数。
那么ab = (2m)(2n) = 4mn,由于4、m和n都是整数,所以mn也是整数。
因此,ab是偶数。
证毕。
在Markdown文本中,我们可以使用以下格式来书写直接证明:**定理:** 若a和b都是偶数,则ab也是偶数。
**证明:** 假设a和b都是偶数,则可以写成a=2m和b=2n的形式,其中m和n是整数。
那么ab = (2m)(2n) = 4mn,由于4、m和n都是整数,所以mn也是整数。
因此,ab是偶数。
证毕。
2. 间接证明间接证明是一种常见的证明方法,它通过推导出一个矛盾或错误的结论来证明一个命题的真实性。
在间接证明中,我们通常假设反命题为真,并使用逻辑推理的步骤来推出矛盾的结论。
以下是一个简单的间接证明的例子:定理:开方2是无理数。
证明:假设开方2是有理数,可以写成开方2 = p/q 的形式,其中p和q是互质的整数。
那么2 = (p/q)^2 = p2/q2。
将等式两边乘以q2,得到2q2 = p2。
因此,p2是偶数。
由于整数的平方只能是偶数或奇数,因此p也是偶数,即p = 2k(其中k是整数)。
将这个结果代入等式中,得到2q^2 = (2k)^2 = 4k2。
因此,将等式两边除以2,得到q2 = 2k2。
这意味着q2也是偶数,从而q也是偶数。
第七章一元一次方程7.1 一元一次方程重点:一元一次方程的基本概念难点:一元一次方程的意义考点:方法:课时:特殊教法:7.2 解一元一次方程重点:解一元一次方程难点:考点:方法:课时:特殊教法:7.3 用一元一次方程解决实际问题重点:难点:考点:方法:课时:特殊教法:第八章相交线与平行线8.1 相交线重点:难点:考点:方法:课时:特殊教法:8.2 两条直线平行的条件重点:难点:考点:方法:课时:特殊教法:8.3 平行线的特征重点:难点:考点:方法:课时:特殊教法:第九章二元一次方程组9.1 二元一次方程组重点:难点:考点:方法:课时:特殊教法:9.2 二元一次方程组的解法重点:难点:考点:方法:课时:特殊教法:9.3 二元一次方程组的应用重点:难点:考点:方法:课时:特殊教法:第十章整式乘法与因式分解10.1 同底数幂的乘法难点:考点:方法:课时:特殊教法:10.2 幂的乘方与积的乘方重点:难点:考点:方法:课时:特殊教法:10.3 同底数幂的除法重点:难点:考点:方法:课时:特殊教法:10.4 整式的乘法重点:难点:方法:课时:特殊教法:10.5 乘法公式重点:难点:考点:方法:课时:特殊教法:10.6 因式分解重点:难点:考点:方法:课时:特殊教法:10.7 提公因式法重点:难点:考点:方法:课时:特殊教法:10.8 公式法重点:难点:考点:方法:课时:特殊教法:第十一章三角形11.1 三角形的再认识重点:难点:考点:方法:课时:特殊教法:11.2 三角形的内角与外角重点:难点:考点:方法:课时:特殊教法:11.3 三角形的角平分线、中线和高重点:难点:考点:方法:课时:特殊教法:11.4全等图形重点:难点:考点:方法:课时:特殊教法:11.5两个三角形全等的条件重点:难点:考点:方法:课时:特殊教法:11.6直角三角形全等的条件重点:难点:考点:方法:课时:特殊教法:11.7 用尺规作三角形重点:难点:考点:方法:课时:特殊教法:第十二章统计的初步认识12.1 数据的收集重点:难点:考点:方法:课时:特殊教法:12.2 数据的整理重点:难点:考点:方法:课时:特殊教法:12.3 统计图重点:难点:考点:方法:课时:特殊教法:八年级(下)第二十章平移与旋转20.1 平移教学目标知识与技能目标:1、结合生活中的具体实例认识图形的平移,探索它的性质.2、经历观察、思考、概括、抽象等过程,进一步发展学生的空间观念.过程与方法目标:通过观察生活中的各种丰富的实例,让学生体会平移现象,让学生通过各种图形的平移,体验感受图形平移主要是移动的方向和距离,并探索它的基本性质.情感态度与价值观目标认识和欣赏这些图形在现实生活中的应用,体会到数学与实际生活的密切联系,认识数学价值.并体验数学活动充满探索与创造,培养学生勇于探索,敢于创新的精神.20.2 旋转20.3 中心对称与中心对称图形20.4 图案的设计与欣赏第二十一章函数21.1 变量与函数【学习目标】1.认识变量、常量2.学会用含一个变量的代数式表示另一个变量【重难点】理解常量和变量的概念;理解常量和变量的相对性21.2 函数关系的表示法21.3 函数的应用第二十二章四边形22.1 平行四边形的性质教学目标:1.知识与技能:掌握平行四边形的定义及对边相等、对角相等、对角线互相平分的性质,并能用它们解决简单的问题.通过旋转等操作活动体会平行四边形的中心对称性.在操作、探究等数学活动中提高学生的探究能力,进一步提高学生的说理和初步的推理能力.2.过程与方法:经历平行四边形有关概念的形成过程和性质的探究过程;采用多种方法(观察、作图、实验、变换、推理等)探索平行四边形性质,体验解决问题策略的多样性;体会平移、旋转等图形变换在研究平行四边形及其性质中的应用.将探究过程与说理紧密结合.渗透"类比"、"转化"的数学思想.3.情感、态度、价值观:在探究活动与性质应用中,有意识地培养学生独立思考的习惯和积极的情感态度,促进良好数学观的形成,同时增强交流与合作意识.教学重点:平行四边形性质的探究与性质的应用.教学难点:平行四边形对角线互相平分、中心对称性的探究.运用平移、旋转的图形变换思想探究平行四边形的性质.教法:启导探究法.学法:自主探究、合作交流.22.2 平行四边形的识别教学目标:22.3 三角形的中位线1、掌握三角形中位线的概念。
命题与证明的知识点总结 知识结构梳理
1.定义: (1)概念 ① ; (2)分类 2.命题 ② 假命题(可通过 来说明) (3)形式:命题都可写成 的形式。
命题与证明 (1)公理: 3. 公理与定理 (2)定理:
(1)概念: 4. 证明 ①理解题意,画出 (2)证明命题的一般步骤 ②写出已知, ③写出 (3)反证法
二、知识点归类 知识点 定义的概念 对于一个概念特征性质的描述叫做这个概念的定义。如:“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的定义。 注意:定义必须严密的,一般避免使用含糊不清的语言,例如“一些”、“大概”、“差不多”等不能在定义中出现。 例1 在下列横线上,填写适当的概念: (1)连结三角形两边中点的线段叫作三角形的 ; (2)能够完全重合的两个图形叫做 ; (3)两组对边分别平行的四边形叫做 ; 例2 叙述概念的定义 (1)数轴; (2)等腰三角形
知识点 命题 知识点一 命题的概念 叙述一件事情的句子(陈述句),要么是真的,要么是假的,那么称这个陈述句是一个命 如“你是一个学生”、“我们所使用是教科书是浙教版的”等。 注意:(1)命题必须是一个完整的句子。 (2)这个句子必须对某事情作出肯定或者否定的判断,二者缺一不可。 例 下列句子中不是命题的是( ) A 明天可能下雨 B 台湾是中国不可分割的部分 C 直角都相等 D 中国是2008年奥运会的举办国 知识点二 真命题与假命题 如果一个命题叙述的事情是真的,那么称它是真命题;如果一个命题叙述的事情是假的,那么称它是假命题 注意:真、假命题的区别就在于其是否是正确的,在判断命题的真假时,要注意把握这点。 例 下列命题中的真命题是( ) A 锐角大于它的余角 B 锐角大于它的补角 C 钝角大于它的补角 D 锐角与钝角等于平角 知识点三 命题的结构 每个命题都有条件和结论两部分组成。条件是已知的事项,结论是由已知事项推断出的事项。一般地,命题都可以写出“如果------,那么-------”的形式。有的命题表面上看不具有“如果------,那么-------”的形式,但可以写成这种形式。如:“对顶角相等”,改写成“如果两个角是对顶角,那么这两个角相等”。 例 把下列命题改写成“如果------,那么-------”的形式,并指出条件与结论。 1、同角的余角相等 2、两点确定一条直线
关于«命题与证明(2)»的教学反思安徽省广德县教育体育局教研室㊀㊀冯祖军㊀㊀(邮编:242200)安徽省广德县励志初级中学㊀㊀㊀㊀袁㊀俊㊀㊀(邮编:242200)㊀㊀笔者有幸参加了2018年安徽省初中数学青年教师优质课展示评比和观摩活动,指导的袁俊老师在现场展示的沪科版八年级数学上册«13.2命题与证明(2)»的教学中获省一等奖,本文围绕本节课设计前,执教中,教学后为主题,以构建知识结构并发展数学素养为立意展开,现将其背后的思考与实施呈现如下.1㊀关于教学设计论证几何,源于希腊数学家欧几里得的«原本».«原本»可以说是数学史上的第一座理论丰碑,它确立了数学中公理化的演绎范式.这种范式要求学科中每个真命题必须是在它之前已建立的一些命题的逻辑结论,而所有推理的原始共同出发点是一些基本的定义和基本事实.本节课是沪科版数学八年级上册«13.2命题与证明»的第二课时,它是在上节课学生理解了命题㊁真命题㊁假命题的意义,会区分命题条件和结论,知道反例的意义和作用后,进一步让学生体会到证明的必要性,初步学会几何证明的方法和步骤,同时也为后面更复杂的证明打好基础,有承上启下的作用.经过深入的教材分析及学生分析,教师制定了如下教学目标:(1)理解定义㊁基本事实㊁定理㊁证明的意义,通过具体例子了解证明的步骤与书写格式.(2)了解证明的必要性,让学生了解推理过程步步有据的重要性,能够证明一些简单的几何问题.(3)增强学生的推理论证意识,培养学生的演绎推理习惯和能力.众所周知,学习几何的意义在于:了解㊁认识几何图形,把握图形的性质,服务于我们生活的空间世界;也是学习研究图形的方法,感受几何学的特征,获得推理论证等基本的科学素养.正像杨乐院士所讲:就几何而言, 似乎很难找到别的东西来代替它对中学生进行严格的逻辑思维培养 .所以,我以为教师对本节课的目标设定是合理而科学的.让学生结合几何图形,利用图形语言,在有关定义㊁事实㊁定理等 证据 下,一步步推理,慢慢降低认识和理解逻辑推理的难度,进而激发学生学习数学的兴趣.2㊀关于教学过程2.1㊀第一个环节:本节课教师首先通过谈话激趣,投影三幅具有视觉误差的图片(依次投影下面的三幅图片),让学生通过观察,发现 眼见未必为实 ,体会推理论证的重要性;通过设置用量角器度量某一个 三角形的内角和等于180ʎ (不考虑误差的情况下)并不能说明所有三角形内角和都等于180ʎ,让学生体会到这种方法不够严谨,从而感受到推理论证重要性;通过回顾如何说明一个命题是假命题(举一个反例即可),但举例子说明一个命题是真命题不够严谨,进一步让学生体会推理论证的必要性,如此一来,本节的知识便自然连贯了.怎样探究命题?首先需要有个起点,提出一些问题,能不能提问题是意识问题,能不能提出好的问题是能力问题.随着对问题的思考,结合已有的知识,在丰富的联想下,结论会慢慢地呈现,这是数学发现的过程.2.2㊀第二个环节:如图,直线c与直线a㊁b相交,如果ø1=ø2,那么直线a与b有什么关系?说说你的理由.让学生体会到几何推理过程,知道大前提应该写在结论后面作为依据,532019年第5期中学数学教学了解几何推理的基本单元,初步知道几何推理的书写格式.2.3㊀第三个环节:通过如何推理 内错角相等,两直线平行 这一结论,引导学生对证明思路进行分析,而后用基本的推理单元进行推理,体会从条件出发,根据定义㊁基本事实㊁已证定理,并按照逻辑规则,推导出结论的过程,了解演绎证明的含义和表达格式.并结合推理过程中每一步依据来讲解定义㊁基本事实和定理的含义,课堂效果比较好,学生学会了一个几何命题演绎法证明的思路的分析与证明过程的规范表述.这种思路是源于已有的知识积累,旧知识是新知识的摇篮.将已有知识与新概念相结合,能够发现新结论,新旧知识顺畅相连.整个思维过程有明确的起点,有清晰的阶段,一环一环,环环相扣,整个过程都蕴涵着推理.2.4㊀第四个环节:通过一个具体的例子让学生感受演绎推理的过程,并说出每一步的依据,了解步步有据的重要性,同时为下一个例题的教学做好铺垫.从课堂效果来看,学生基本掌握了演绎法证明的方法和步骤,并能准确说出每一步的依据.2.5㊀第五个环节为课本例4教学已知:如图,øA O B+øB O C=180ʎ,O E平分øA O B,O F平分øB O C.求证:O EʅO F.教师先投影例题并给时间学生思考,思考后同桌进行交流,共同书写证明过程.教师巡视指导,并选择书写较规范的一组进行板演,写出每步依据.结合学生板书进行点评,规范学生的证明过程.此环节可培养学生的演绎推理习惯和能力,进一步让学生理解和掌握了演绎法证明的方法和步骤.现代教育非常看重合作学习,并且在课堂教学中,小组讨论的活动形式经常开展,合作学习的过程不仅让学生获得了合作的方法,学会了合作,而且学生也从中切实提高了学习效率.合作包括分工合作,也包括在质疑㊁讨论㊁甚至争辩中学习.2.6㊀第六个环节:通过两道练习㊁反馈,了解学生对新知的掌握,结合学生课堂掌握情况,让学生先分析,然后写出证明过程,再说出每步依据.提升学生对新知的理解,进一步培养学生的演绎推理习惯和能力,体会步步有据的重要性.2.7㊀第七个环节:课堂总结.引导学生结合板书,回顾本节课的重要内容,旨在让学生反思这节课自己的学习过程,在交流总结中加深对本节重点知识的理解.2.8㊀第八个环节:拓展作业.设置拓展作业(你能证明 三角形的内角和等于180ʎ 吗?你能想出几种方法?),既是解决本节课开头提出的问题,做到学以致用,同时也是下节课的内容,起到承上启下的作用.经过对这节课的教学反思,教师充分体会到一节好课的生成是建立在教师充分理解教材的基础上,制定合理的教学目标,通过精心的备课而产生的.它不仅要求教师有严谨的态度,丰富的教学语言,更要有扎实的学识㊁精深的专业素养.和严谨的态度,不断学习㊁不断实践,不断反思,努力从一节一节课中提升.前苏联教育家斯托利亚尔有一句名言: 数学教学实际上是数学活动的教学. 荷兰数学教育家弗奈登塔尔也说 数学学习是一种活动,这种活动与游泳㊁骑自行车一样,不经过亲身体验,仅仅从看书本㊁听讲解㊁观察他人的演示是学不会的. 所以数学教学活动的设计,要真实体现教材编写者的意图,又要合理取舍,既要符合教学需要,又要让学生参入其中,实际操作,亲身体验,既要关注前后知识的联系,又要为实现本节课的教学目标着想,既要考虑学生的生活经历,更要遵循学生学习数学的基本规律,使学生学到有用的数学.(收稿日期:2019-08-06)63中学数学教学2019年第5期。
2021-2022度人教版数学九年级上册同步练习24.2.1 点和圆的位置关系一.选择题(共16小题)1.已知⊙O的半径为5,若OP=6,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法判断2.在平面直角坐标系中,圆心为坐标原点,⊙O的半径为5,则点P(﹣3,4)与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定3.平面内有一点P到圆上最远的距离是6,最近的距离是2,则圆的半径是()A.2B.4C.2 或4D.84.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为x的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是()A.3<r<4B.3<r<5C.3≤r≤5D.r>45.如图,AB是半圆O的直径,点D在半圆O上,AB=2,AD=10,C是弧BD 上的一个动点,连接AC,过D点作DH⊥AC于H,连接BH,在点C移动的过程中,BH的最小值是()A.5B.6C.7D.86.如图,在平面直角坐标系中,⊙A的半径为1,圆心A在函数y=x的图象上运动,下列各点不可能落入⊙A的内部的是()A.(1,2)B.(2,3.2)C.(3,3﹣)D.(4,4+)7.下随有关圆的一些结论:①任意三点确定一个圆;②相等的圆心角所对的弧相等;③平分弦的直径垂宜于弦;并且平分弦所对的弧,④圆内接四边形对角互补.其中错误的结论有()A.1个B.2个C.3个D.4个8.下列有关圆的一些结论①任意三点可以确定一个圆;②相等的圆心角所对的弧相等;③平分弦的直径垂直于弦,并且平分弦所对的弧;④圆内接四边形对角互补.其中正确的结论是()A.①B.②C.③D.④9.如图,已知点平面直角坐标系内三点A(3,0)、B(5,0)、C(0,4),⊙P经过点A、B、C,则点P的坐标为()A.(6,8)B.(4,5)C.(4,)D.(4,)10.如图所示,△ABC内接于⊙O,C为弧AB的中点,D为⊙O上一点,∠ACB=100°,则∠ADC的度数等于()A.40°B.39°C.38°D.36°11.三角形的外心是()A.三条边中线的交点B.三条边高的交点C.三条边垂直平分线的交点D.三个内角平分线的交点12.如图,△ABC是⊙O的内接三角形,AB为⊙O的直径,点D为⊙O上一点,若∠ACD=40°,则∠BAD的大小为()A.35°B.50°C.40°D.60°13.如图,已知⊙O的半径为3,△ABC内接于⊙O,∠ACB=135°,则AB的长为()A.3B.C.D.414.利用反证法证明命题“四边形中至少有一个角是钝角或直角”时,应假设()A.四边形中至多有一个内角是钝角或直角B.四边形中所有内角都是锐角C.四边形的每一个内角都是钝角或直角D.四边形中所有内角都是直角15.用反证法证明“四边形中至少有一个内角大于或等于90°”时,应先假设()A.有一个内角小于90°B.每一个内角都小于90°C.有一个内角小于或等于90°D.每一个内角都大于90°16.用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设()A.至少有一个内角是直角B.至少有两个内角是直角C.至多有一个内角是直角D.至多有两个内角是直角二.填空题(共9小题)17.圆外一点到圆的最大距离为9cm,最小距离为4cm,则圆的半径是cm.18.在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P 在以DE为直径的半圆上运动,则PF2+PG2的最小值为.19.已知圆内一点P到圆上的最长距离为6cm,最短距离为2cm,则圆的半径为cm.20.如图,点A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为.21.已知直线l:y=x﹣4,点A(1,0),点B(0,2),设点P为直线l上一动点,当点P的坐标为时,过P、A、B不能作出一个圆.22.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,CD=6,OA交BC于点E,则AE的长度是.23.如图,△ABC为⊙O的内接三角形,O为圆心,OD⊥AB于点D,OE⊥AC于点E,若DE=2,则BC=.24.如图△ABC是坐标纸上的格点三角形,试写出△ABC外接圆的圆心坐标.25.用反证法证明:“三角形中至少有两个锐角”时,首先应假设这个三角形中.三.解答题(共7小题)26.如图,一段圆弧与长度为1的正方形网格的交点是A、B、C.(1)请完成以下操作:①以点O为原点,垂直和水平方向为轴,网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD;(2)请在(1)的基础上,完成下列填空:⊙D的半径为;点(6,﹣2)在⊙D;(填“上”、“内”、“外”)∠ADC的度数为.27.已知AB是⊙O的直径,AB=2,点C,点D在⊙O上,CD=1,直线AD,BC交于点E.(Ⅰ)如图1,若点E在⊙O外,求∠AEB的度数.(Ⅱ)如图2,若点E在⊙O内,求∠AEB的度数.28.如图所示,BD,CE是△ABC的高,求证:E,B,C,D四点在同一个圆上.29.操作与探究我们知道:过任意一个三角形的三个顶点能作一个圆,探究过四边形四个顶点作圆的条件.(1)分别测量图1、2、3各四边形的内角,如果过某个四边形的四个顶点能一个圆,那么其相对的两个角之间有什么关系?证明你的发现.(2)如果过某个四边形的四个顶点不能一个圆,那么其相对的两个角之间有上面的关系吗?试结合图4、5的两个图说明其中的道理.(提示:考虑∠B+∠D与180°之间的关系)由上面的探究,试归纳出判定过四边形的四个顶点能作一个圆的条件.30.问题:我们知道,过任意的一个三角形的三个顶点能做一个圆,这个圆叫做三角形的外接圆,那么任意的一个四边形有外接圆吗?探索:如图给出了一些四边形,填写出你认为有外接圆的图形序号;发现:相对的内角之间满足什么关系时,四边形一定有外接圆?写出你的发现:;说理:如果四边形没有外接圆,那么相对的两个内角之间有上面的关系吗?请结合图④说明理由.31.已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:∠DAC=∠DBA;(2)求证:PD=PF;(3)连接CD,若CD=3,BD=4,求⊙O的半径和DE的长.32.如图,在△ABC中,AB=AC,P是△ABC内的一点,且∠APB>∠APC,求证:PB<PC(反证法)参考答案与试题解析一.选择题(共16小题)1.【解答】解:∵r=5,d=OP=6,∴d>r,∴点P在⊙O外,故选:B.2.【解答】解:∵圆心P的坐标为(﹣3,4),∴OP==5.∵⊙O的半径为5,∴点P在⊙O上.故选:B.3.【解答】解:∵点P到⊙O的最近距离为2,最远距离为6,则:当点在圆外时,则⊙O的直径为6﹣2=4,半径是2;当点在圆内时,则⊙O的直径是6+2=8,半径为4,故选:C.4.【解答】解:在直角△ABD中,CD=AB=4,AD=3,则BD==5.由图可知3<r<5.故选:B.5.【解答】解:如图,取AD的中点M,连接BD,HM,BM.∵DH⊥AC,∴∠AHD=90°,∴点H在以M为圆心,MD为半径的⊙M上,∴当M、H、B共线时,BH的值最小,∵AB是直径,∴∠ADB=90°,∴BD==12,BM===13,∴BH的最小值为BM﹣MH=13﹣5=8.故选:D.6.【解答】解:A、点(1,2)到直线y=x的距离为(2﹣1)=<1,∴点(1,2)可能在⊙A的内部;B、点(2,3.2)到直线y=x的距离为(3.2﹣2)=<1,∴点(2,3.2)可能在⊙A的内部;C、点(3,3﹣)到直线y=x的距离为 [3﹣(3﹣)]=<1,∴点(3,3﹣)可能在⊙A的内部;D、点(4,4+)到直线y=x的距离为(4+﹣4)=1,∴点(4,4+)不可能在⊙A的内部.故选:D.7.【解答】解::①任意三点确定一个圆;错误,应该的不在同一直线上的三点可以确定一个圆;②相等的圆心角所对的弧相等;错误,应该是在同圆或等圆中;③平分弦的直径垂宜于弦;并且平分弦所对的弧,错误,此弦不是直径;④圆内接四边形对角互补;正确;故选:C.8.【解答】解:①不共线的三点确定一个圆,故①表述不正确;①在同圆或等圆中,相等的圆心角所对的弧相等,故②表述不正确;②平分弦(不是直径)的直径垂直于弦,故③表述不正确;⑤圆内接四边形对角互补,故④表述正确.故选:D.9.【解答】解:∵⊙P经过点A、B、C,∴点P在线段AB的垂直平分线上,∴点P的横坐标为4,设点P的坐标为(4,y),作PE⊥OB于E,PF⊥OC与F,由题意得,=,解得,y=,故选:C.10.【解答】解:∵C为弧AB的中点,∴=,∴AC=BC,∵∠ACB=100°,∴∠B=∠CAB=×(180°﹣100°)=40°,由圆周角定理得,∠ADC=∠B=40°,故选:A.11.【解答】解:三角形的外心是三条边垂直平分线的交点,故选:C.12.【解答】解:连接BD,∵AB为圆O的直径,∴∠ADB=90°,∵∠ACD=∠ABD=40°,∴∠BAD=90°﹣40°=50°.故选:B.13.【解答】解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=3,∴AB=3,故选:B.14.【解答】解:用反证法证明“四边形中至少有一个角是钝角或直角”时第一步应假设:四边形中所有内角都是锐角.故选:B.15.【解答】解:用反证法证明:四边形中至少有一个内角大于或等于90°,应先假设:每一个内角都小于90°.故选:B.16.【解答】解:∵“最多有一个”的反面是“至少有两个”,反证即假设原命题的逆命题正确∴应假设:至少有两个内角是直角.故选:B.二.填空题(共9小题)17.【解答】解:∵圆外一点到圆的最大距离是9cm,到圆的最小距离是4cm,则圆的直径是9﹣4=5(cm),∴圆的半径是2.5cm.故答案为:2.5.18.【解答】解:设点M为DE的中点,点N为FG的中点,连接MN交半圆于点P,此时PN取最小值.∵DE=4,四边形DEFG为矩形,∴GF=DE,MN=EF,∴MP=FN=DE=2,∴NP=MN﹣MP=EF﹣MP=1,∴PF2+PG2=2PN2+2FN2=2×12+2×22=10.故答案为:10.19.【解答】解:⊙O的直径=6cm+2cm=8cm,半径为4cm;故答案为:4.20.【解答】解:如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这5个格点,故答案为:5.21.【解答】解:设直线AB的解析式为y=kx+b,∵A(1,0),点B(0,2),∴,解得,∴y=﹣2x+2.解方程组,得,∴当P的坐标为(2,﹣2)时,过P,A,B三点不能作出一个圆.故答案为(2,﹣2)22.【解答】解:∵AB=C,∴=,∴OA⊥BC,∴∠BAE=∠CAE=60°,BE=EC,∵OA=OB,∴△OAB是等边三角形,∵BE⊥OA,∴OE=AE,∵OB=OD,BE=EC,∴OE=AE=CD=3.故答案为3.23.【解答】解:∵OD⊥AB,∴AD=DB,∵OE⊥AC,∴AE=CE,∴DE为△ABC的中位线,∴DE=BC,∴BC=2DE=2×2=4.故答案为:424.【解答】解:由图象可知B(1,4),C(1,0),根据△ABC的外接圆的定义,圆心的纵坐标是y=2,设D(a,2),根据勾股定理得:DA=DC(1﹣a)2+22=42+(3﹣a)2解得:a=5,∴D(5,2).故答案为:(5,2).25.【解答】解:∵至少有两个”的反面为“最多有一个”,而反证法的假设即原命题的逆命题正确;∴应假设:三角形三个内角中最多有一个锐角.故答案为:三角形三个内角中最多有一个锐角三.解答题(共7小题)26.【解答】解:(1)①平面直角坐标系如图所示:②圆心点D,如图所示;(2)⊙D的半径=AD==2,∵点(6,﹣2)到圆心D的距离==2=半径,∴点(6,﹣2)在⊙D上.观察图象可知:∠ADC=90°,故答案为:2,上,90°.27.【解答】解:(Ⅰ)如图1,连接OC、OD,∵CD=1,OC=OD=1,∴△OCD为等边三角形,∴∠COD=60°,∴∠CBD=∠COD=30°,∵AB为直径,∴∠ADB=90°,∴∠AEB=90°﹣∠DBE=90°﹣30°=60°;(Ⅱ)如图2,连接OC、OD,同理可得∠CBD=30°,∠ADB=90°,∴∠AEB=90°+∠DBE=90°+30°=120°.28.【解答】证明:如图所示,取BC的中点F,连接DF,EF.∵BD,CE是△ABC的高,∴△BCD和△BCE都是直角三角形.∴DF,EF分别为Rt△BCD和Rt△BCE斜边上的中线,∴DF=EF=BF=CF.∴E,B,C,D四点在以F点为圆心,BC为半径的圆上.29.【解答】解:(1)对角互补(对角之和等于180°);∵矩形、正方形的对角线相等且互相平分,∴四个顶点到对角线交点距离相等,∴矩形、正方形的四个顶点可在同一个圆上;四个顶点在同一个圆上的四边形的对角互补.(2)图4中,∠B+∠D<180°.图5中,∠B+∠D>180°.过四边形的四个顶点能作一个圆的条件是:对角互补(对角之和等于180°).30.【解答】解:探索:矩形有外接圆;故答案为②;发现:对角互补的四边形一定有外接圆;故答案为对角互补的四边形一定有外接圆;说理:如果四边形没有外接圆,那么相对的两个内角之间没有有上面的关系.图④左:连接BE,∵∠A+∠E=180°,∠BCD>∠E,∴∠A+∠BCD>180°;图④右:连接DE,∵∠A+∠BED=180°,∠BED>∠C,∴∠A+∠C<180°.31.【解答】(1)证明:∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA,∵AB是⊙O的直径,DE⊥AB,∴∠ADB=∠AED=90°,∴∠ADE+∠DAE=90°,∠DBA+∠DAE=90°,∴∠ADE=∠DBA,∴∠DAC=∠ADE,∴∠DAC=∠DBA;(2)证明:∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠DEB=90°,∴∠ADE+∠EDB=∠DFA+∠DAC=90°,又∵∠ADE=∠DAP,∴∠PDF=∠PFD,∴PD=PF;(3)解:连接CD,∵∠CBD=∠DBA,∴CD=AD,∵CD=3,∴AD=3,∵∠ADB=90°,∴AB=5,故⊙O的半径为2.5,∵DE×AB=AD×BD,∴5DE=3×4,∴DE=2.4.即DE的长为2.4.32.【解答】证明:假设PB≥PC.把△ABP绕点A逆时针旋转,使B与C重合,∵PB≥PC,PB=CD,∴CD≥PC,∴∠CPD≥∠CDP,又∵AP=AP,∴∠APD=∠ADP,∴∠APD+∠CPD≥∠ADP+∠CDP,即∠APC≥∠ADC,又∵∠APB=∠ADC,∴∠APC≥∠APB,与∠APB>∠APC矛盾,∴PB≥PC不成立,综上所述,得:PB<PC.。