山东省茌平县博平镇中学2013届九年级数学上学期期末模拟测试题
- 格式:doc
- 大小:172.00 KB
- 文档页数:3
初三数学九年级上册期末模拟试题(含答案)一、选择题1.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( ) A .平均数B .方差C .中位数D .极差2.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( ) A .5人 B .6人 C .4人 D .8人 3.关于x 的一元一次方程122a x m -+=的解为1x =,则a m -的值为( ) A .5B .4C .3D .24.如图,矩形ABCD 中,3AB =,8BC =,点P 为矩形内一动点,且满足PBC PCD ∠=∠,则线段PD 的最小值为( )A .5B .1C .2D .35.在△ABC 中,若|sinA ﹣12|+(22﹣cosB )2=0,则∠C 的度数是( ) A .45°B .75°C .105°D .120°6.如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段 AC 的长为( )A .43B .42C .6D .47.如图,已知O 的内接正方形边长为2,则O 的半径是( )A .1B .2C 2D .228.某篮球队14名队员的年龄如表: 年龄(岁) 18 19 20 21 人数5432则这14名队员年龄的众数和中位数分别是( ) A .18,19B .19,19C .18,4D .5,49.二次函数22y x x =-+在下列( )范围内,y 随着x 的增大而增大. A .2x < B .2x > C .0x < D .0x > 10.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的中位数是( ) A .2B .3C .4D .511.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a +b 的值为( )A .73B .234+C .1433D .223312.一组数据0、-1、3、2、1的极差是( )A .4B .3C .2D .113.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个14.如图,BC 是A 的内接正十边形的一边,BD 平分ABC ∠交AC 于点D ,则下列结论正确的有( )①BC BD AD ==;②2BC DC AC =⋅;③2AB AD =;④51BC AC -=.A .1个B .2个C .3个D .4个15.如图,在平面直角坐标系xOy 中,二次函数21y ax bx =++的图象经过点A ,B ,对系数a 和b 判断正确的是( )A .0,0a b >>B .0,0a b <<C .0,0a b ><D .0,0a b <>二、填空题16.平面直角坐标系内的三个点A (1,-3)、B (0,-3)、C (2,-3),___ 确定一个圆.(填“能”或“不能”)17.将二次函数y=x 2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____.18.如图,点A 、B 分别在y 轴和x 轴正半轴上滑动,且保持线段AB =4,点D 坐标为(4,3),点A 关于点D 的对称点为点C ,连接BC ,则BC 的最小值为_____.19.如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD .若AC =2,则cosD =________.20.如图,已知Rt ABC ∆中,90ACB ∠=︒,8AC =,6BC =,将ABC ∆绕点C 顺时针旋转得到MCN ∆,点D 、E 分别为AB 、MN 的中点,若点E 刚好落在边BC 上,则sin DEC ∠=______.21.如图,在△ABC 中,AB =3,AC =4,BC =6,D 是BC 上一点,CD =2,过点D 的直线l 将△ABC 分成两部分,使其所分成的三角形与△ABC 相似,若直线l 与△ABC 另一边的交点为点P ,则DP =________.22.如图,在平面直角坐标系中,直线l :28y x =+与坐标轴分别交于A ,B 两点,点C 在x 正半轴上,且OC =O B .点P 为线段AB (不含端点)上一动点,将线段OP 绕点O 顺时针旋转90°得线段OQ ,连接CQ ,则线段CQ 的最小值为___________.23.如图,已知正方ABCD 内一动点E 到A 、B 、C 三点的距离之和的最小值为13+,则这个正方形的边长为_____________24.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为35,则袋中共有小球_____只. 25.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________ .26.如图,123////l l l ,直线a 、b 与1l 、2l 、3l 分别相交于点A 、B 、C 和点D 、E 、F .若AB=3,BC=5,DE=4,则EF的长为______.27.如图,点C是以AB为直径的半圆上一个动点(不与点A、B重合),且AC+BC=8,若AB=m(m为整数),则整数m的值为______.28.已知圆锥的底面半径是3cm,母线长是5cm,则圆锥的侧面积为_____cm2.(结果保留π)29.如图,AE、BE是△ABC的两个内角的平分线,过点A作AD⊥AE.交BE的延长线于点D.若AD=AB,BE:ED=1:2,则cos∠ABC=_____.30.如图,一次函数y=x与反比例函数y=kx(k>0)的图像在第一象限交于点A,点C在以B(7,0)为圆心,2为半径的⊙B上,已知AC长的最大值为7,则该反比例函数的函数表达式为__________________________.三、解答题31.为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y2x80=-+. 设这种产品每天的销售利润为w元.(1)求w 与x 之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?32.化简并求值: 22+24411m m m m m ++÷+-,其中m 满足m 2-m -2=0. 33.如图,点C 是线段AB 上的任意一点(C 点不与A B 、点重合),分别以AC BC 、为边在直线AB 的同侧作等边三角形ACD 和等边三角形BCE ,AE 与CD 相交于点M ,BD 与CE 相交于点N .(1)求证: DB AE =; (2)求证: //MN AB ;(3)若AB 的长为12cm ,当点C 在线段AB 上移动时,是否存在这样的一点C ,使线段MN 的长度最长?若存在,请确定C 点的位置并求出MN 的长;若不存在,请说明理由.34.如图,抛物线265y ax x =+-交x 轴于A 、B 两点,交y 轴于点C ,点B 的坐标为()5,0,直线5y x =-经过点B 、C .(1)求抛物线的函数表达式;(2)点P 是直线BC 上方抛物线上的一动点,求BCP ∆面积S 的最大值并求出此时点P 的坐标;(3)过点A 的直线交直线BC 于点M ,连接AC ,当直线AM 与直线BC 的一个夹角等于ACB ∠的3倍时,请直接写出点M 的坐标.35.如图,AB 是⊙O 的弦,OP OA ⊥交AB 于点P ,过点B 的直线交OP 的延长线于点C ,且BC 是⊙O 的切线.(1)判断CBP ∆的形状,并说明理由;(2)若6,2OA OP ==,求CB 的长;(3)设AOP ∆的面积是1,S BCP ∆的面积是2S ,且1225S S =.若⊙O 的半径为6,45BP =,求tan APO ∠.四、压轴题36.如图,在矩形ABCD 中,AB=20cm,BC=4cm ,点p 从A 开始折线A ——B ——C ——D 以4cm/秒的 速度 移动,点Q 从C 开始沿CD 边以1cm/秒的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达D 时,另一点也随之停止运动,设运动的时间t (秒)(1)t 为何值时,四边形APQD 为矩形.(2)如图(2),如果⊙P 和⊙Q 的半径都是2cm ,那么t 为何值时,⊙P 和⊙Q 外切? 37.如图,等边ABC 内接于O ,P 是AB 上任一点(点P 不与点A 、B 重合),连接AP 、BP ,过点C 作CMBP 交PA 的延长线于点M .(1)求APC ∠和BPC ∠的度数; (2)求证:ACM BCP △≌△;(3)若1PA =,2PB =,求四边形PBCM 的面积; (4)在(3)的条件下,求AB 的长度. 38.如图,在平面直角坐标系中,直线l :y =﹣13x +2与x 轴交于点B ,与y 轴交于点A ,以AB 为斜边作等腰直角△ABC ,使点C 落在第一象限,过点C 作CD ⊥AB 于点D ,作CE ⊥x 轴于点E ,连接ED 并延长交y 轴于点F .(1)如图(1),点P 为线段EF 上一点,点Q 为x 轴上一点,求AP +PQ 的最小值. (2)将直线l 进行平移,记平移后的直线为l 1,若直线l 1与直线AC 相交于点M ,与y 轴相交于点N ,是否存在这样的点M 、点N ,使得△CMN 为等腰直角三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.39.如图,在ABC ∆中,90ACB ∠=︒,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD .(1)若28A ∠=︒,求ACD ∠的度数; (2)设BC a =,AC b =;①线段AD 的长度是方程2220x ax b +-=的一个根吗?说明理由. ②若线段AD EC =,求ab的值. 40.翻转类的计算问题在全国各地的中考试卷中出现的频率很大,因此初三(5)班聪慧的小菲同学结合2011年苏州市数学中考卷的倒数第二题对这类问题进行了专门的研究。
2013九年级数学上期期末试卷(含答案) 2012—2013学年度第一学期期末试卷九年级数学(满分:150分测试时间:120分钟)题号一二三总分合分人1-89-1819202122232425262728得分一.选择题(每题有且只有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格内,每题3分,计24分)题号12345678答案1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.平行四边形B.等边三角形C.等腰梯形D.正方形2.如右图,数轴上点表示的数可能是()A.B.C.D.3.给出下列四个结论,其中正确的结论为()A.等腰三角形底边上的中点到两腰的距离相等B.正多边形都是中心对称图形C.三角形的外心到三条边的距离相等D.对角线互相垂直且相等的四边形是正方形4.已知⊙O1、⊙O2的半径分别为3cm、5cm,且它们的圆心距为8cm,则⊙O1与⊙O2的位置关系是()A.外切B.相交C.内切D.内含5.对任意实数,多项式的值是一个()A.正数B.负数C.非负数D.无法确定6.将抛物线先向左平移2个单位,再向下平移2个单位,那么所得抛物线的函数关系式是()A.y=(x+2)2+2B.y=(x+2)2-2C.y=(x-2)2+2D.y=(x-2)2-2 7.已知一元二次方程的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为()A.13B.11C.11或13D.128.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,点B坐标(﹣1,0),下面的四个结论:①OA=3;②a+b+c<0;③ac>0;④b2﹣4ac>0.其中正确的结论是()A.①④B.①③C.②④D.①②二、填空题(本大题共10个小题,每小题3分,共30分.)9.在函数关系式中,的取值范围是.10.已知梯形的中位线长是4cm,下底长是5cm,则它的上底长是cm.11.抛物线的顶点坐标是.12.平面直角坐标系内的三个点A(1,0)、B(0,-3)、C(2,-3)确定一个圆(填“能”或“不能”)。
初三数学九年级上册期末模拟试题(含答案)一、选择题1.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( ) A .5人B .6人C .4人D .8人2.如图,已知一组平行线a ∥b ∥c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且AB =1.5,BC =2,DE =1.8,则EF =( )A .4.4B .4C .3.4D .2.43.如图,OA 、OB 是⊙O 的半径,C 是⊙O 上一点.若∠OAC =16°,∠OBC =54°,则∠AOB 的大小是( )A .70°B .72°C .74°D .76°4.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据: 组 别 1 2 3 4 5 6 7 分 值90959088909285这组数据的中位数和众数分别是 A .88,90B .90,90C .88,95D .90,955.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x ,则可以列方程为( ) A .3(1)10x +=B .23(1)10x +=C .233(1)10x ++=D .233(1)3(1)10x x ++++= 6.一元二次方程x 2=9的根是( ) A .3 B .±3 C .9 D .±9 7.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( ) A .m≥1 B .m≤1 C .m >1 D .m <1 8.已知a 是方程x 2+3x ﹣1=0的根,则代数式a 2+3a+2019的值是( )A .2020B .﹣2020C .2021D .﹣20219.抛物线y =x 2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( )A .y =(x+1)2+3B .y =(x+1)2﹣3C .y =(x ﹣1)2﹣3D .y =(x ﹣1)2+310.如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为( )A .10πB .103C .10π D .π11.已知二次函数y =x 2+mx +n 的图像经过点(―1,―3),则代数式mn +1有( ) A .最小值―3 B .最小值3 C .最大值―3 D .最大值312.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3πC .23π-D .223π-13.cos60︒的值等于( ) A .12B .22C 3D 3 14.已知在△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,CM 是它的中线,以C 为圆心,5cm 为半径作⊙C ,则点M 与⊙C 的位置关系为( ) A .点M 在⊙C 上B .点M 在⊙C 内C .点M 在⊙C 外D .点M 不在⊙C 内15.一组数据10,9,10,12,9的平均数是( ) A .11B .12C .9D .10二、填空题16.关于x 的一元二次方程20x a +=没有实数根,则实数a 的取值范围是 . 17.小亮测得一圆锥模型的底面直径为10cm ,母线长为7cm ,那么它的侧面展开图的面积是_____cm 2.18.一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为23,则袋中应再添加红球____个(以上球除颜色外其他都相同). 19.在泰州市举行的大阅读活动中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽为________cm .(结果保留根号)20.如图,△ABC 中,AB >AC ,D ,E 两点分别在边AC ,AB 上,且DE 与BC 不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)21.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm . 22.如图,在矩形ABCD 中,AB=2,BC=4,点E 、F 分别在BC 、CD 上,若AE=5,∠EAF=45°,则AF 的长为_____.23.某一时刻,一棵树高15m ,影长为18m .此时,高为50m 的旗杆的影长为_____m . 24.一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同,从中随机摸出一个球,摸到红球的概率是______.25.某一时刻,测得身高1.6m 的同学在阳光下的影长为2.8m ,同时测得教学楼在阳光下的影长为25.2m ,则教学楼的高为__________m .26.如图,45AOB ∠=,点P 、Q 都在射线OA 上,2OP =,6OQ =,M 是射线OB 上的一个动点,过P 、Q 、M 三点作圆,当该圆与OB 相切时,其半径的长为__________.27.已知:二次函数y=ax 2+bx+c 图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x 轴的另一个交点坐标是_____. x … ﹣1 0 1 2 … y…343…28.如图,圆形纸片⊙O 半径为 52,先在其内剪出一个最大正方形,再在剩余部分剪出 4个最大的小正方形,则 4 个小正方形的面积和为_______.29.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.30.已知二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,且经过点(﹣1,y 1),(2,y 2),则y 1_____y 2.(填“>”“<”或“=”)三、解答题31.5G 网络比4G 网络的传输速度快10倍以上,因此人们对5G 产品充满期待.华为集团计划2020年元月开始销售一款5G 产品.根据市场营销部的规划,该产品的销售价格将随销售月份的变化而变化.若该产品第x 个月(x 为正整数)销售价格为y 元/台,y 与x 满足如图所示的一次函数关系:且第x 个月的销售数量p (万台)与x 的关系为1p x =+.(1)该产品第6个月每台销售价格为______元;(2)求该产品第几个月的销售额最大?该月的销售价格是多少元/台?(3)若华为董事会要求销售该产品的月销售额不低于27500万元,则预计销售部符合销售要求的是哪几个月?(4)若每销售1万台该产品需要在销售额中扣除m 元推广费用,当68x ≤≤时销售利润最大值为22500万元时,求m 的值.32.某果园有100棵橙子树,平均每棵结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就要减少.根据经验估计,每增种1棵树,平均每棵树就少结5个橙子.设果园增种x 棵橙子树,果园橙子的总产量为y 个.(1)求y 与x 之间的关系式;(2)增种多少棵橙子树,可以使橙子的总产量在60 420个以上?33.如图,点O 为Rt △ABC 斜边AB 上的一点,以OA 为半径的⊙O 与边BC 交于点D ,与边AC 交于点E ,连接AD ,且AD 平分∠BAC . (1)试判断BC 与⊙O 的位置关系,并说明理由;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).34.如图,点C 在以AB 为直径的圆上,D 在线段AB 的延长线上,且CA=CD ,BC=BD . (1)求证:CD 与⊙O 相切;(2)若AB=8,求图中阴影部分的面积.35.(1)如图①,点A ,B ,C 在O 上,点D 在O 外,比较A ∠与BDC ∠的大小,并说明理由;(2)如图②,点A ,B ,C 在O 上,点D 在O 内,比较A ∠与BDC ∠的大小,并说明理由;(3)利用上述两题解答获得的经验,解决如下问题:在平面直角坐标系中,如图③,已知点()1,0M ,()4,0N ,点P 在y 轴上,试求当MPN ∠度数最大时点P 的坐标.四、压轴题36.如图①,A (﹣5,0),OA =OC ,点B 、C 关于原点对称,点B (a ,a +1)(a >0). (1)求B 、C 坐标; (2)求证:BA ⊥AC ;(3)如图②,将点C 绕原点O 顺时针旋转α度(0°<α<180°),得到点D ,连接DC ,问:∠BDC 的角平分线DE ,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.37.阅读理解:如图,在纸面上画出了直线l 与⊙O ,直线l 与⊙O 相离,P 为直线l 上一动点,过点P 作⊙O 的切线PM ,切点为M ,连接OM 、OP ,当△OPM 的面积最小时,称△OPM 为直线l 与⊙O 的“最美三角形”.解决问题:(1)如图1,⊙A的半径为1,A(0,2) ,分别过x轴上B、O、C三点作⊙A的切线BM、OP、CQ,切点分别是M、P、Q,下列三角形中,是x轴与⊙A的“最美三角形”的是.(填序号)①ABM;②AOP;③ACQ(2)如图2,⊙A的半径为1,A(0,2),直线y=kx(k≠0)与⊙A的“最美三角形”的面积为12,求k的值.(3)点B在x轴上,以B为圆心,3为半径画⊙B,若直线y=3x+3与⊙B的“最美三角形”的面积小于32,请直接写出圆心B的横坐标B x的取值范围.38.如图, AB是⊙O的直径,点D、E在⊙O上,连接AE、ED、DA,连接BD并延长至点C,使得DAC AED∠=∠.(1)求证: AC是⊙O的切线;(2)若点E是BC的中点, AE与BC交于点F,①求证: CA CF=;②若⊙O的半径为3,BF=2,求AC的长.39.如图,在▱ABCD 中,AB =4,BC =8,∠ABC =60°.点P 是边BC 上一动点,作△PAB 的外接圆⊙O 交BD 于E .(1)如图1,当PB =3时,求PA 的长以及⊙O 的半径; (2)如图2,当∠APB =2∠PBE 时,求证:AE 平分∠PAD ;(3)当AE 与△ABD 的某一条边垂直时,求所有满足条件的⊙O 的半径.40.某校网球队教练对球员进行接球训练,教练每次发球的高度、位置都一致.教练站在球场正中间端点A 的水平距离为x 米,与地面的距离为y 米,运行时间为t 秒,经过多次测试,得到如下部分数据: t 秒 0 1.5 2.5 4 6.5 7.5 9 … x 米 0 4 8 10 12 16 20 … y 米24.565.8465.844.562…(2)网球落在地面时,与端点A 的水平距离是多少? (3)网球落在地面上弹起后,y 与x 满足()256y a x k =-+①用含a 的代数式表示k ;②球网高度为1.2米,球场长24米,弹起后是否存在唯一击球点,可以将球沿直线扣杀到A 点,若有请求出a 的值,若没有请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】找出这组数据出现次数最多的那个数据即为众数.【详解】解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次,∴这组数据的众数是6.故选:B.【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.2.D解析:D【解析】【分析】直接利用平行线分线段成比例定理对各选项进行判断即可.【详解】解:∵a∥b∥c,∴AB DE BC EF=,∵AB=1.5,BC=2,DE=1.8,∴1.5 1.82EF= , ∴EF=2.4故选:D.【点睛】本题考查了平行线分线段成比例,掌握三条平行线截两条直线,所得的对应线段成比例是关键.3.D解析:D【解析】【分析】连接OC,根据等腰三角形的性质得到∠OAC=∠OCA=16°;∠OBC=∠OCB=54°求出∠ACB 的度数,然后根据同圆中同弧所对的圆周角等于圆心角的一半求解.【详解】解:连接OC∵OA=OC ,OB=OC∴∠OAC=∠OCA=16°;∠OBC=∠OCB=54° ∴∠ACB=∠OCB-∠OCA=54°-16°=38° ∴∠AOB=2∠ACB=76° 故选:D 【点睛】本题考查的是等腰三角形的性质及同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半,掌握相关性质定理是本题的解题关键.4.B解析:B 【解析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为85,88,90,90,90,92,95,∴中位数是按从小到大排列后第4个数为:90.众数是在一组数据中,出现次数最多的数据,这组数据中90出现三次,出现的次数最多,故这组数据的众数为90. 故选B .5.D解析:D 【解析】 【分析】根据题意分别用含x 式子表示第二天,第三天的票房数,将三天的票房相加得到票房总收入,即可得出答案. 【详解】解:设增长率为x ,由题意可得出,第二天的票房为3(1+x),第三天的票房为3(1+x)2, 根据题意可列方程为233(1)3(1)10x x ++++=. 故选:D . 【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题的关键是读懂题意,找出等量关系式.6.B【解析】【分析】两边直接开平方得:3x =±,进而可得答案.【详解】解:29x =,两边直接开平方得:3x =±,则13x =,23x =-.故选:B .【点睛】此题主要考查了直接开平方法解一元二次方程,解这类问题一般要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成2(0)x a a =的形式,利用数的开方直接求解. 7.D解析:D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根,∴()2240m =-->,解得:m <1.故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 8.A解析:A【解析】【分析】根据一元二次方程的解的定义,将a 代入已知方程,即可求得a 2+3a 的值,然后再代入求值即可.【详解】解:根据题意,得a 2+3a ﹣1=0,解得:a 2+3a =1,所以a 2+3a+2019=1+2019=2020.故选:A.【点睛】此题考查的是一元二次方程的解,掌握一元二次方程解的定义是解决此题的关键解析:D【解析】【分析】按“左加右减,上加下减”的规律平移即可得出所求函数的解析式.【详解】抛物线y=x2先向右平移1个单位得y=(x﹣1)2,再向上平移3个单位得y=(x﹣1)2+3.故选D.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.10.C解析:C【解析】【分析】【详解】如图所示:在Rt△ACD中,AD=3,DC=1,根据勾股定理得:2210AD CD+=又将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为601010π⨯=.故选C.11.A解析:A【解析】【分析】把点(-1,-3)代入y=x2+mx+n得n=-4+m,再代入mn+1进行配方即可.【详解】∵二次函数y=x2+mx+n的图像经过点(-1,-3),∴-3=1-m+n,∴n=-4+m,代入mn+1,得mn+1=m2-4m+1=(m-2)2-3.∴代数式mn+1有最小值-3.故选A.【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.12.D解析:D【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,33∴△ABC的面积为12BC•AD=1232⨯3S扇形BAC=2602360π⨯=23π,∴莱洛三角形的面积S=3×23π﹣3﹣3,故选D.【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.13.A解析:A【解析】【分析】根据特殊角的三角函数值解题即可.【详解】解:cos60°=1 2 .故选A.【点睛】本题考查了特殊角的三角函数值.14.A解析:A【解析】【分析】根据题意可求得CM 的长,再根据点和圆的位置关系判断即可.【详解】如图,∵由勾股定理得2268+,∵CM 是AB 的中线,∴CM=5cm ,∴d=r ,所以点M 在⊙C 上,故选A .【点睛】本题考查了点和圆的位置关系,解决的根据是点在圆上⇔圆心到点的距离=圆的半径. 15.D解析:D【解析】【分析】利用平均数的求法求解即可.【详解】这组数据10,9,10,12,9的平均数是1(10910129)105++++=故选:D .【点睛】本题主要考查平均数,掌握平均数的求法是解题的关键. 二、填空题16.a >0.【解析】试题分析:∵方程没有实数根,∴△=﹣4a <0,解得:a >0,故答案为a >0.考点:根的判别式.解析:a>0.【解析】试题分析:∵方程20x a+=没有实数根,∴△=﹣4a<0,解得:a>0,故答案为a>0.考点:根的判别式.17.35π.【解析】【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=lr即可求解.【详解】底面周长是:10π,则侧面展开图的面积是:×10π×7=35πcm2.故答案是:35π.解析:35π.【解析】【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=12lr即可求解.【详解】底面周长是:10π,则侧面展开图的面积是:12×10π×7=35πcm2.故答案是:35π.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.18.3【解析】【分析】首先设应在该盒子中再添加红球x个,根据题意得:,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x个,根据题意得:,解得:x=3,经检验,x=3是原分【解析】【分析】首先设应在该盒子中再添加红球x个,根据题意得:12123xx+=++,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x个,根据题意得:12123xx+=++,解得:x=3,经检验,x=3是原分式方程的解.故答案为:3.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.()【解析】设它的宽为xcm.由题意得.∴ .点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即,近似值约解析:(10)【解析】设它的宽为x cm.由题意得:20x=.∴10x= .点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之,近似值约为0.618. 20.∠B=∠1或【解析】【分析】此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.此题答案不唯解析:∠B=∠1或AE AD AC AB=【解析】【分析】此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【详解】此题答案不唯一,如∠B=∠1或AD AE AB AC=.∵∠B=∠1,∠A=∠A,∴△ADE∽△ABC;∵AD AEAB AC=,∠A=∠A,∴△ADE∽△ABC;故答案为∠B=∠1或AD AE AB AC=【点睛】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题. 21.2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.解析:2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为1203180π⨯=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.22.【解析】分析:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的解析:410【解析】分析:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=2x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.详解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴2x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵5AB=2,∴BE=1,∴222BM BE+=∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴AM ME FN AN=,22x=,解得:x=4 3∴22410AD DF+=410.点睛:本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,23.60【解析】【分析】设旗杆的影长为xm,然后利用同一时刻物高与影长成正比例列方程求解即可.【详解】解:设旗杆的影长BE为xm,如图:∵AB∥CD∴△ABE∽△DCE∴,由题意知AB解析:60【解析】【分析】设旗杆的影长为xm,然后利用同一时刻物高与影长成正比例列方程求解即可.【详解】解:设旗杆的影长BE为xm,如图:∵AB∥CD∴△ABE∽△DCE∴AB DCBE CE=,由题意知AB=50,CD=15,CE=18,即,501518x=,解得x=60,经检验,x=60是原方程的解,即高为50m的旗杆的影长为60m.故答案为:60.【点睛】此题主要考查比例的性质,解题的关键是熟知同一时刻物高与影长成正比例.24.【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红解析:5 8【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,共5个,从中随机摸出一个,则摸到红球的概率是55 538= +故答案为: 58.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.25.4【解析】【分析】根据题意可知,,代入数据可得出答案.【详解】解:由题意得出:,即,解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平解析:4【解析】【分析】根据题意可知,1.62.8=身高教学楼高影长教学楼影长,代入数据可得出答案.【详解】解:由题意得出:1.62.8=身高教学楼高影长教学楼影长,即,1.62.825.2=教学楼高解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平行投影,熟记同一时刻物高与影长成正比是解此题的关键.26.【解析】【分析】圆C 过点P 、Q ,且与相切于点M ,连接CM ,CP ,过点C 作CN⊥PQ 于N 并反向延长,交OB 于D ,根据等腰直角三角形的性质和垂径定理,即可求出ON 、ND 、PN ,设圆C 的半径为r ,再 解析:4223-【解析】【分析】圆C 过点P 、Q ,且与OB 相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D ,根据等腰直角三角形的性质和垂径定理,即可求出ON 、ND 、PN ,设圆C 的半径为r ,再根据等腰直角三角形的性质即可用r 表示出CD 、NC ,最后根据勾股定理列方程即可求出r .【详解】解:如图所示,圆C 过点P 、Q ,且与OB 相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D∵2OP =,6OQ =,∴PQ=OQ -OP=4根据垂径定理,PN=122PQ = ∴ON=PN +OP=4在Rt △OND 中,∠O=45°∴ON=ND=4,∠NDO=∠O=45°,242ON =设圆C 的半径为r ,即CM=CP=r∵圆C 与OB 相切于点M ,∴∠CMD=90°∴△CMD 为等腰直角三角形∴CM=DM=r ,22CM r =∴NC=ND -CD=42r根据勾股定理可得:NC 2+PN 2=CP 2即()22242r -+=解得:12r r +==DM >OD ,点M 不在射线OB 上,故舍去)故答案为:.【点睛】此题考查的是等腰直角三角形的判定及性质、垂径定理、勾股定理和切线的性质,掌握垂径定理和勾股定理的结合和切线的性质是解决此题的关键.27.(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可. 详解:∵抛物线y=ax2+bx+c 经过(0,3)、(2,3)两点,∴对称轴x==1;点(﹣1,0)解析:(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax 2+bx+c 经过(0,3)、(2,3)两点,∴对称轴x=0+22=1; 点(﹣1,0)关于对称轴对称点为(3,0),因此它的图象与x 轴的另一个交点坐标是(3,0).故答案为(3,0).点睛:本题考查了抛物线与x 轴的交点,关键是熟练掌握二次函数的对称性.28.16【解析】【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB,设小正方形的面积为x ,根据勾股定理求出x 值即可得到小正方形的边长,从而算出4 个小正方形的面积和.【详解】解:如解析:16【解析】【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB ,设小正方形的面积为x ,根据勾股定理求出x 值即可得到小正方形的边长,从而算出4 个小正方形的面积和.【详解】解:如图,点A 为上面小正方形边的中点,点B 为小正方形与圆的交点,D 为小正方形和大正方形重合边的中点,由题意可知:四个小正方形全等,且△OCD 为等腰直角三角形,∵⊙O 半径为 52,根据垂径定理得:∴OD=CD=522=5, 设小正方形的边长为x ,则AB=12x , 则在直角△OAB 中,OA 2+AB 2=OB 2,即()()22215=522x x ⎛⎫++ ⎪⎝⎭, 解得x=2,∴四个小正方形的面积和=242=16⨯.故答案为:16.【点睛】本题考查了垂径定理、勾股定理、正方形的性质,熟练掌握利用勾股定理解直角三角形是解题的关键.29.8【解析】【分析】首先求出A 、B 的坐标,然后根据坐标求出AB 、CD 的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x ﹣3,设y =0,∴0=x2﹣2x ﹣3,解得:x1=3,解析:8【解析】【分析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,x2=﹣1,即A点的坐标是(﹣1,0),B点的坐标是(3,0),∵y=x2﹣2x﹣3,=(x﹣1)2﹣4,∴顶点C的坐标是(1,﹣4),∴△ABC的面积=12×4×4=8,故答案为8.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.30.>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1 和y2的大小关系.【详解】解:∵二次解析:>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1和y2的大小关系.【详解】解:∵二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵该函数经过点(﹣1,y1),(2,y2),|﹣1﹣1|=2,|2﹣1|=1,∴y1>y2,故答案为:>.【点睛】本题考查了二次函数的增减性问题,掌握二次函数的性质是解题的关键.三、解答题31.(1)4500元;(2)7,4000;(3)4、5、6、7、8、9、10;(4)90007. 【解析】【分析】(1)利用待定系数法将(2,6500),(4,5500)代入y=kx+b 求k,b 确定表达式,求当x=6时的y 值即可;(2)求销售额w 与x 之间的函数关系式,利用二次函数的最大值问题求解;(3)分三种情况讨论假设6月份,7月份,8月份的最大销售为22500万元时,求相应的m 值,再分别求出此时另外两月的总利润,通过比较作出判断.【详解】设y=kx+b,根据图象将(2,6500),(4,5500)代入得, 2650045500k b k b , 解得,5007500k b ,∴y= -500x+7500,当x=6时,y= -500×6+7500=4500元;(2)设销售额为z 元,z=yp=( -500x+7500 )(x+1)= -500x 2+7000x+7500= -500(x-7)2+32000,∵z 与x 成二次函数,a= -500<0,开口向下,∴当x=7时,z 有最大值,当x=7时,y=-500×7+7500=4000元.答:该产品第7个月的销售额最大,该月的销售价格是4000元/台.(3)z 与x 的图象如图的抛物线当y=27500时,-500(x-7)2+32000=27500,解得,x 1=10,x 2=4∴预计销售部符合销售要求的是4,5,6,7,8,9,10月份.(4)设总利润为W= -500x 2+7000x+7500-m(x+1)= -500x 2+(7000-m)x+7500-m,第一种情况:当x=6时,-500×62+(7000-m) ×6+7500-m=22500,解得,m=90007, 此时7月份的总利润为-500×72+(7000-90007) ×7+7500-90007≈17714<22500, 此时8月份的总利润为-500×82+(7000-90007) ×8+7500-90007≈19929<22500, ∴当m=90007时,6月份利润最大,且最大值为22500万元. 第二种情况:当x=7时,-500×72+(7000-m) ×7+7500-m=22500,解得,m=1187.5 ,此时6月份的总利润为-500×62+(7000-1187.5) ×6+7500-1187.5=23187.5>22500,∴当m=1187.5不符合题意,此种情况不存在.第三种情况:当x=8时,-500×82+(7000-m) ×8+7500-m=22500,解得,m=1000 ,此时7月份的总利润为-500×72+(7000-1000) ×7+7500-1000=24000>22500,∴当m=1000不符合题意,此种情况不存在.∴当68x ≤≤时销售利润最大值为22500万元时,此时m=90007. 【点睛】本题考查二次函数的实际应用,最大利润问题,利用二次函数的最值性质是解决实际问题的重要途径.32.(1)y=600-5x (0≤x <120);(2)7到13棵【解析】【分析】(1)根据增种1棵树,平均每棵树就会少结5个橙子列式即可;(2)根据题意列出函数解析式,然后根据函数关系式y=-5x 2+100x+60000=60420,结合一元二次方程解法得出即可.【详解】解:(1)平均每棵树结的橙子个数y (个)与x 之间的关系为:y=600-5x (0≤x <120);(2)设果园多种x 棵橙子树时,可使橙子的总产量为w ,则w=(600-5x )(100+x )=-5x 2+100x+60000当y=-5x 2+100x+60000=60420时,整理得出:x 2-20x+84=0,解得:x 1=14,x 2=6,∵抛物线对称轴为直线x=1002(5)-⨯-=10,。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:△ABC中,∠C=90°,∠A=30°,AC=3,则它的内切圆直径为______.试题2:如图8所示,已知有一圆形桥拱,拱的跨度AB=16cm,拱高CD=4cm,那么拱形的半径是________cm.试题3:在△ABC中,∠A=70°,⊙O在△ABC的三边上截得的三条弦都相等, 如图7所示,则∠BOC=________度.试题4:评卷人得分如图6所示,DE是△ABC的内切圆I的切线,又BC=2cm,△ADE的周长为4cm, 则△ABC的周长是______cm.试题5:如图5所示,四边形ABCD是⊙O的内接四边形,延长BC到E,已知∠BCD: ∠ECD=3:2,那么∠BOD=_______.试题6:已知关于x的方程x2-2x+m=0的一个根是,则它的另一个根是_____,m= ______.试题7:关于x的方程(m-2)+2x+4=2m-1是一元二次方程,则它的根为_______.试题8:.=________.试题9:已知实数x,y满足(x2+y2)(x2+y2-1)=2,则x2+y2=________.试题10:α,β是方程x2+2x-5=0的两个实数根,则α2+αβ+2α的值为_________.试题11:若解分式方程产生增根,则m=___________.一布袋中有红球8个,白球12个和黄球5个, 它们除了颜色外没有其它区别,闭上眼睛,随机从袋中取出1球不是黄球的概率为( )A. B.; C. D.试题13:如图4所示,△ABC与△BDE都是等边三角形,AB<BD,若△ABC不动,将△BDE绕B点旋转过程中AE与CD的关系为( ) A.AE=CD B.AE>CD C.AE<CD D.无法确定试题14:下列各命题中,假命题是( )A.全等三角形的对立高相等B.有两边及第三边上的中线对应相等的两个三角形全等C.如果一个三角形最大边对的角是锐角, 那么这个三角形一定是锐角三角形D.所有直角三角形的斜边对应相等试题15:如图3所示,D为△ABC的边AB的中点,过D作DE∥BC交AC于E,点F在BC上,使△DEF和△DEA全等,这样的F点的个数有( )A.4个B.3个C.2个D.1个已知两圆的半径满足方程x2-+2=0,圆心距为2,则两圆的位置关系为( )A.相交B.外切C.内切D.外离试题17:如图2所示,EF为⊙O的直径,OE=5cm,弦MN=8cm,那么E、F两点到直线MN的距离之和等于( ) A.12cm B.8cm C.6cm D.3cm试题18:扇形的弧长是20cm,面积是240 cm2,则扇形的半径是( )A.24cmB.12cmC.6cmD.28cm试题19:如图1所示,已知⊙O的直径AB与弦AC夹角为30°,过C点的切线PC与AB的延长线交于P,PC=5,则⊙O的半径为( )A.;B.C.10D.5试题20:下列命题中,真命题是( )A.垂直于半径的直线是圆的切线;B.过三点一定可以作圆C.优弧一定大于劣弧;D.任意三角形一定有一个外接圆已知方程2x2-kx+3=0的一个根是3,那么另一个根是( )A. B.; C.-; D.-试题22:已知有实数a、b,且知a≠b,又a、b满足着a2=3a+1,b2=3b+1,则a2+ b2之值为( )A.9B.10C.11D.12试题23:关于x的一元二次方程kx2-6x+1=0有两个不相等的实数根,则k 的取值范围是( )A.k≥9B.k<9;C.k≤9且k≠0 C.k<9且k≠0 试题24:如果方程4x2-2(m+1)x+m=0 的两个根恰好是一个直角三角形两个锐角的正弦,那么m的值是( ) A. B. C.3; D.2试题25:若x2+3x+1=0,则=( )A.4B.5C.6D.7试题26:化简分式的结果是( )A.x2-y2;B.y2-x2;C. x2-4y2;D. 4x2-y2试题27:若使分式的值为零,则x=( )A.2或-2B.-2C.2D.4试题28:如图9所示,在△ABC与△DEF中,如果AB=DE,BC=EF,只要再找出∠_____=∠______或______=_____,就可证明这两个三角形全等.试题29:已知如图10所示,把一张矩形纸片ABCD沿BD对折,使C点落在E处,BE与AD相交于点O,写出一组相等的线段___________(不包括AB=CD和AD=BC).试题30:如图11所示,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:①∠1=∠2; ②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是________.试题31:为了了解我国15岁男孩的平均身高,从北方抽取了300个男孩,平均身高是1.6m;从南方抽取了200个男孩,平均身高为1.50m,又若:我国北方男孩数与南方男孩数的比值为3:2,由此可推断(估计)我国15岁男孩的平均身高,现有4个大约结果:①1.54m,②1.55m,③1.56m,④1.57m,你认为结果应该是_______.试题32:为了估计池塘里有多少条鱼,从池塘里捕捉了100条鱼,做上标记, 然后放回池塘里,经过一段时间后,等有标记的鱼完全混合于池塘中鱼群后, 再捕第二次样本鱼200条,发现其中有标志的鱼25条,你估计一下,该池塘里现在有鱼____条.试题33:解方程:.试题34:先化简再求值:, 其中a=3.试题35:解方程:3(x-5)2=2(5-x).试题36:已知一元二次方程kx2+x+1=0(1)当它有两个实数根时,求k的取值范围;(2)问:k为何值时,原方程的两实数根的平方和为3?试题37:某商场销售一批名牌衬衣,平均每天可售出20件,每件衬衣盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施. 经调查发现,如果每件衬衣降价1元,商场平均每天可多售出2件.(1)若商场平均每天盈利1200元,每件衬衣应降价多少元?(2)若要使商场平场每天的盈利最多,请你为商场设计降价方案.试题38:新中国成立后,社会安定,我国人口数量逐年增加, 人均资源不足的矛盾日益突出,为实施可持续性发展战略,我国把实行计划生育作为一项基本国策,下图是我国人口增长图,试根据图象信息,回答下列问题:(1)1950年到1990年我国人口增加了_____亿,2000年我国人口数量为_____亿.(2)实行计划生育政策前我国人口平均每五年增长10%, 由于实行了计划生育,我国从1990年到2000年这十年间就少出生了______亿人.(3)如图所示,1990年2000年这十年间,我国人口平均每五年的增长率约是多少?试题39:已知⊙O1与⊙O2相交于A、B两点,且点O2在⊙O1上.(1)如图甲所示,AD是⊙O2的直径,连DB并延长交⊙O1于C,求证:CO2⊥AD.(2)如图乙所示,如果AD是⊙O2的一条弦,连DB并延长交⊙O1于C,那么CO2所在的直线是否与AD垂直?证明你的结论.试题40:如图所示,已知直角梯形ABCD中,AD∥BC,∠C=∠D=90°,以AB 为直径的⊙O与CD相切于P,若AD=m,BC=n,CD=a.求证:(1)PC、PD是关于x的方程:x2-ax+mn=0的两根;(2)a2=4mn.试题1答案:解:∵∠A=30°,AC=3,cosA=,∴ AB=∵BC=AB=∴其内切圆直径d=2 ×(AC+BC-AB)=.点拨:此题是三角函数与直角三角形内切圆半径公式的综合应用.试题2答案:10 解:设O为拱形所在圆的圆心,作半径OC⊥AB,垂足为D, 连结OA,设拱形所在圆的半径为 cm,则OA=x,OD=x-4,AD=AB=×16=8,在Rt△OAD中,由勾股定理得OA2=AD2+OD2,∴x2=82+(x-4)2,解得x=10(cm).点拨:此题是垂径定理及勾股定理的综合应用,应明确这种作辅助线的方法及解题思路. 试题3答案:125°解:作OL⊥AB、OQ⊥BC、ON⊥AC,垂足分别为L、Q、N.∵FG=HM=DE,∴OL=OQ=ON,∴O是△ABC的内心,∵∠A=70°,∴∠OBC+∠OCB=(180°-∠A)=(180°-70°)=55°,∴∠BOC=180°-55°=125°.点拨:此题是用圆的有关性质及内心的意义来解决,应特别注重辅助线的添置.试题4答案:解:∵⊙I与EC、ED、BC、BD分别相切于G、H、M、F,∴ EG=EH,DH=DF,BF=BM,CG=CM,∴EG+DF=EH+DH=DE,CG+BF=CM+BM=BC,∵BC=2,AD+AE+DE=4,∴△ABC的周长为AD+AE+(EG+DF)+(CG+BF)+BC=(AD+AE+DE)+BC+BC=4+2+2=8.点拨:此题运用切线长定理来进行解决,这种等量代换及解题方法是非常重要的,应切实掌握.试题5答案:144°解:∵∠BCD:∠ECD=3:2, 设∠BCD=3k,则∠ECD=2k,∵∠BCD+∠ECD=180°,∴3k+2k=180°,∴k=36°,∴∠BCD=108°,∠ECD=72°,∴∠A= 72°,∴∠BOD=144°.点拨:此题由圆的有关性质及圆周角性质来解决,易将圆周角性质与圆心角性质发生混淆.试题6答案:另一个根1-,m=-2.解:设x2-2x+m=0的另一个根为x1,则 ,∴点拨:此题是一元二次方程根与系数之间关系的综合应用,本题也可由方程根的意义来解决.试题7答案:.解:欲使方程(m-2)+2x+4=2m-1是一元二次方程,须 ,∴m=-2,当m=-2时, 原方程为:-4x2+2x+4=-4-1,∴4x2-2x-9=0,x=.点拨:此题根据一元二次方程的意义确定特定系数m的值之后, 再根据公式法求方程的根,不要忽视二次项系数不等于零的条件限制.试题8答案:-ab12解:(-a2b3)2·(-b2a-1)3=a4b6·(-b6a-3)=-ab12.点拨:此题运用幂的运算性质来进行化简.应记牢运算原则,正确地进行计算化简,确保运算的正确性.试题9答案:.2 解:∵(x2+y2)(x2+y2-1)=2,∴(x2+y2)2-(x2+y2)-2=0,∴(x2+y2-2)(x2+y2+1)=0,∴x2+y2=2或x2+y2=-1,∵x2+y2=-1(舍去),故x2+y2=2,点拨: 此题应用换元法,将x2+y2≥0,而将其负值也取上的错误.试题10答案:点拨:此题运用一元二次方程根与系数关系及方程根的意义来解决,容易忽视方程根的意义,而将所求的代数式强加变型,使式子更加复杂,难以得出a2+2a=5.试题11答案:m=-2或m=1解:∵,∴2x2-(m+1)=(x+1)2,2x2-m-1=x2+2x+1,x2-2x-m-2=0,欲使原方程有增根,需x=0或x=-1,当x=0时,02-2×0-m-2=0,∴m=-2,当x=-1时,(-1)2-2×(-1)-m-2=0,∴m=1,故m=-2或m=1.点拨:此题运用方程增根的意义使问题得以解决,这种方法经常使用, 应要熟练掌握.试题12答案:.A 解:∵从袋中取出1球,不是黄球的概率为.点拨:此题是对概率知识的应用,应明确概率的实质并能具体地应用.试题13答案:A 解: ∵△ABC与△BDE是等边三角形,∴BA=BC,BE=BD,∠ABC=∠DBE=60°,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,∴△ABE≌△CBD,∴AE=CD.点拨:此题应用两三角形全等的识别法来解决,应熟练应用这种解题思路.试题14答案:D 解:∵直角三角形的斜边不一定相等,∴D是假命题.点拨:此题是对命题真假的判定的应用,应熟练地判定命题的真假, 提高分析判别能力.试题15答案:D 解:取BC的中点F,连结FD、FE,∵D、E是AB、AC中点,F 是BC中点,∴DF∥AC,EF∥AB.∴四边形AEFD是平行四边形.∴△AED≌△FDE,故在BC上的点F的个数有1个.点拨:此题是对两三角形的全等及三角形的中位线定理的综合应用,应加强解题思路与方法的应用训练.试题16答案:A 解:设R,r是方程x2-+2=0的两根(R>r),∴R+r=,Rr=2,∴R-r=又∵d=2,∴0<d<,即R-r<d<R+r.点拨:此题从数量关系方面判别圆与圆的位置关系,应加强其解题思路的训练.试题17答案:C 解:作EA⊥MN,FB⊥MN,OH⊥MN,垂足分别为A、B、H,则EA∥OH∥FB.∵OE=OF,∴HA=HB,∴OH是梯形EABF的中位线,∴OH=(EA+BF),∴EA+BF= 2OH.∵OE=OM=5(cm),弦MN=8cm,∴MN=4cm,∴OH==3,∴EA+BF=2×3=6(cm).点拨:在进行与圆有关的计算时,常常过圆心作弦的垂线段, 再运用垂径定理、勾股定理等知识来解决使题目化难为易.试题18答案:A 解:∵S扇形=LR,S扇形=240,L=20,∴240=×20×R, ∴R=24(cm)点拨:此题要正确使用扇形的面积公式来进行解决, 在计算时避免将“”取近似值3.14. 试题19答案:A 解:连结OC,∵PC是⊙O的切线,∴OC⊥PC,∵∠A=30°,OA=OC,∴∠OCA=∠A=30°, ∴∠COP=60°,在Rt△OCP中,tan∠COP=,∴OC=.点拨:此题运用切线的性质及三角函数的意义来解决.试题20答案:D试题21答案:A试题22答案:.C试题23答案:D试题24答案:B试题25答案:D试题26答案:A试题27答案:.B试题28答案:∠ABC=∠DEF或AC=DF.解:在△ABC和△DEF中,∵AB=DE,BC=EF,∴若∠ABC=∠DEF, 则△ABC≌△DEF,△ABC和△DEF中,∵AB=DE,BC=EF,∴若AC=BF,则△ABC≌△DEF.点拨:此题是对两三角形全等识别法的考查,应加强两三角形全等识别法的理解与应用.试题29答案:OB=OD 解: ∵△BDE是由△BDC沿BD对折而得,∴△BED≌△BCD,∴∠EBD=∠CBD,∵矩形ABCD,∴AD∥BC,∴∠ODB=∠CBD,∴∠OBD=∠ODB,∴OB=OD.点拨:此题是将三角形沿某直线对折的应用.易忽视△BED≌△BCD.试题30答案:①∠1=∠2;②BE=CF;③△ACN≌△ABM.解:如答图所示,在△ABE和△ACF中,∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE ≌△ACF,∴AB=AC,BE=CF,∠EAB=∠FAC,∴∠EAB-∠CAN=∠FAC-∠CAN,∴∠1=∠2.在△ACN和△ABM中,AC=AB,∠C=∠B,∠CAN=∠BAM,∴△ACN≌△ABM.点拨:此题是两三角形全等的识别法及特征的综合应用.试题31答案:③解:我国15岁男孩的平均身高为: =1.55(m)点拨:此题考查的内容是用样本特征估计总体的特征,应明确, 在用样本去估计总体时所选取的样本要具有代表性.试题32答案:800条解:设该池塘里现有鱼x条,由题意知,∴x=800条.点拨:此题是用样本估计总体的具体应用,在选取样本时一定要使样本足够大, 以提高估计的真实性. 试题33答案:解: ,去分母化为3(x-2)+4(x+2)=16,3x-6+4x+8-16=0,7x-14=0,∴x=2, 经检验x=2是原方程的增根,∴原方程无解.点拨:此题是解分式方程的应用,易忘记验根.试题34答案:.点拨:此题先对分式化简计算再求值.试题35答案:x=5或x=解:整理:3(x-5)2-2(5-x)=0,3(x-5)2+2(x-5)=0,(x-5)[3(x-5) +2]=0,(x-5)(3x-13)=0,x-5=0或3x-13=0,∴x=5或x= .点拨:此题用因式分解法来解一元二次方程,不需化成一般形式再应用求根公式解决.试题36答案:解:(1)由题意得,.(2) ∵ x12+x22=3, ∴(x1+x2)2-2x1x2=3,∵x1+x2=, x1x2=,∴∴k1=,k2=-1∵∴k=-1.点拨:此题是一元二次方程根与系数的关系及方程根的判别式的综合应用,易错点有:①难以考虑到将方程经过整理看作的一元二次方程,②求得k值后忘记检验是否符合题意.试题37答案:解:(1)设每件衬衣应降低x元,由题意得(40-x)(20+2x)=1200,∴x1= 10,x2=20,∵为了扩大销售,增加盈利,尽快减少库存,∴x=20.(2) 设每件衬衣应降低x元,由题意得商场平均每天的盈利为(40-x)(20+2x)=-2x2+60x+800=-2(x-15)2+ 1250,∴当x=15时,平均每天盈利的最大值为1250元.点拨:此题是新型应用题的解法,应明确其解题思路、方法;在解(1)中应理解“增加盈利,减少库存”的实际含义,这道数学应用题颇有新意,在市场经济大潮中,一方面商家追求最大利润,而另一方面买家却渴望费用最小,这也就是近年来与经济生活有关的最值型应用题日趋增多的原因.试题38答案:(1)5.6;13 (2)0.31 (3)8.7%解:设1990年到2000年这十年间, 我国人口平均每五年的增长率是x,由图象知11(x+2)2=13,(1+x)2=,∴1+x=±1.087,∴x1≈8.7%,x2≈-2.087(舍去).点拨:这是一道利用图象解决实际问题的典型题目,要特别注意图像所提供的信息,要善于从图像上找答案.试题39答案:(1)证明:连结AB, ∵AD是⊙O2的直径,∴∠ABD=90°,∴∠D+∠DAB=90°,又∵∠DAB=∠DCO2,∴∠D+∠DCO2=90°,∴∠DO2C=90°,即CO2⊥AD.(2)证明:过A作⊙O2的直径AD′,连结D′B、AB,设直径CO2交AD于E,∵AD′是⊙O2的直径,∴∠ABD′=90°,∴∠D′+∠D′AB=90°,∵∠D=∠D′, ∠D′AB=∠DCE,∴∠D+∠DCE=90°,∴∠DEC=90°,即直线CO2⊥AD.点拨:此题是与圆有关性质的综合应用,由直径挖掘出直角已成为规律.试题40答案:(1)连结OP.∵CD切⊙O于P,∴OP⊥CD,∵AD⊥CD,BC⊥CD,∴AD∥OP∥BC.又∵OA=OB,∴PC=PD,∵CD=a,∴PC+PD=CD=a,连结PA、PB,∵AB是⊙O 的直径,∴∠APB=90°,∴∠APD+∠BPC=90°,∵∠D=90°,∴∠APD+∠PAD=90°,∴∠PAD=∠BPC,又∵∠D=∠C=90°,∴△PAD∽△BPC,∴ ,∴PD·PC=AD·BC.∵AD=m,BC= n,∴PD·PC=m·n,故PC、PD是关于x的方程x2-ax+mn=0的两根.(2)∵CD=PD+PC,PD=PC,CD=a,∴PC=,∴PC2=,又PC2=PC·PD,PD·PC=m·n,∴=mn,∴a2=4mn.点拨:此题是学科内综合题,是一元二次方程,两三角形相似的识别法,切线的性质及与圆有关的性质的综合应用,通过本题加深了这些知识的联系和沟通,提高了应用能力.。
九年级数学上期末模拟试卷附答案十年寒窗,开出芬芳;十年磨剑,努力未变;十年坚守,成功守候。
十年的风雨兼程奋力追逐,让梦想现实的时刻。
祝九年级数学期末考顺利,金榜题名。
为大家整理了九年级数学上期末模拟试卷,欢迎大家阅读!一、选择题每小题3分,共36分1.下列事件是必然事件的为A.明天太阳从西方升起B.掷一枚硬币,正面朝上C.打开电视机,正在播放“夏津新闻”D.任意一个三角形,它的内角和等于1802.一元二次方程x2﹣2x=0的根是A.x1=0,x2=﹣2B.x1=1,x2=2C.x1=1,x2=﹣2D.x1=0,x2=23.二次函数y= x﹣12+2的图象可由y= x2的图象A.向左平移1个单位,再向下平移2个单位得到B.向左平移1个单位,再向上平移2个单位得到C.向右平移1个单位,再向下平移2个单位得到D.向右平移1个单位,再向上平移2个单位得到4.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为A.1B.2C.3D.45.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是A.∠C= ∠BODB.AC=ABC.∠C=∠BD.∠A=∠BOD6.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有A.0对B.1对C.2对D.3对7.二次函数y=ax2+bx+c的图象如图所示,则下列关系式错误的是A.a<0B.a+b+c<0C.b2﹣4ac>0D.b>08.如图,线段AB两个端点的坐标分别为A4,4,B6,2,以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为A.2,2,3,2B.2,4,3,1C.2,2,3,1D.3,1,2,29.若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是A. B. C. D.10.如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则DE的长为A.2.2B.2.5C.2D.1.811.若函数y=mx2+m+2x+ m+1的图象与x轴只有一个交点,那么m的值为A.0B.0或2C.2或﹣2D.0,2或﹣212.如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为h1;还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2;按上述方法不断操作下去…,经过第2021次操作后得到的折痕D2021E2021到BC的距离记为h2021,到BC的距离记为h2021.若h1=1,则h2021的值为A. B.1﹣ C. D.2﹣二、填空题每小题4分,共20分13.方程x+2x﹣3=x+2的解是.14.二次函数y=x2﹣2x+3的最小值是.15.如图,△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,则AB:DE= .16.如图,A,B,C三点在⊙O上,且AB是⊙O的直径,半径OD⊥AC,垂足为F,若∠A=30°,OF=3,则BC= .17.如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为.三、解答题共64分18.阅读材料:如果是一元二次方程ax2+bx+c=0a≠0的两根,那么x1+x2=﹣,x1x2= ,这就是著名的韦达定理.现在我们利用韦达定理解决问题:已知m与n是方程2x2﹣6x+3=0的两根1填空:m+n= ,m•n=;2计算与m2+n2的值.19.为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传球三次.1请利用树状图列举出三次传球的所有可能情况;2求三次传球后,球回到甲脚下的概率;3三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?20.据某市车管部门统计,2021年底全市汽车拥有量为150万辆,而截至到2021年底,全市的汽车拥有量已达216万辆,假定汽车拥有量年平均增长率保持不变.1求年平均增长率;2如果不加控制,该市2021年底汽车拥有量将达多少万辆?21.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.1求证:DF⊥AC;2若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.22.某食品零售店为仪器厂代销一种面包,未售出的面包可退回厂家,以统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个.在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个.考虑了所有因素后该零售店每个面包的成本是5角.设这种面包的单价为x角,零售店每天销售这种面包所获得的利润为y角.1用含x的代数式分别表示出每个面包的利润与卖出的面包个数;2求y与x之间的函数关系式;3当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少?23.如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.1求证:AC•CD=CP•BP;2若AB=10,BC=12,当PD∥AB时,求BP的长.24.如图,二次函数y=ax2+bx﹣3的图象与x轴交于A﹣1,0,B3,0两点,与y轴交于点C,该抛物线的顶点为M.1求该抛物线的解析式及点M的坐标;2判断△BCM的形状,并说明理由;3探究坐标轴上是否存在点P,使得以点P、A、C为顶点的三角形与△BCM相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.下一页分享>>>九年级数学上期末模拟试卷答案感谢您的阅读,祝您生活愉快。
2013学年度第一学期九年级数学期末模拟试卷一、选择题(本大题共6题,每题4分,满分24分)1.在△ABC 中,∠C =90°,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,则有……( ) (A )b =a ·tgA ;(B )b =c ·sinA ; (C )a =c ·ctgB ; (D )a =c ·cosB .2.如图,在△ABC 中,DE ∥BC ,DF ∥AB ,那么下列比例式中正确的是( )(A )EB AE =FC BF ; (B )EB AE =FB CF; (C )BC DE =DCAD ; (D )BC DE =AB DF .3.下列命题中,真命题是…………………………………………………………( ) (A )所有直角三角形都相似; (B )所有等腰三角形都相似; (C )所有等腰直角三角形都相似; (D )所有菱形都相似. 4.下列各题中,解答错误的是( )A.如果直线b kx y +=过第一、二、三象限,那么0,0>>b k 。
B.双曲线x y 7=在第一象限内,y 随x 的增大而减小 C.抛物线12212--=x x y 的顶点为(-2,-3)。
D.反比例函数xy 1=中自变量的取值范围是0≠x 的实数5.若抛物线y = ax 2 +bx+c (a ≠0)与y = 2x 2 +x -1的对称轴重合,则有 ( ) A. a = 2, b = 1, c = -1B. a = 2bC. a = -2b D . a = 2b 或a = -2b6.如果抛物线y = ax 2 +bx+c 经过原点,开口向上,顶点在x 轴下方, 那么a 、b 、c 的取值是 ( )A. a>0, b = 0, c = 0B. a>0, b > 0, c = 0C. a>0, b < 0, c = 0D. a>0, b ≠0, c = 0 二、填二、填空题(本大题共12题,每题4分,满分48分)7.线段c 是线段a 和线段b 的比例中项,若4a =,6c =,则线段b =_______.8.在△ABC 中,D 是边BC 的中点,设=,=, 那么BC= .DBCA E F945sin 60cot 60-⋅=. 10.已知△ABC ∽△A 1B 1C 1,相似比AB B A 11=32.如果△ABC 的周长为12cm ,那么△A 1B 1C 1的周长为 cm .11.如图,G 为△ABC 的重心,若EF 过点G 且EF ∥BC ,交AB 、AC 于E 、F ,则AE EB的值为__________.12.在一张比例尺为1:2000的学校平面图上,操场的长度为4cm ,则此操场的实际长度为 m .13.如图,小杰乘雪橇沿坡比为1︰3的斜坡 笔直滑下,滑下的距离S (米)与时间t (秒)的关系 为S =10t +2t 2,若小杰滑到坡底的时间为4秒,则他 下降的高度为 . 14.如图,在△ABC 中,∠ACB =90°,CD ⊥ AB 于点D ,cosA =54,则BC BD= .15.一个二次函数的图象顶点坐标为(2,1),形状与抛物线y=-2x 2相同,这个函数解析式为______ .16. 若抛物线y = 2x 2-4x -5向左又向上各平移4个单位,再绕顶点旋转180°,得到新的图象的解析式是_________________.17.如图,在△ABC 中,A B =AC ,cos ∠B=41,B C =2,把△ABC 绕点C 旋转,使点B 落在边AB 上的 点E 的位置,则AE =BCADADE CB18. 如图,点O 是等边ABC △内一点,110AOB BOC α∠=∠=,.将B O C △绕点C 按顺时针方向旋转60得ADC △,连接OD . 当α为 度时,AOD △是等腰三角形三、简答题(本大题共4题,每题10分,满分40分)19.计算8)21()23(60cos 45cos 30sin 1000-++---20、如图,已知平行四边形ABCD 中,E 是BC 边的中点,AE 与BD 交与点,设,AB a AD b == ,(1)分别用,a b 表示,AE BF ,(2)求作向量AE 在,AB AD方向上的分向量。
2012-2013学年度上学期九年级数学期末考度模拟试题(人教版)一.选择题(每题3分,共36分) 1.下列事件中,是必然事件的是A .在地球上,上抛出去的篮球会下落B .打开电视机,任选一个频道,正在播新闻C .购买一张彩票中奖一百万元D .掷两枚质地均 2的大小应A .在9.1~9.2之间B .在9.2~9.3之间C .在9.3~9.4之间D .在9.4~9.5之间 3.小强同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地( )A .350mB .100 mC .150mD .3100m4.若关于x 的一元二次方程22430x kx k ++-=的两个实数根分别是12,x x ,且满足2121x x x x ⋅=+.则k 的值为A .-1或34 B .-1 C .34D .不存在 5.一个圆锥的高为33,侧面展开图是半圆,则圆锥的侧面积是( ) A .9B .18πC .27π D .39π6(A)- (D) 7.(2010山东淄博,12,4分)如图,D 是半径为 R 的⊙O 上一点,过点D 作⊙O 的切线交直径AB 的 延长线于点C ,下列四个条件:①AD =CD ; ②∠A =30°;③∠ADC =120°;④DC =3R .其中,使得BC =R 的有A .①②B .②③④C .①③④D .①②③④8.家电下乡是我国应对当前国际金融危机,惠农强农,带动工业生产,促进消费,拉动内需的一项重要举措.国家规定,农民购买家电下乡产品将得到销售价格13%的补贴资金.今年5月1日,甲商场向农民销售某种家电下乡手机20部.已知从甲商场售出的这20部手机国家共发放了2340元的补贴,若设该手机的销售价格为x 元,以下方程正确的是(A)0020132340x ⋅= (B)0020234013x =⨯ (C)0020(113)2340x -= (D)00132340x ⋅= 9.下列等式不成立的是()A .66326=⋅B 4=C .3331=D .228=- 10.如图,矩形ABCD 中,AB=4,以点B 为圆心,BA 为半径画弧交BC 于点E ,以点O 为圆心的⊙O 与弧AE ,边AD ,DC 都相切.把扇形BAE 作一个圆锥的侧面,该圆锥的底面圆恰好是⊙O ,则AD 的长为( )第7题图A .4B .92C .11D .511.如图,A 是半径为a 2的⊙O 外一点,OA =a 24,AB 是⊙O 的切线,点B 是切点,弦BC ∥OA ,则BC 的长为 A B .2a C .a D .4 a 12.(11·贵港)如图所示,在矩形ABCD 中,AB =2,BC =2,对角线AC 、BD 相交于点O ,过点O 作OE 垂直AC 交AD 于点E ,则AE 的长是 A . 3 B . 2 C .1 D .1.5 二.选择题(每题4分,共20分)13.2007年4月,全国铁路进行了第六次大提速,提速后的线路时速达200千米。
九年级数学上册期末试卷模拟训练(Word 版 含解析)一、选择题1.圆锥的底面半径为2,母线长为6,它的侧面积为( ) A .6πB .12πC .18πD .24π2.已知一元二次方程2330p p --=,2330q q --=,则p q +的值为( ) A .3-B .3C .3-D .33.已知二次函数y =ax 2+bx +c (a <0<b )的图像与x 轴只有一个交点,下列结论:①x <0时,y 随x 增大而增大;②a +b +c <0;③关于x 的方程ax 2+bx +c +2=0有两个不相等的实数根.其中所有正确结论的序号是( ) A .①② B .②③ C .①③ D .①②③ 4.一元二次方程x 2=9的根是( )A .3B .±3C .9D .±95.如图1,S 是矩形ABCD 的AD 边上一点,点E 以每秒k cm 的速度沿折线BS -SD -DC 匀速运动,同时点F 从点C 出发点,以每秒1cm 的速度沿边CB 匀速运动.已知点F 运动到点B 时,点E 也恰好运动到点C ,此时动点E ,F 同时停止运动.设点E ,F 出发t 秒时,△EBF 的面积为2ycm .已知y 与t 的函数图像如图2所示.其中曲线OM ,NP 为两段抛物线,MN 为线段.则下列说法:①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒; ②矩形ABCD 的两邻边长为BC =6cm ,CD =4cm ; ③sin ∠ABS =3; ④点E 的运动速度为每秒2cm .其中正确的是( )A .①②③B .①③④C .①②④D .②③④6.已知52x y =,则x y y-的值是( ) A .12B .2C .32D .237.某天的体育课上,老师测量了班级同学的身高,恰巧小明今日请假没来,经过计算得知,除了小明外,该班其他同学身高的平均数为172cm ,方差为k 2cm ,第二天,小明来到学校,老师帮他补测了身高,发现他的身高也是172cm ,此时全班同学身高的方差为'k 2cm ,那么'k 与k 的大小关系是( )A .'k k >B .'k k <C .'k k =D .无法判断8.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则( ) A .摸出黑球的可能性最小 B .不可能摸出白球 C .一定能摸出红球D .摸出红球的可能性最大9.学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下: 姓名 读 听 写 小莹928090若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为( ) A .86B .87C .88D .8910.在△ABC 中,∠C =90°,tan A =13,那么sin A 的值是( ) A .12B .13C .10 D .31011.下列说法正确的是( ) A .所有等边三角形都相似 B .有一个角相等的两个等腰三角形相似 C .所有直角三角形都相似 D .所有矩形都相似12.如图,在正方形 ABCD 中,E 是BC 的中点,F 是CD 上一点,AE ⊥EF .有下列结论:①∠BAE =30°;②射线FE 是∠AFC 的角平分线; ③CF =13CD ; ④AF =AB +CF .其中正确结论的个数为( )A .1 个B .2 个C .3 个D .4 个二、填空题13.如图,若抛物线2y ax h =+与直线y kx b =+交于()3,A m ,()2,B n -两点,则不等式2ax b kx h -<-的解集是______.14.如图,已知Rt ABC∆中,90ACB∠=︒,8AC=,6BC=,将ABC∆绕点C顺时针旋转得到MCN∆,点D、E分别为AB、MN的中点,若点E刚好落在边BC上,则sin DEC∠=______.15.O的半径为4,圆心O到直线l的距离为2,则直线l与O的位置关系是______. 16.如图,直线l1∥l2∥l3,A、B、C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=3,且12mn=,则m+n的最大值为___________.17.如图,平行四边形ABCD中,60A∠=︒,32ADAB=.以A为圆心,AB为半径画弧,交AD于点E,以D为圆心,DE为半径画弧,交CD于点F.若用扇形ABE围成一个圆维的侧面,记这个圆锥的底面半径为1r;若用扇形DEF围成另一个圆锥的侧面,记这个圆锥的底面半径为2r,则12rr的值为______.18.已知,二次函数2(0)y ax bx c a=++≠的图象如图所示,当y<0时,x的取值范围是________.19.从2,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____. 20.如图,O 的弦8AB =,半径ON 交AB 于点M ,M 是AB 的中点,且3OM =,则MN 的长为__________.21.如图示,在Rt ABC ∆中,90ACB ∠=︒,3AC =,3BC =,点P 在Rt ABC ∆内部,且PAB PBC ∠=∠,连接CP ,则CP 的最小值等于______.22.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________ .23.如图,在ABC ∆中,3AB =,4AC =,6BC =,D 是BC 上一点,2CD =,过点D 的直线l 将ABC ∆分成两部分,使其所分成的三角形与ABC ∆相似,若直线l 与ABC ∆另一边的交点为点P ,则DP =__________.24.如图,已知PA ,PB 是⊙O 的两条切线,A ,B 为切点.C 是⊙O 上一个动点.且不与A ,B 重合.若∠PAC =α,∠ABC =β,则α与β的关系是_______.三、解答题25.(1)解方程:234x x -=;(2)计算:2tan 60sin 452cos30︒+︒-︒ 26.如图,在ABC ∆中,AD 是高.矩形EFGH 的顶点E 、H 分别在边AB 、AC 上,FG 在边BC 上,6BC =,4=AD ,23EF EH =.求矩形EFGH 的面积.27.某养殖场计划用96米的竹篱笆围成如图所示的①、②、③三个养殖区域,其中区域①是正方形,区域②和③是矩形,且AG ∶BG =3∶2.设BG 的长为2x 米.(1)用含x 的代数式表示DF = ;(2)x 为何值时,区域③的面积为180平方米; (3)x 为何值时,区域③的面积最大?最大面积是多少? 28.用铁片制作的圆锥形容器盖如图所示.(1)我们知道:把平面内线段OP 绕着端点O 旋转1周,端点P 运动所形成的图形叫做圆.类比圆的定义,给圆锥下定义 ;(2)已知OB =2 cm ,SB =3 cm , ①计算容器盖铁皮的面积;②在一张矩形铁片上剪下一个扇形,用它围成该圆锥形容器盖.以下是可供选用的矩形铁片的长和宽,其中可以选择且面积最小的矩形铁片是.A.6cm×4cm B.6cm×4.5cm C.7cm×4cm D.7cm×4.5cm29.(1)如图,已知AB、CD是大圆⊙O的弦,AB=CD,M是AB的中点.连接OM,以O为圆心,OM为半径作小圆⊙O.判断CD与小圆⊙O的位置关系,并说明理由;(2)已知⊙O,线段MN,P是⊙O外一点.求作射线PQ,使PQ被⊙O截得的弦长等于MN.(不写作法,但保留作图痕迹)30.如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°,使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?31.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.32.如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为AC的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若CE=163,AB=6,求⊙O的半径.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.【详解】根据圆锥的侧面积公式:πrl=π×2×6=12π,故选:B.【点睛】本题主要考查了圆锥侧面积公式.熟练地应用圆锥侧面积公式求出是解决问题的关键.2.B解析:B【解析】【分析】x x-=的两根,再利用韦达定理即可求解.根据题干可以明确得到p,q是方程2330【详解】x x-=的两根,解:由题可知p,q是方程2330∴3,故选B.【点睛】本题考查了一元二次方程的概念,韦达定理的应用,熟悉韦达定理的内容是解题关键. 3.C解析:C【解析】【分析】①根据对称轴及增减性进行判断;②根据函数在x=1处的函数值判断;③利用抛物线与直线y=-2有两个交点进行判断. 【详解】解:∵a <0<b ,∴二次函数的对称轴为x=2ba->0,在y 轴右边,且开口向下, ∴x <0时,y 随x 增大而增大; 故①正确;根据二次函数的系数,可得图像大致如下, 由于对称轴x=2ba-的值未知, ∴当x=1时,y=a+b+c 的值无法判断, 故②不正确;由图像可知,y==ax 2+bx +c ≤0,∴二次函数与直线y=-2有两个不同的交点, ∴方程ax 2+bx +c =-2有两个不相等的实数根. 故③正确. 故选C. 【点睛】本题考查了二次函数的图像的性质,二次函数的图像与系数的关系,二次函数与方程的关系,借助图像解决问题是关键.4.B解析:B 【解析】 【分析】两边直接开平方得:3x =±,进而可得答案. 【详解】 解:29x =,两边直接开平方得:3x =±, 则13x =,23x =-. 故选:B . 【点睛】此题主要考查了直接开平方法解一元二次方程,解这类问题一般要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成2(0)x a a =的形式,利用数的开方直接求解.5.C解析:C 【解析】 【分析】①根据函数图像的拐点是运动规律的变化点由图象即可判断.②设AB CD acm ==,BC AD bcm ==,由函数图像利用△EBF 面积列出方程组即可解决问题.③由 2.5BS k =,1.5SD k =,得53BS SD =,设3SD x =,5BS x =,在RT ABS ∆中,由222AB AS BS +=列出方程求出x ,即可判断.④求出BS 即可解决问题. 【详解】解:函数图像的拐点时点运动的变化点根据由图象可知点E 运动到点S 时用了2.5秒,运动到点D 时共用了4秒.故①正确. 设AB CD acm ==,BC AD bcm ==,由题意,1··( 2.5)721·(4)42a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩解得46a b =⎧⎨=⎩,所以4AB CD cm ==,6BC AD cm ==,故②正确, 2.5BS k =, 1.5SD k =, ∴53BS SD =,设3SD x =,5BS x =, 在Rt ABS ∆中,222AB AS BS +=,2224(63)(5)x x ∴+-=, 解得1x =或134-(舍), 5BS ∴=,3SD =,3AS =, 3sin 5AS ABS BS ∴∠==故③错误, 5BS =,5 2.5k ∴=,2/k cm s ∴=,故④正确,故选:C . 【点睛】本题考查二次函数综合题、锐角三角函数、勾股定理、三角形面积、函数图象问题等知识,读懂图象信息是解决问题的关键,学会设未知数列方程组解决问题,把问题转化为方程去思考,是数形结合的好题目,属于中考选择题中的压轴题.6.C解析:C 【解析】 【分析】设x=5k (k ≠0),y=2k (k ≠0),代入求值即可. 【详解】 解:∵52x y = ∴x=5k (k ≠0),y=2k (k ≠0) ∴52322x y k k y k --== 故选:C . 【点睛】本题考查分式的性质及化简求值,根据题意,正确计算是解题关键.7.B解析:B 【解析】 【分析】设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm ,然后根据方差公式比较大小即可. 【详解】解:设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1, 根据平均数的定义可知:算上小明后,平均身高仍为172cm 根据方差公式:()()()22212111721721721n k x x x n -⎡⎤=-+-++-⎣⎦-()()()()2222'1211172172172172172n x x k x n -⎡⎤=-+-++-+-⎣⎦()()()2221211172172172n x x x n -⎡⎤=-+-++-⎣⎦∵111n n <- ∴()()()()()()222222121121111721721721721721721n n x x x x x x nn --⎡⎤⎡⎤-+-++-<-+-++-⎣⎦⎣⎦-即'k k <故选B . 【点睛】此题考查的是比较方差的大小,掌握方差公式是解决此题的关键.解析:D【解析】【分析】根据概率公式先分别求出摸出黑球、白球和红球的概率,再进行比较,即可得出答案.【详解】解:∵不透明的袋子中装有20个红球,2个黑球,1个白球,共有23个球, ∴摸出黑球的概率是223, 摸出白球的概率是123, 摸出红球的概率是2023, ∵123<223<2023, ∴从中任意摸出1个球,摸出红球的可能性最大;故选:D .【点睛】本题考查了可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.9.C解析:C【解析】【分析】利用加权平均数按照比例进一步计算出个人总分即可.【详解】根据题意得:92580390288532⨯+⨯+⨯=++(分), ∴小莹的个人总分为88分;故选:C .【点睛】本题主要考查了加权平均数的求取,熟练掌握相关公式是解题关键.10.C解析:C【解析】【分析】根据正切函数的定义,可得BC ,AC 的关系,根据勾股定理,可得AB 的长,根据正弦函数的定义,可得答案.tan A =BC AC =13,BC =x ,AC =3x , 由勾股定理,得AB x ,sin A =BC AB 故选:C .【点睛】本题考查了同角三角函数的关系,利用正切函数的定义得出BC=x ,AC=3x 是解题关键.11.A解析:A【解析】【分析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A 、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;B 、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C 、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D 、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A .【点睛】本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.12.B解析:B【解析】【分析】根据点E 为BC 中点和正方形的性质,得出∠BAE 的正切值,从而判断①,再证明△ABE ∽△ECF ,利用有两边对应成比例且夹角相等三角形相似即可证得△ABE ∽△AEF ,可判断②③,过点E 作AF 的垂线于点G ,再证明△ABE ≌△AGE ,△ECF ≌△EGF ,即可证明④.【详解】解:∵E 是BC 的中点,∴tan ∠BAE=1=2BE AB , ∴∠BAE ≠30°,故①错误;∵四边形ABCD 是正方形,∴∠B=∠C=90°,AB=BC=CD ,∵AE ⊥EF ,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,∴∠BAE=∠CEF ,在△BAE 和△CEF 中,==B C BAE CEF ∠∠⎧⎨∠∠⎩, ∴△BAE ∽△CEF , ∴==2AB BE EC CF, ∴BE=CE=2CF , ∵BE=CF=12BC=12CD , 即2CF=12CD , ∴CF=14CD , 故③错误;设CF=a ,则BE=CE=2a ,AB=CD=AD=4a ,DF=3a ,∴AE=,,AF=5a ,∴=5AE AF ,=5BE EF , ∴=AE BE AF EF, 又∵∠B=∠AEF ,∴△ABE ∽△AEF ,∴∠AEB=∠AFE ,∠BAE=∠EAG ,又∵∠AEB=∠EFC ,∴∠AFE=∠EFC ,∴射线FE 是∠AFC 的角平分线,故②正确;过点E 作AF 的垂线于点G ,在△ABE 和△AGE 中,===BAE GAEB AGEAE AE∠∠⎧⎪∠∠⎨⎪⎩,∴△ABE≌△AGE(AAS),∴AG=AB,GE=BE=CE,在Rt△EFG和Rt△EFC中,==GE CEEF EF⎧⎨⎩,Rt△EFG≌Rt△EFC(HL),∴GF=CF,∴AB+CF=AG+GF=AF,故④正确.故选B.【点睛】此题考查了相似三角形的判定与性质和全等三角形的判定和性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用.二、填空题13.【解析】【分析】观察图象当时,直线在抛物线上方,此时二次函数值小于一次函数值,当或时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x的取值范围,即为不等式的解集.【解析:23x-<<【解析】【分析】观察图象当23x-<<时,直线在抛物线上方,此时二次函数值小于一次函数值,当2x<-或3x>时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x的取值范围,即为不等式的解集.【详解】解:设21y ax h =+,2y kx b =+,∵2ax b kx h -<-∴2ax h kx b +<+,∴12y y <即二次函数值小于一次函数值,∵抛物线与直线交点为()3,A m ,()2,B n -,∴由图象可得,x 的取值范围是23x -<<.【点睛】本题考查不等式与函数的关系及函数图象交点问题,理解图象的点坐标特征和数形结合思想是解答此题的关键.14.【解析】【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE 长,的值即为等腰△CDE 底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】【解析】【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE 长,sin DEC ∠的值即为等腰△CDE 底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】如图,过D 点作DM ⊥BC ,垂足为M ,过C 作CN ⊥DE ,垂足为N ,在Rt △ACB 中,AC=8,BC=6,由勾股定理得,AB=10,∵D 为AB 的中点,∴CD=152AB = , 由旋转可得,∠MCN=90°,MN=10,∵E 为MN 的中点,∴CE=152MN , ∵DM ⊥BC,DC=DB, ∴CM=BM=132BC =, ∴EM=CE-CM=5-3=2,∵DM=14 2AC,∴由勾股定理得,DE=25,∵CD=CE=5,CN⊥DE,∴DN=EN=5 ,∴由勾股定理得,CN=25,∴sin∠DEC=255 CNCE.25.【点睛】本题考查旋转性质,直角三角形的性质和等腰三角形的性质,能够用等腰三角形三线合一的性质构建直角三角形解决问题是解答此题的关键.15.相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的解析:相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的距离为2,∵4>2,即:d<r,∴直线L与⊙O的位置关系是相交.故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d<r,则直线与圆相交;若d>r,则直线与圆相离;若d=r ,则直线与圆相切.16.【解析】【分析】过作于,延长交于,过作于,过作于,设,,得到,,根据相似三角形的性质得到,,由,得到,于是得到,然后根据二次函数的性质即可得到结论.【详解】解:过作于,延长交于,过作于,过解析:274【解析】【分析】过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==,得到3DM y =-,4DN x =-,根据相似三角形的性质得到xy mn =,29y x =-+,由12m n =,得到2n m =,于是得到()3m n m +=最大,然后根据二次函数的性质即可得到结论.【详解】解:过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==,3BD =,3DM y ∴=-,3DN x =-,90ABC AEB BFC CMD AND ∠=∠=∠=∠=∠=︒,90EAB ABE ABE CBF ∴∠+∠=∠+∠=︒,EAB CBF ∴∠=∠,ABE BFC ∴∆∆∽,∴AE BE BF CF=,即x m n y =, xy mn ∴=,ADN CDM ∠=∠,CMD AND ∴∆∆∽,∴AN DN CM DM=,即3132m x n y -==-, 29y x ∴=-+,12m n =, 2n m ∴=,()3m n m ∴+=最大,∴当m 最大时,()3m n m +=最大,22(29)292mn xy x x x x m ==-+=-+=,∴当92(29)4x =-=⨯-时,28128mn m ==最大, 94m ∴=最大, m n ∴+的最大值为927344⨯=. 故答案为:274. 【点睛】本题考查了平行线的性质,相似三角形的判定和性质,二次函数的性质,正确的作出辅助线,利用相似三角形转化线段关系,得出关于m 的函数解析式是解题的关键.17.1【解析】【分析】设AB=a ,根据平行四边形的性质分别求出弧长EF 与弧长BE ,即可求出的值.【详解】设AB=a ,∵∴AD=1.5a,则DE=0.5a ,∵平行四边形中,,∴∠D=120解析:1【解析】【分析】设AB=a ,根据平行四边形的性质分别求出弧长EF 与弧长BE ,即可求出12r r 的值. 【详解】设AB=a ,2AB ∴AD=1.5a ,则DE=0.5a ,∵平行四边形ABCD 中,60A ∠=︒,∴∠D=120°,∴l 1弧长EF=12020.5360a π⨯⨯⨯=13a π l 2弧长BE=602360a π⨯⨯⨯=13a π ∴12r r =12l l =1 故答案为:1.【点睛】此题主要考查弧长公式,解题的关键是熟知弧长公式及平行四边形的性质.18.【解析】【分析】直接利用函数图象与x 轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x 轴交于(-1,0),(3,0),故当y <0时,x 的取值范围是:-1<x <3.故答案为:解析:13x【解析】【分析】直接利用函数图象与x 轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x 轴交于(-1,0),(3,0),故当y <0时,x 的取值范围是:-1<x <3.故答案为:-1<x <3.【点睛】此题主要考查了抛物线与x 轴的交点,正确数形结合分析是解题关键.19.【解析】分析:由题意可知,从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵从,0,π,3.14,6这五个数中随机5【解析】分析:,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个,∴抽到有理数的概率是:35.故答案为35.,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”并能识别其中“0,3.14,6”是有理数是解答本题的关键.20.2【解析】【分析】连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】解:如图所示,连接OA,∵半径交于点,是的中点,∴AM=BM==4解析:2【解析】【分析】连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】解:如图所示,连接OA,∵半径ON 交AB 于点M ,M 是AB 的中点, ∴AM=BM=12AB =4,∠AMO=90°, ∴在Rt △AMO 中 22OM AM +∵ON=OA ,∴MN=ON-OM=5-3=2.故答案为2.【点睛】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.21.【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根据,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧 72【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,()22223323AB AC BC =+=+=PAB PBC ∠=∠,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小,构建圆,利用勾股定理,即可得解.【详解】∵90ACB ∠=︒,3AC =,3BC =, ∴()22223323AB AC BC =+=+=∴∠CAB=30°,∠ABC=60°∵PAB PBC ∠=∠,∠PAB+∠PAC=30°∴∠ACB+∠PAC+∠PBC=∠APB=120°∴定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小∴CO ⊥AB ,∠COB=60°,∠ABO=30°∴OB=2,∠OBC=90°∴()2222237OC OB BC =+=+= ∴72CP OC OP =-=-故答案为72-.【点睛】此题主要考查直角三角形中的动点综合问题,解题关键是找到点P 的位置.22.4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90= 解析:4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=0.4.故答案为:0.4.23.1,,【解析】【分析】根据P的不同位置,分三种情况讨论,即可解答.【详解】解:如图:当DP∥AB时∴△DCP∽△BCA∴即,解得DP=1如图:当P在AB上,即DP∥AC∴△DC解析:1,83,32【解析】【分析】根据P的不同位置,分三种情况讨论,即可解答.【详解】解:如图:当DP∥AB时∴△DCP∽△BCA∴DC DP BC AB =即263DP =,解得DP=1 如图:当P 在AB 上,即DP ∥AC∴△DCP ∽△BCA ∴BD DP BC AC =即6264DP -=,解得DP=83 如图,当∠CPD=∠B ,且∠C=∠C 时,∴△DCP ∽△ACB∴PD CD AB AC =即243DP =,解得DP=32故答案为1,83,32. 【点睛】 本题考查了相似三角形的判定和性质,掌握分类讨论思想并全部找到不同位置的P 点是解答本题的关键.24.或【解析】【分析】分点C 在优弧AB 上和劣弧AB 上两种情况讨论,根据切线的性质得到∠OAC 的度数,再根据圆周角定理得到∠AOC 的度数,再利用三角形内角和定理得出α与β的关系.【详解】解:当点解析:αβ=或180αβ+︒=【解析】【分析】分点C 在优弧AB 上和劣弧AB 上两种情况讨论,根据切线的性质得到∠OAC 的度数,再根据圆周角定理得到∠AOC 的度数,再利用三角形内角和定理得出α与β的关系.【详解】解:当点C 在优弧AB 上时,如图,连接OA 、OB 、OC ,∵PA 是⊙O 的切线,∴∠PAO=90°,∴∠OAC=α-90°=∠OCA ,∵∠AOC=2∠ABC=2β,∴2(α-90°)+2β=180°,∴180αβ+︒=;当点C 在劣弧AB 上时,如图,∵PA 是⊙O 的切线,∴∠PAO=90°,∴∠OAC= 90°-α=∠OCA ,∵∠AOC=2∠ABC=2β,∴2(90°-α)+2β=180°,∴αβ=.综上:α与β的关系是180αβ+︒=或αβ=. 故答案为:αβ=或180αβ+︒=. 【点睛】本题考查了切线的性质,圆周角定理,三角形内角和定理,等腰三角形的性质,利用圆周角定理是解题的关键,同时注意分类讨论.三、解答题25.(1)x 1=-1,x 2=4;(2)原式=12【解析】【分析】 (1)按十字相乘的一般步骤,求方程的解即可;(2)把函数值直接代入,求出结果【详解】解:(1)234x x -=(x+1)(x-4)=0∴x 1=-1,x 2=4;(2)原式=3+22()2-2×32 =12【点睛】本题考查了因式分解法解一元二次过程、特殊角的三角函数值及实数的运算,解决(1)的关键是掌握十字相乘的一般步骤;解决(2)的关键是记住特殊角的三角函数值. 26.6EFGH S =四边形【解析】【分析】根据相似三角形对应边比例相等性质求出EF,EH 的长,继而求出面积.【详解】解:如图:∵四边形EFGH 是矩形,AD 交EH 于点Q,∴∥EH FG∴AEH ABC ∆∆∽∴AQ EH AD BC= 设2EF x =,则3EH x = ∴42346x x -=解得:1x =.所以2EF =,3EH =.∴236EFGH S EF EH =⋅=⨯=四边形【点睛】本题考查的知识点主要是相似三角形的性质,利用相似三角形对应边比例相等求出有关线段的长是解题的关键.27.(1)48-12x ;(2)x 为1或3;(3)x 为2时,区域③的面积最大,为240平方米【解析】【分析】(1)将DF 、EC 以外的线段用x 表示出来,再用96减去所有线段的长再除以2可得DF 的长度;(2)将区域③图形的面积用关于x 的代数式表示出来,并令其值为180,求出方程的解即可;(3)令区域③的面积为S ,得出x 关于S 的表达式,得到关于S 的二次函数,求出二次函数在x 取值范围内的最大值即可.【详解】(1)48-12x(2)根据题意,得5x (48-12x )=180,解得x 1=1,x 2=3答:x 为1或3时,区域③的面积为180平方米(3)设区域③的面积为S ,则S =5x (48-12x )=-60x 2+240x =-60(x -2)2+240 ∵-60<0,∴当x =2时,S 有最大值,最大值为240答:x 为2时,区域③的面积最大,为240平方米【点睛】本题考查了二次函数的实际应用,解题的关键是正确理解题中的等量关系,正确得出区域面积的表达式.28.(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①6π;②B.【解析】【分析】(1)根据平面内图形的旋转,给圆锥下定义;(2)①根据圆锥侧面积公式求容器盖铁皮的面积;②首先求得扇形的圆心角的度数,然后求得弓形的高就是矩形的宽,长就是圆的直径.【详解】解:(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①由题意,容器盖铁皮的面积即圆锥的侧面积∴==23=6S rl πππ⨯⨯母侧即容器盖铁皮的面积为6πcm²;②解:设圆锥展开扇形的圆心角为n 度,则2π×2=3 180 nπ⨯解得:n=240°,如图:∠AOB=120°,则∠AOC=60°,∵OB=3,∴OC=1.5,∴矩形的长为6cm,宽为4.5cm,故选:B.【点睛】本题考查了圆锥的定义及其有关计算,根据题意作出图形是解答本题的关键.29.(1)相切,证明见解析;(2)答案见解析【解析】【分析】(1)过点O作ON⊥CD,连接OA,OC,根据垂径定理及其推论可得∠AMO=∠ONC=90°,AM=CN,从而求证△AOM≌△CON,从而判定CD与小圆O的位置关系;(2)在圆O上任取一点A,以A为圆心,MN为半径画弧,交圆O于点B,过点O做AB的垂线,交AB于点C,然后以点O为圆心,OC为半径画圆,连接PO,取PO的中点D,以点D为圆心,OD为半径画圆,交以OC为半径的圆于点E,连接PE,交以OA为半径的圆于F,H两点,FH即为所求.【详解】解:(1)过点O作ON⊥CD,连接OA,OC∵AB、CD是大圆⊙O的弦,AB=CD,M是AB的中点,ON⊥CD∴∠AMO=∠ONC=90°,AM=12AB,CN12CD,∴AM=CN又∵OA=OC∴△AOM≌△CON∴ON=OM∴CD与小圆O相切(2)如图FH即为所求【点睛】本题考查垂径定理及其推论,全等三角形的判定和性质,以及利用垂径定理作图,掌握相关知识灵活应用是本题的解题关键.30.(203+17)cm.【解析】【分析】过点B作BM⊥CE于点M,BF⊥DA于点F,在Rt△BCM和Rt△ABF中,通过解直角三角形可求出CM、BF的长,再由CE=CM+BF+ED即可求出CE的长.【详解】过点B作BM⊥CE于点M,BF⊥DA于点F,如图所示.在Rt△BCM中,BC=30cm,∠CBM=30°,∴CM=BC•sin∠CBM=15cm.在Rt△ABF中,AB=40cm,∠BAD=60°,∴BF=AB•sin∠3.∵∠ADC=∠BMD=∠BFD=90°,∴四边形BFDM为矩形,∴MD=BF,∴33(cm).答:此时灯罩顶端C到桌面的高度CE是(3)cm.【点睛】本题考查了解直角三角形的应用以及矩形的判定与性质,通过解直角三角形求出CM、BF 的长是解题的关键.31.(1)233;(2)13π﹣23.【解析】【分析】(1)根据垂径定理得CE的长,再根据已知DE平分AO得CO=12AO=12OE,根据勾股定理列方程求解.(2)先求出扇形的圆心角,再根据扇形面积和三角形的面积公式计算即可.【详解】解:(1)连接OF,∵直径AB⊥DE,∴CE=12DE=1.∵DE平分AO,∴CO=12AO=12OE.设CO=x,则OE=2x.由勾股定理得:12+x2=(2x)2.x3∴OE=2x 23.即⊙O的半径为233.(2)在Rt△DCP中,∵∠DPC=45°,∴∠D=90°﹣45°=45°.∴∠EOF=2∠D=90°.∴S扇形OEF=22390360π⋅⋅⎝⎭=13π.∵∠EOF=2∠D=90°,OE=OF23S Rt△OEF=21232⎛⎫⨯ ⎪⎪⎝⎭=23.∴S阴影=S扇形OEF﹣S Rt△OEF=13π﹣23.【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了扇形的面积公式、圆周角定理和含30度的直角三角形三边的关系.32.(1)DE与⊙O相切;理由见解析;(2)4.【解析】【分析】(1)连接OD,由D为AC的中点,得到AD CD=,进而得到AD=CD,根据平行线的性质得到∠DOA=∠ODE=90°,求得OD⊥DE,于是得到结论;(2)连接BD,根据四边形对角互补得到∠DAB=∠DCE,由AD CD=得到∠DAC=∠DCA =45°,求得△ABD∽△CDE,根据相似三角形的性质即可得到结论.【详解】(1)解:DE与⊙O相切证:连接OD,在⊙O中∵D为AC的中点∴AD CD=∴AD=DC∵AD=DC,点O是AC的中点∴OD⊥AC∴∠DOA=∠DOC=90°∵DE∥AC∴∠DOA=∠ODE=90°∵∠ODE=90°∴OD⊥DE∵OD⊥DE,DE经过半径OD的外端点D∴DE与⊙O相切.(2)解:连接BD∵四边形ABCD是⊙O的内接四边形∴∠DAB+∠DCB=180°。
2013九年级上册数学期末模拟试卷(附答案)桐城市2012—2013学年度第一学期期末质量检测九年级数学模拟试题一、选择题(每小题4分,共40分)1、如图,已知抛物线的对称轴为,点A,B均在抛物线上,且AB与x 轴平行,其中点A的坐标为(0,3),则点B的坐标为().A.(2,3)B.(4,3)C.(3,3)D.(3,2)2.如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为().A.B.C.D..3、小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD 沿过点B的直线折叠,使点A落在BC上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,这样就可以求出67.5°角的正切值是()A.3+1B.2+1C.2.5D.54、若A(,),B(,),C(,),为二次函数的图像上三点,则、、大小关系是()A.<<B.<<C.<<D.<<5.如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=-x+6于A、B两点,若反比例函数y=kx(x>0)的图像与△ABC有公共点,则k 的取值范围是()A.2≤k≤9B.2≤k≤8C.2≤k≤5D.5≤k≤86、如图,在平面直角坐标系中,与轴相切于原点,平行于轴的直线交于,两点.若点的坐标是(),则点的坐标是()A.(2,-4)B.(2,-4.5)C.(2,-5)D.(2,-5.5)7.一轮船从B处以每小时50海里的速度沿南偏东300方向匀速航行,在B处观测灯塔A位于南偏东750方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东600方向上,则C处与灯塔A的距离是()海里.A.B.C.50D.258、如图,在矩形ABCD中,AB=3,AD=6,AD绕着点A顺时针旋转,当点D落在BC上点D/时,则弧DD/的长为()A.B.C.D.9、如图,梯形ABCD内接于圆O,AB∥CD,AB为直径,DO平分∠ADC,则∠DAO的度数是()A.90°B.80°C.70°D.60°10、如图所示,顶角为36°的等腰三角形,其底边与腰之比等于,这样的三角形叫黄金三角形,已知腰长AB=1,△ABC为第一个黄金三角形,△BCD为第二个黄金三角形,△CDE为第三个黄金三角形,以此类推,第2007个黄金三角形的周长为()A.B.C..D.()二、填空题(每小题5分,共20分)11、如图,在平行四边形中,点在边上,且,与相交于点,若,则.12、如图,菱形ABCD的边长为2cm,∠A=60°,弧BD是以点A为圆心、AB长为半径的弧,弧DC是以点B为圆心、BC长为半径的弧,则阴影部分的面积为__________cm2.13、如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,若E为BC的中点,则tan∠CAE的值是_________.14.抛物线上部分点的横坐标,纵坐标的对应值如下表:x…-2-1012…y…04664…从上表可知,下列说法中正确的是.(填写序号)①抛物线与轴的一个交点为(3,0);②函数的最大值为6;③抛物线的对称轴是;④在对称轴左侧,随增大而增大.三、(本大题共2小题,每小题8分,共16分)15.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系.(1)点A的坐标为,点C的坐标为.(2)将△ABC向左平移7个单位,请画出平移后的△A1B1C1.若M为△ABC内的一点,其坐标为(a,b),则平移后点M的对应点M1的坐标为.(3)以原点O为位似中心,将△ABC缩小,使变换后得到的△A2B2C2与△ABC对应边的比为1∶2.请在网格内画出△A2B2C2,并写出点A2的坐标:.16.如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路。
第4题图第6题图第8题图 第9题图九年级(上)数学期末模拟试卷(满分130分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分.每小题所给出的四个选项中,只有一个是正确的.)1.下列根式中,与3是同类二次根式的是( ▲ )A .8B .23C .0.3D .272.⊙O 1的半径为1cm ,⊙O 2的半径为5cm ,圆心距O 1O 2=4cm ,这两圆的位置关系是( ▲ ) A .相交 B .内切 C .外切 D .内含24.如图,A ,D 是⊙O 上的两个点,BC 是直径,若∠D = 35°,则∠OAC 的度数是( ▲ ) A .35° B .55° C .65° D .70° 5.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是( ▲ )A .y=(x -2)2+1B .y=(x+2)2+1C .y=(x -2)2-3D .y=(x+2)2-36.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,在下列五个结论中:①b 2-4ac >0;7.给出下列说法:(1)与圆只有一个公共点的直线是圆的切线;(2)三角形的外心到三角形三边的距离相等;(3)三点确定一个圆;(4)顺次连接四边形各边中点所得四边形一定是平行四边形.其中正确的说法个数为( ▲ )A .1B .2C .3D .4 8.如图,已知⊙O 的半径为5,弦AB 长为6,P 为AB 上一点(不含端点A 和B ),且OP 长为整数,则OP 长等于( ▲ )A .3B .4C .5D .69.如图,已知A 、B 两点的坐标分别为(-2,0)、(0,1),⊙C 的圆心坐标为(0,-1),半径为1.若D 是⊙C 上的一个动点,射线AD 与y 轴交于点E ,则△ABE 面积的最大值是( ▲ )A .3B .113C .103 D .410.已知二次函数224222+++-=a a ax x y .当21≤≤-x 时,函数有最小值2,则满足条件的a有 A .2个 B .3个 C .4个 D .5个( ▲ )二、填空题(本大题共8小题,每空格2分,共16分.不需要写出解答过程,只需把答案直接填写在横线上.)11.函数y =3-x 中,自变量x 的取值范围是 ▲ . 12.分解因式:92-x= ▲ .13.如果圆锥的母线长为5cm ,高为3cm ,那么这个圆锥的侧面积是 ▲ . 14.如图,三个小正方形的边长都为1,则图中阴影部分面积的和是 ▲ . 15.二次函数2y ax bx c =++的部分对应值如下表:则当1-=x 时对应的函数值y = ▲ .16.样本数据3,6,a , 4,2的平均数是5,则这个样本的方差是 ▲ .17.二次函数2(0)y ax bx c a =++≠的图象如图所示,根据图象可知:当k ▲ 时,方程2ax bx c k ++=有两个不相等的实数根.18.如图,已知AB =5,点C 、D 在线段AB 上且AC =DB =1,P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连结EF ,设EF 的中点为G ,当点P 从点C 运动到点D 时,则点G 移动路径的长是 ▲ .三、解答题(本大题共10小题,共84分.解答时应写出文字说明、证明过程或演算步骤.) 19.计算:(每小题4分,共8分)(1) ()()022161-+-- (2)20.(本题6分)先简化,再求值:⎪⎭⎫⎝⎛++-÷--335622x x x x ,其中22-=x . 21.解下列方程:(每题4分,共8分)(1))3(232-=-x x x (2)05222=--x x ( 配方法)22.(本题8分)如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,BE=2DE ,延长DE 到点F ,使得EF=BE ,连接CF . (1)求证:四边形BCFE 是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE 的面积.第18题图第14题图第17题图1423.(本题8分)已知关于x 的一元二次方程22(21)20x k x k k -+++=有两个实数根1x ,2x . (1)求实数k 的取值范围;(2)是否存在实数k 使得221212x x x x ⋅--≥0成立?若存在,请求出k 的值;若不存在,请说明理由. 24.(本题8分)为了从甲、乙两名学生中选拔一人参加竞赛,•学校每个月对他们的学习进行一次测验,如图是两人赛前5次测验成绩的折线统计图.(1)分别求出甲、乙两名学生5次测验成绩的平均数、极差及方差;(2)如果你是他们的辅导教师,应选派哪一名学生参加这次竞赛.•请结合所学习的统计知识说明理由.25.(本题8分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具. (1)不妨设该种品牌玩具的销售单价为x 元(x >40),请你分别用x 的代数式来表示销售量y(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x 应定为多少元. (3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?26.(本题10分)已知,在矩形ABCD 中,AB =4cm ,BC =3cm ,点M 为边BC 的中点,动点P 从点C 出发沿CD 方向以2cm/s 的速度向点D 作匀速运动.连接PM ,过点P 作PM 的垂线与边DA 相交于点E (如图),设点P 运动的时间为t (s)(0<t <2) . ⑴求DE 的长(用含t 的代数式表示);⑵若点P 从点C 出发的同时,经过B ,D 两点的直线l 也沿着射线AD的方向以3cm /s 的速度从D 点出发,匀速运动.当点P 停止运动时,直线l 也随之停止运动.现以CP 长为直径..作圆⊙O ,当⊙O 与直线l 相切时,求运动时间t 以及此时DE 的值.27.(本题10分)如图甲,分别以两个彼此相邻的正方形OABC 与CDEF 的边OC 、OA 所在直线为x 轴、y 轴建立平面直角坐标系(O 、C 、F 三点在x 轴正半轴上).若⊙P 过A 、B 、E 三点A BC DMPEAB CDMP El(圆心在x 轴上),抛物线c bx x y ++=241经过A 、C 两点,与x 轴的另一交点为G ,M 是FG 的中点,正方形CDEF 的面积为1.(1)求B 点坐标及抛物线的解析式;(2)求证:ME 是⊙P 的切线;(3)设直线AC 与抛物线对称轴交于N ,Q 点是此对称轴上不与N 点重合的一动点, ①求△ACQ 周长的最小值;②若Q 的纵坐标为t ,S △ACQ =S ,直接写出S 与t 之间的函数关系式.28.(本题10分)对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若⊙C 上存在两个点A ,B ,使得∠APB =60°,则称P 为⊙C 的关联点;若⊙C 上存在唯一..的两个点A ,B ,使得∠APB =60°,则称P 为⊙C 的最远关联点.已知点D (21,21),E (0,-2),F (32,0),⊙O 的半径为1.(1)在点D ,E ,F 中,⊙O 的关联点是 ;其中最远关联点是 .(若没有最远关联点,请填写“无”)(2)①画出⊙O 的所有最远关联点所组成的图形.②在⊙O 的所有最远关联点中,是否一点P ,使△PEF 为直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.(3)过点F 作直线交y 轴正半轴于点G ,使∠GFO =30°,若直线上的点P (m ,n )是⊙O 的关联点,求m 的取值范围.(4)若线段EF 上的所有点都是某个圆的关联点,求这个圆的半径r 的取值范围.九年级(上)数学期末模拟试卷(2014.1)(满分130分,考试时间120分钟)1 2 33 1 23535.先简化,再求值:⎪⎭⎫ ⎝⎛++-÷--335622x x x x ,其中22-=x .(6分)22.(6分)23.(8分)25.(8分)(1)销售单价(元)销售量y (件)销售玩具获得利润w (元)A B C D M P E ABC D M P E l27.(10分)备用图备用图3211 2 33211 2 3数学答案及评分标准(2011.1)一、选择题1—5:D ,B ,A ,B ,C ;6—10:C ,B ,B ,B ,C 二、填空题11、3.≥x 12、()()33-+x x 13、π20 14、π83 15、-5 16、7417、4<k 18、23三、解答题19、(1)3 (2)21020、原式=)2(21+x ……4分 当22-=x 时,原式=42…6分21、(1)2,321==x x (2)2111±=x 22、证明:(1)略;(2)38 23、(1)41≤k (2)(),012≤--k ∴≤=∴,41,1k k 不存在24、(1)AC=24 (2)PC=293.122624<≈+-,需要挪走。
山东省茌平县博平镇中学2013届九年级上学期数学期末模拟测试题 新人教版
一.选择题。
(每小题3分,共30分)
1.下列根式中,是最简二次根式的是( )
A.
a a 3 B.3
5a C.
b
a a
b D.5
22b b a + 2.以下运算错误的是( ) A
=
B
=
C
.2= D
2= 3. 等腰三角形的底和腰是方程2
680x x -+=的两个根,则这个三角形的周长是( ) A .8
B .10
C .8或10
D . 不能确定
4.下列英语单词中,是中心对称的是( ) A. SOS B. CEO C. MBA D. SAR
5
n 为( )
A .2
B .3
C .30
D .120
6.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( ) A .12个单位 B .10个单位 C .1个单位 D .15个单位
7.若粮仓顶部是圆锥形,且这个圆锥的底面直径为4m ,母线长为3m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是( )
A .26m
B .26m π
C .212m
D .2
12m π
8.关于x 的一元二次方程kx 2
-6x+1=0有两个不相等的实数根,则k 的取值范围是( ) A. k ≥9 B. k<9; C. k ≤9且k ≠0 D. k<9且k ≠0
9.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA=5,则△PCD 的周长为( )
A .5
B .7
C .8
D .10
10.已知在△ABC 中,AB=AC=13,BC=10,那么△ABC 的内切圆的半径为( )
A .
310 B .5
12 C .2 D .3 二.填空题。
(每小题3分,共30分) 11.当x 时,
2
1
-+x x 在实数范围内有意义。
12.关于x 的一元二次方程0433)12
2
2
2
=-+++-m m x m x m (有一个根为0,则m 的值为 。
13、已知两圆的半径分别是一元二次方程01272=+-x x 的两个根,若两圆的圆心距为5,则这两个圆的位置关系是__________.
14.如图,△ABC 绕点B 逆时针方向旋转到△EBD 的位置,若∠A=15°,∠C=10°,E,B,C 在一条直线上,旋转角是 度。
15、如图,Rt △ABC 的边AB 在直线L 上,AC =1, ∠ABC =30°,∠ACB =90°,将Rt△ABC 绕点B 在平面内按顺时针方向旋转,使BC 边落在直线L 上,得到△A 1BC 1; 再将△A 1BC 1绕点C 1在平面内按顺时针方向旋转,使边A 1C 1落在直线L 上,得到△A 2B 1C 1,则点A 所经过的两条弧A A 1,
A 1 A 2的长度之和为
_____________.
16、在一次聚会中,每两个参加聚会的人都相互握了一次手,
一共握了
45次手,则参加这次聚会的人是 人
17、边长为4的正三角形的外接圆的面积为_______
18、如图,直线AB 切⊙O 于C 点,D 是⊙O 上一点, ∠EDC=30º,弦EF ∥AB ,连结OC 交EF 于H 点,连 结CF ,且CF=2,则HE 的长为_________.
三.解答题。
19. 20、解方程(5分) 3 ( x – 5 )2 = 2 ( 5 – x )
21.如图,有一面积是150平方米的长方形鸡场,鸡场的一边靠墙(墙长18米),墙对面有一 个2米宽的门,另三边用竹篱笆围城,篱笆总长33米,求:鸡场的长和宽各为多少米?
C
A 1
B 1 l
A 2 1
B
A
2
22、(10分)方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC △的顶点均在格点上,
点C 的坐标为(41) ,。
(1)把ABC △向上平移5个单位后得到对应的
111A B C △,画出111A B C △,并写出1C 的坐标;
(2) 以原点O 为对称中心,再画出与111A B C △关于原点O
对称的222A B C △,并写出点2C 的坐标。
23、如图,⊙M 与x 轴相交于点A(2,0),B(8,0)与y 轴相切于点C ,求圆心M 的坐标。
24、(10分)如图:AB 是⊙O 的直径,以OA 为直径的⊙O 1与⊙O 的弦AC 相交于D ,DE ⊥OC ,垂足为E 。
(1)求证:AD =DC (2)求证:DE 是的切线
(3)如果OE =EC
,请判断四边形O 1OED 是什么四边形,并证明你的结论。