鄂西北夏季对流云降水微物理过程数值模拟
- 格式:pdf
- 大小:517.25 KB
- 文档页数:8
WRF模式不同云微物理参数化方案及水平区分率对降水预报效果的影响引言随着气候变化的日益加剧,准确的降水预报对于农业、水资源管理、交通运输等社会经济领域的进步至关重要。
近年来,WRF模式作为一种常用的数值天气预报模式,广泛应用于降水预报和气候模拟探究中。
其中,云微物理参数化方案及水平区分率是影响WRF模式降水预报效果的两个重要因素。
1. WRF模式简介WRF(Weather Research and Forecasting)模式是一种基于非静力学方程的气象数值模式。
通过模拟大气中各种物理过程,如大气动力学、辐射传输和云微物理等,来猜测大气的演变过程。
WRF模式具备良好的可伸缩性和灵活性,能够适应不同水平区分率和地形条件的需求。
2. 云微物理参数化方案对降水预报的影响云微物理参数化方案是模拟大气中云和降水形成的关键过程。
常用的云微物理参数化方案有Lin方案、Thompson方案、Morrison方案等。
这些方案基于气象观测数据和理论探究结果,通过参数化方式模拟云和降水的物理过程。
不同的云微物理参数化方案对于降水预报效果有着显著的影响。
以太阳明雷暴降水为例,Lin方案相对于Thompson方案能够更好地模拟高海拔和湿度较低的条件下的降水过程。
Morrison方案对于毛毛雨和凝固降水的模拟效果较好。
云微物理参数化方案的选择应依据实际需要以及模拟区域的特点来确定。
在选择参数化方案时,需要综合思量地形条件、水平区分率等因素,并进行再三验证和调整,以提高降水预报的准确性。
3. 水平区分率对降水预报的影响水平区分率是指模式网格的尺寸大小。
越小的尺寸可以提供更详尽的地理和气象信息,能够更准确地模拟复杂地形和降水特征。
探究表明,水平区分率对于降水预报的影响分外显著。
较高的水平区分率可以更好地模拟小标准的天气系统和对流活动,从而提高对降水过程的模拟准确性。
然而,过高的水平区分率也会增加计算成本,对计算机性能和存储资源提出更高的要求。
bin和bulk微物理方案在我国飑线模拟中的敏感性研究殷蕾;平凡【摘要】分别利用weather research and forecasting (WRF)中尺度模式中的bulk和bin微物理参数化方案,对2014年7月12日发生在华东地区的一次飑线过程进行了数值模拟.结果表明:bulk方案基本模拟出了飑线初生、发展、成熟和消亡的生命史,但与实况存在1 ~2h的延迟,且强度偏弱;而bin方案模拟的雷达回波结构松散,组织化程度较低,更类似于现状对流.从模拟的地面降水看,bin方案模拟的雨带偏窄,且强降水区偏北;而bulk方案则基本模拟出了强降水区的位置.在此基础上进一步分析了两种方案模拟的各水凝物的垂直分布,结果表明bulk方案在高层产生了大量云冰,而bin方案中雪和霰粒子数量较多.【期刊名称】《科学技术与工程》【年(卷),期】2016(016)016【总页数】8页(P136-142,148)【关键词】飑线;微物理方案;SBM;bulk;敏感性研究【作者】殷蕾;平凡【作者单位】南京信息工程大学地理与遥感学院,南京210044;南京信息工程大学地理与遥感学院,南京210044;中国科学院大气物理研究所云降水物理与强风暴重点实验室,北京100029【正文语种】中文【中图分类】P457.9飑线是由许多活跃的雷暴单体排列成线状的中尺度对流系统,其过境处常伴有雷暴、大风、冰雹、龙卷等剧烈天气现象。
目前我国对这类强对流天气的预报能力还十分有限,一个重要原因是数值模式对云微物理过程的描述还有待完善。
目前模式中的云微物理参数化方案大致可分为两类:一类是传统的谱函数(bulk)方法,如Lin方案[1];另一种是分档法(bin方法),如Hebrew大学发展的微物理过程分档云模式(SBM Hebrew University cloud model, HUCM)。
简单说来谱函数参数化法是用一个经验函数(如gamma函数)来描述云中水凝物粒子的总体分布特征;而分档法则是根据水成物的相态、粒子大小、形状、密度等微物理特征将其分为几十或几百档,给出各个档粒子的预报方程及它们之间的相互转化关系[2]。
云降⽔物理学云降⽔物理学第⼀章、云雾形成的物理基础1、掌握⽔汽达到饱和的条件增加⽔汽和降温2、了解⼤⽓中主要降温过程⼀、绝热降温(冷却):设⼀湿空⽓块,在它达到饱和以前绝热上升100⽶,温度⼤约降低0.98℃(⼲绝热递减率) 露点温度⼤约降低0.15~0.20℃,⽐⽓温降低慢得多。
所以只要空⽓上升得⾜够⾼,空⽓温度最终会降低到等于其露点温度,这时湿空⽓达到饱和,这个⾼度称为抬升凝结⾼度,再上升冷却就会发⽣⽔汽凝结,从⽽形成云。
由于凝结释放潜热,含云湿空⽓的温度上升冷却率(湿绝热递减率)就要变⼩,变⼩的程度视空⽓温度和湿度、⽓压等状态⽽异。
在空⽓暖湿的情况下,它⼤约是⼲绝热递减率的⼀半多⼀些(0.6℃/100⽶左右)。
在⽓温很低(⽔汽很少)的场合,例如在对流层上部或⾼纬度地区,这两种递减率相差不⼤。
上升绝热膨胀冷却:(1)热⼒性:对流抬升:积状云(2)动⼒性:地形抬升:层状云、上坡雾锋⾯抬升,多形成层状云重⼒波(开尔⽂-赫姆霍兹波):波状云(3)热⼒+动⼒:低空辐合:ICTZ热⼒、动⼒两者可以互相转化,如热⼒上升的云可因上空稳定层阻挡⽽平衍为稳定性云,动⼒抬升的云可因潜热释放⽽产⽣对流。
⼆、⾮绝热降温:(1)辐射降温:单纯由辐射冷却形成的云很少在云层形成后,由于云体的长波辐射很强,云顶强烈冷却,可使云层加厚,并在地⾯长波辐射使云底增暖的联合作⽤下使云层内形成不稳定层结⽽使云变形,层状云系中夜间有时会激发对流云活动,⼀些强对流风暴系统夜间常常加强或猛烈发展与云顶辐射冷却效应有关。
此外,辐射冷却可形成辐射雾、露、霜(2)(等压)⽔平混合降温:两空⽓团作⽔平混合,不会都是降温的其中较暖的⼀部分空⽓因混合⽽降温考虑两个同质量、未饱和的⽓块,温度分别为-10oC与10oC,混合⽐分别为1.6g/kg、7.6g/kg。
混合之后,温度变为0oC,混合⽐变为4.6g/kg。
0oC时的饱和混合⽐为3.8g/kg。
因此,两⽓块混合之后,变为过饱和。
WRF参数化方案对青藏高原夏季降水的敏感性研究本文使用WRF模式对2013年青藏高原夏季高原涡进行了一系列的数值模拟试验,检验了不同积云参数化方案Kain-Fritsch scheme(KF)、Grell-Devenyi scheme(GD)和微物理参数化方案Kessler scheme(Ks)、WRF Single-Moment 3-class scheme(WRM3)、Eta Microphysics(new Eta)对WRF模拟青藏高原夏季降水的精确度的影响,选择较优的参数化方案。
结果表明:WRF模式模拟的总体效果较好,六种方案给出的模拟结果相差不大,对比来说new Eta + GD方案模拟降水的量级是比较好的,较少出现模拟过强的现象,而Ks + KF方案和Ks + GD方案来说降水中心强度都要大过于实际;降水落区上来看,WSM3 + KF方案和WSM3 + GD方案的表现较好,其它方案则有一定的偏差。
而后分析发现各方案之间降水差异的原因,主要是各方案处理云水、雨水粒子的差别造成的。
青藏高原(下称高原)是我国最大、世界上平均海拔最高的高原(Fielding E et al.,1994),有“世界屋脊”和“第三极”之称,大部分在我国西南部,包括西藏自治区和青海省的全部、四川省西部、新疆维吾尔自治区南部以及甘肃、云南的一部分,总面积250万平方公里,平均海拔4000~5000米,是亚洲许多大河的发源地,其重要性不言而喻。
同时,由于高原特殊的地理位置、复杂的地形地貌及热力与动力作用,高原形成了独特的高原气候,对附近区域甚至整个亚洲和全球的气候都产生了重要的影响(李吉均等,1998;吴国雄等,2005;王同美等,2008)。
在地形条件独特复杂的高原上,降水的分布也非常复杂,开展降水的研究工作主要依赖于气象站点观测数据和科学考察资料(王传辉等,2011),但由于高原的气象站点主要集中在东南部,在高原西北部气象资料极其稀缺,并且已有站点多安置于海拔较低的便利可达区域,使得观测数据本身存在误差(Roe G H,2005;傅抱璞,1992),因此,数值模拟结果能够在一定程度上弥补观测不足的缺陷,成为研究高原气候变化的重要工具。
云降水物理学第一章、云雾形成的物理基础1、掌握水汽达到饱和的条件增加水汽和降温2、了解大气中主要降温过程一、绝热降温(冷却):设一湿空气块,在它达到饱和以前绝热上升100米,温度大约降低0.98℃(干绝热递减率) 露点温度大约降低0.15~0.20℃,比气温降低慢得多。
所以只要空气上升得足够高,空气温度最终会降低到等于其露点温度,这时湿空气达到饱和,这个高度称为抬升凝结高度,再上升冷却就会发生水汽凝结,从而形成云。
由于凝结释放潜热,含云湿空气的温度上升冷却率(湿绝热递减率)就要变小,变小的程度视空气温度和湿度、气压等状态而异。
在空气暖湿的情况下,它大约是干绝热递减率的一半多一些(0.6℃/100米左右)。
在气温很低(水汽很少)的场合,例如在对流层上部或高纬度地区,这两种递减率相差不大。
上升绝热膨胀冷却:(1)热力性:对流抬升:积状云(2)动力性:地形抬升:层状云、上坡雾锋面抬升,多形成层状云重力波(开尔文-赫姆霍兹波):波状云(3)热力+动力:低空辐合:ICTZ热力、动力两者可以互相转化,如热力上升的云可因上空稳定层阻挡而平衍为稳定性云,动力抬升的云可因潜热释放而产生对流。
二、非绝热降温:(1)辐射降温:单纯由辐射冷却形成的云很少在云层形成后,由于云体的长波辐射很强,云顶强烈冷却,可使云层加厚,并在地面长波辐射使云底增暖的联合作用下使云层内形成不稳定层结而使云变形,层状云系中夜间有时会激发对流云活动,一些强对流风暴系统夜间常常加强或猛烈发展与云顶辐射冷却效应有关。
此外,辐射冷却可形成辐射雾、露、霜(2)(等压)水平混合降温:两空气团作水平混合,不会都是降温的其中较暖的一部分空气因混合而降温考虑两个同质量、未饱和的气块,温度分别为-10oC与10oC,混合比分别为 1.6g/kg、7.6g/kg。
混合之后,温度变为0oC,混合比变为4.6g/kg。
0oC时的饱和混合比为3.8g/kg。
因此,两气块混合之后,变为过饱和。
云降水物理学-学习笔记第一章绪论1.宏观云物理学-大气热力学、动力学微观云物理学-水汽的相变热力学和气溶胶力学,所需的知识为热力学原理、扩散理论等2.Benoit Paul Emile Clapeyron 克拉珀龙(1799-1865)饱和水汽压与温度的关系Irying Langmuir 朗缪尔(1881-1957)积状暖云可因连锁繁生过程使雨滴数量增多+第一次开展飞机人工播云实验Hilding Kohler 科勒(1888—1982)吸湿性核凝结理论Kohler 方程Theodor Robert Walter Findeisen 芬德森(1909-1945)降水粒子形成理论+云降水物理学的鼻祖3.云降水物理学的感性认识观测研究方法探测理性认识理化实验:在隔离因子的情况下分析研究理化模拟:在综合因子的情况下分析研究(用实验方法模拟自然机制及过程)数值模拟第二章云雾降水形成的物理基础1.云:水滴、冰晶、水汽和空气共同构成的统一体2.组成云体的单个云滴或冰晶存在时间很短,云体或者云系的持续存在是由新的云粒子的不断生成维持的。
3.含水量比含水量(质量含水量):指每单位质量湿空气中所含固态或液态水的质量,常用单位:g/kg,含水量(体积含水量):指每单位体积湿空气中所含固态或液态水的质量,常用单位:g/m3。
4.Clausius-Clapeyron 克劳修斯-克拉珀龙方程:平水(冰)面饱和水气压和温度的关系温度↑,饱和水汽压↑,饱和水汽压的增大速度↑5.平冰面饱和水汽压<同温度下的过冷却水面的饱和水汽压6.Kohler 科勒/柯拉方程溶液滴的饱和水汽压温度效应:温度↑,饱和水汽压↑曲率效应:半径↑,饱和水汽压↓浓度效应:浓度↑,饱和水汽压↓7.蒸凝现象:指固态或液态物质因升华、蒸发后转变为气态,或自气态因凝华、凝结而转变为固态或液态的现象。
发生条件:当大气中的实际水汽压介于此时共存的两种表面饱和水汽压不相同的液水或冰的饱和水汽压之间贝吉隆过程(冰晶效应):对冰、水共存的系统,当实际水汽压介于二者的饱和水汽压之间时,必有水汽从过冷却水滴向冰晶方向扩散。
基于WRF模式对气溶胶—对流—降水相互作用的研究基于WRF模式和引入气溶胶微物理效应的Grell-Freitas对流参数化方案对2008年7月17日安徽寿县的一次强雷暴过程进行了模拟,比较了该方案中的气溶胶影响对流的不同过程(云水自动转化过程和蒸发过程)对对流以及降水的影响。
并针对方案假定的CCN浓度进行了敏感性试验,考察云、雨水含量,降水空间分布,以及累积降水时间序列对不同CCN浓度的响应。
模拟结果显示,当气溶胶浓度从低浓度增加到背景浓度时,累积降水量变化不大,随着气溶胶浓度继续的增加,累积降水量呈减小趋势。
这对于如何在全球模式中引入对流—微物理双参数化方案具有一定的指示意义。
关键词:WRF模式,气溶胶效应,对流参数化方案,CCN浓度,敏感性试验第一章引言大气气溶胶是大气中悬浮的各种固体、液体粒子的总称,它能够吸收和散射太阳短波辐射,从而影响全球辐射平衡,也能够充当凝结核和冰核,对大气中微物理及水循环过程产生影响,IPCC报告中显示气溶胶对气候有着重要的强迫作用。
但是人们对于气溶胶气候效应的认识还很有限,IPCC第四次报告中指出“气溶胶是气候变化影响因子中不确定性最大的因子之一”,最近美国科学学会的一次报告指出”气溶胶气候强迫是全球气候强迫中最大的不确定因素,而气溶胶对云的间接效应,则很有可能是气溶胶气候强迫中最大的不确定因素”。
这里的气溶胶间接效应包括第一间接效应和第二间接效应,前者表现为气溶胶对云滴数浓度及云滴半径的影响(Twomey, 1977; Twomey et al., 1984),后者则表现为气溶胶对云水平尺度和生命周期的影响(Albrecht, 1989; Hansen et al.,1997;Ackerman et al.,2000)。
气溶胶浓度的升高还能减小云滴粒子的大小,使云滴谱变窄,导致云滴碰并增长效率降低,进而抑制云中的暖雨过程(Squires and Twomey, 1961;Warner and Twomey, 1967; Rosenfeld, 1999)。
云凝结核对南京及周边地区夏季暴雨影响的数值模拟作者:马红云韩路杰顾春利来源:《大气科学学报》2020年第05期摘要利用WRF3.8.1模式,采用Thompson云微物理参数化方案,对南京2014年6月初的一次暴雨过程进行模拟;设置多组数值试验,从中选取清洁和严重污染两组试验,对比分析低、高云凝结核浓度对此次降水的影响。
结果表明:1)Thompson方案对此次降水过程具有一定的再现能力,但对24 h累积降水量的模拟整体偏低,且随云凝结核浓度的上升,累积降水量增加。
较高的云凝结核浓度有利于强降水中心强度增强、降水范围扩大,而对较弱降水中心则有相反的影响。
2)云凝结核浓度的增加将抑制云滴向雨滴的转化,使更多云滴被输送到对流层中层,对流层低层的暖云过程被抑制。
3)云凝结核浓度的增加使对流层中层的过冷云水增加,促进过冷云水向霰的转化,也促进雪的淞附过程,这有利于冷云过程的发展。
4)云凝结核浓度的增加对暖云过程具有负反馈作用,对冷云过程具有正反馈作用。
关键词云凝结核浓度;云微物理参数化;暴雨气溶胶一方面通过吸收和散射太阳辐射而直接影响地气系统的辐射平衡(气溶胶-辐射效应)(王啸华等,2012);另一方面又可以作为云凝结核(Cloud Condensation Nuclei,CCN)影响云的光学特性、云量以及云的寿命(气溶胶-云效应)(Warner and Twomey,1967)以及降水过程(Haywood and Boucher,2000;Menon et al.,2002;杨正卿等,2012)。
近十几年,中国城市化的快速发展导致大气气溶胶浓度迅速增加(许世远等,2006;张晶等,2011;王桂新,2013),对城市降水存在一定影响(Jin,2005;尹占娥等,2010;岳治国等,2011)。
对气溶胶和暴雨之间的相互关系的研究,不仅可以完善我们对城市夏季暴雨灾害机制的认识(Twomey,1977),对提高城市精细化天气预报的精度有着重要的指导意义,而且还对城市基础设施建设以及城市防灾减灾体系的建立有着一定的现实意义。
第24卷第20期2008年10月甘肃科技Gansu Science and Techno logyVol.24N o.20O ct.2008 WRF模式物理过程参数化方案简介*胡向军1,2,陶健红1,郑飞2,3,王娜2,4,张铁军1,刘世祥1,尚大成1(1.兰州中心气象台,甘肃兰州730020;甘肃省干旱气候变化与减灾重点实验室,甘肃兰州730020;2.兰州大学大气科学学院,甘肃兰州730000;3.中国科学院大气物理研究所国际气候与环境科学中心,北京100029;4.陕西省气候中心,陕西西安710014)摘要:文章较全面的介绍了新一代中尺度天气预报WR F(W eather R esearch and Fo recast)模式各种物理过程参数化方案的基本情况,进行了参数化方案选择应用的一些讨论,对模式研究和预报应用时如何选取参数化方案提供了一定的参考。
关键词:W RF;物理过程;参数化;选择应用中图分类号:P457.6在数值模式模拟天气过程时,往往由于模式分辨率不足等原因,对次网格尺度的物理过程不能很好的描述,需要诸如辐射、边界层、微物理等物理过程参数化来完善模拟的效果。
目前很多参数化方案均来自各种当前较为流行的气象模式所使用的方案,本文介绍的WRF模式参数化方案是目前参数化方案较为丰富,代表性较好的一类。
W RF模式系统是由美国研究部门及大学的科学家共同参与进行开发研究的新一代中尺度同化预报系统,其目的是提高我们对中尺度天气系统的认识和预报水平,以及促进研究成果向业务应用的转化[1]。
在未来的研究和业务预报中,WRF模式系统将成为改进从云尺度到天气尺度等不同尺度重要天气特征预报精度的工具[2]。
邓莲堂[3]、章国材[4]、李毅[5]、汤浩[6]等人已对WRF模式的基本结构和框架情况做了介绍,但并未对其物理过程参数化方案的相关情况做全面的介绍,本文即是在此基础上更进一步的对该模式各种物理过程参数化方案进行简要的介绍,文中以WRF v2版本为基础进行论述,为研究和业务人员根据自己的研究对象而选取不同的参数化方案提供一定的参考。