电力电子技术实验(四)
- 格式:ppt
- 大小:580.00 KB
- 文档页数:9
课程教案课程名称:电力电子技术实验任课教师:张振飞所属院部:电气与信息工程学院教学班级:电气1501-1504班、自动化1501-1504自动化卓越1501教学时间:2017-2018学年第一学期湖南工学院课程基本信息1P 实验一、SCR、GTO、MOSFET、GTR、IGBT特性实验一、本次课主要内容1、晶闸管(SCR)特性实验。
2、可关断晶闸管(GTO)特性实验(选做)。
3、功率场效应管(MOSFET)特性实验。
4、大功率晶体管(GTR)特性实验(选做)。
5、绝缘双极性晶体管(IGBT)特性实验。
二、教学目的与要求1、掌握各种电力电子器件的工作特性测试方法。
2、掌握各器件对触发信号的要求。
三、教学重点难点1、重点是掌握各种电力电子器件的工作特性测试方法。
2、难点是各器件对触发信号的要求。
四、教学方法和手段课堂讲授、提问、讨论、演示、实际操作等。
五、作业与习题布置撰写实验报告2P一、实验目的1、掌握各种电力电子器件的工作特性。
2、掌握各器件对触发信号的要求。
二、实验所需挂件及附件三、实验线路及原理将电力电子器件(包括SCR、GTO、MOSFET、GTR、IGBT五种)和负载电阻R串联后接至直流电源的两端,由DJK06上的给定为新器件提供触发电压信号,给定电压从零开始调节,直至器件触发导通,从而可测得在上述过程中器件的V/A特性;图中的电阻R用DJK09 上的可调电阻负载,将两个90Ω的电阻接成串联形式,最大可通过电流为1.3A;直流电压和电流表可从DJK01电源控制屏上获得,五种电力电子器件均在DJK07挂箱上;直流电源从电源控制屏的输出接DJK09上的单相调压器,然后调压器输出接DJK09上整流及滤波电路,从而得到一个输出可以由调压器调节的直流电压源。
实验线路的具体接线如下图所示:3P图1-1 新器件特性实验原理图四、实验内容1、晶闸管(SCR)特性实验。
2、可关断晶闸管(GTO)特性实验。
课程教案课程名称:电力电子技术实验任课教师:张振飞所属院部:电气及信息工程学院教学班级:电气1501-1504班、自动化1501-1504自动化卓越1501教学时间: 2017-2018学年第一学期湖南工学院课程基本信息实验一、 SCR、GTO、MOSFET、GTR、IGBT特性实验一、本次课主要内容1、晶闸管(SCR)特性实验。
2、可关断晶闸管(GTO)特性实验(选做)。
3、功率场效应管(MOSFET)特性实验。
4、大功率晶体管(GTR)特性实验(选做)。
5、绝缘双极性晶体管(IGBT)特性实验。
二、教学目的及要求1、掌握各种电力电子器件的工作特性测试方法。
2、掌握各器件对触发信号的要求。
三、教学重点难点1、重点是掌握各种电力电子器件的工作特性测试方法。
2、难点是各器件对触发信号的要求。
四、教学方法和手段课堂讲授、提问、讨论、演示、实际操作等。
五、作业及习题布置撰写实验报告一、实验目的1、掌握各种电力电子器件的工作特性。
2、掌握各器件对触发信号的要求。
二、实验所需挂件及附件三、实验线路及原理将电力电子器件(包括SCR、GTO、MOSFET、GTR、IGBT五种)和负载电阻R串联后接至直流电源的两端,由DJK06上的给定为新器件提供触发电压信号,给定电压从零开始调节,直至器件触发导通,从而可测得在上述过程中器件的V/A特性;图中的电阻R用DJK09 上的可调电阻负载,将两个90Ω的电阻接成串联形式,最大可通过电流为1.3A;直流电压和电流表可从DJK01电源控制屏上获得,五种电力电子器件均在DJK07挂箱上;直流电源从电源控制屏的输出接DJK09上的单相调压器,然后调压器输出接DJK09上整流及滤波电路,从而得到一个输出可以由调压器调节的直流电压源。
实验线路的具体接线如下图所示:图1-1 新器件特性实验原理图四、实验内容1、晶闸管(SCR)特性实验。
2、可关断晶闸管(GTO)特性实验。
3、功率场效应管(MOSFET)特性实验。
《电力电子技术》实验指导书兰州工业高等专科学校电气工程系实验中心目录实验安全操作规程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄Ⅰ实验一单结晶体管触发电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 1 实验二正弦波同步移相触发电路实验┄┄┄┄┄┄┄┄┄┄ 3 实验三锯齿波同步移相触发电路实验┄┄┄┄┄┄┄┄┄┄ 5 实验四西门子TCA785集成触发电路实验┄┄┄┄┄┄┄┄┄┄ 7 实验五单相半波可控整流电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 11 实验六单相桥式半控整流电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 14 实验七单相桥式全控整流及有源逆变电路实验┄┄┄┄┄┄┄ 17 实验八三相半波可控整流电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 20 实验九三相半波有源逆变电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 23 实验十三相桥式半控整流电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 26 实验十一三相桥式全控整流及有源逆变电路实验┄┄┄┄┄┄ 29 实验十二单相交流调压电路实验(1) ┄┄┄┄┄┄┄┄┄┄┄ 33 实验十三单相交流调压电路实验(2) ┄┄┄┄┄┄┄┄┄┄┄ 36 实验十四单相交流调功电路实验┄┄┄┄┄┄┄┄┄┄┄┄┄ 39 实验十五三相交流调压电路实验┄┄┄┄┄┄┄┄┄┄┄┄┄ 42 实验十六直流斩波电路原理实验┄┄┄┄┄┄┄┄┄┄┄┄┄ 45实验十七单相正弦波脉宽调制(SPWM)逆变电路实验┄┄┄┄ 48实验十八全桥DC-DC变换电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 53 实验十九直流斩波电路的性能研究(六种典型线路)┄┄┄┄ 55 实验二十单相斩控式交流调压电路实验┄┄┄┄┄┄┄┄┄┄ 61实验安全操作规程为了顺利完成电力电子技术实验,确保实验时人身安全与设备可靠运行要严格遵守如下安全操作规程:(1)在实验过程时,绝对不允许实验人员双手同时接到隔离变压器的两个输出端,将人体作为负载使用。
(2)为了提高学生的安全用电常识,任何接线和拆线都必须在切断主电源后方可进行。
实验四-单相交直交变频电路的性能研究————————————————————————————————作者:————————————————————————————————日期:北京信息科技大学电力电子技术实验报告实验项目:单相交直交变频电路的性能研究学院:自动化专业:自动化(信息与控制系统)姓名/学号:贾鑫玉/2012010541班级:自控1205班指导老师:白雪峰学期:2014-2015学年第一学期实验四单相交直交变频电路的性能研究一.实验目的熟悉单相交直交变频电路的组成,重点熟悉其中的单相桥式PWM 逆变电路中元器件的作用,工作原理,对单相交直交变频电路在电阻负载、电阻电感负载时的工作情况及其波形作全面分析,并研究工作频率对电路工作波形的影响。
二.实验内容1.测量SPWM 波形产生过程中的各点波形。
2.观察变频电路输出在不同的负载下的波形。
三.实验设备及仪器1.电力电子及电气传动主控制屏。
2.NMCL-16组件。
3.电阻、电感元件(NMEL-03、700mH 电感)。
4.双踪示波器。
5.万用表。
四.实验原理单相交直交变频电路的主电路如图2—8所示。
本实验中主电路中间直流电压u d 由交流电整流而得,而逆变部分别采用单相桥式PWM 逆变电路。
逆变电路中功率器件采用600V8A 的IGBT 单管(含反向二极管,型号为ITH08C06),IGBT 的驱动电路采用美国国际整流器公司生产的大规模MOSFET 和IGBT 专用驱动集成电路1R2110,控制电路如图2—9所示,以单片集成函数发生器ICL8038为核心组成,生成两路PWM 信号,分别用于控制VT 1、VT 4和VT 2、VT 3两对IGBT 。
ICL8038仅需很小的外部元件就可以正常工作,用于发生正弦波、三角波、方波等,频率范围0.001到500kHz 。
五.实验方法45L1G3VT33E3VT4CG4E2图2—8 单相交直交变频电路G11E1G22VT1VT21.SPWM 波形的观察(1)观察正弦波发生电路输出的正弦信号Ur 波形(“2”端与“地”端),改变正弦波频率调节电位器,测试其频率可调范围。
电力电子技术实验报告电力电子技术实验报告引言电力电子技术是现代电力系统中不可或缺的一部分。
通过电力电子技术,我们可以实现电能的高效转换、传输和控制,提高能源利用效率,减少能源浪费。
本实验报告旨在介绍电力电子技术的基本原理和实验结果,以及对现代电力系统的应用。
一、整流电路实验整流电路是电力电子技术中最基本的电路之一。
通过整流电路,我们可以将交流电转换为直流电,以满足不同电器设备的电源要求。
在实验中,我们使用了半波和全波整流电路进行测试。
半波整流电路通过单个二极管将交流电信号的负半周去除,只保留正半周。
实验中,我们使用了一个变压器将220V的交流电降压为12V,然后通过一个二极管进行半波整流。
实验结果显示,输出电压为正半周的峰值。
全波整流电路通过两个二极管将交流电信号的负半周转换为正半周,实现了更高的电压转换效率。
实验中,我们使用了一个中心引线变压器将220V的交流电降压为12V,然后通过两个二极管进行全波整流。
实验结果显示,输出电压为正半周的峰值,且相较于半波整流电路,输出电压更加稳定。
二、逆变电路实验逆变电路是电力电子技术中另一个重要的电路。
通过逆变电路,我们可以将直流电转换为交流电,以满足不同电器设备的电源要求。
在实验中,我们使用了单相逆变电路和三相逆变电路进行测试。
单相逆变电路通过一个开关管和一个滤波电感将直流电转换为交流电。
实验中,我们使用了一个12V的直流电源,通过一个开关管和一个滤波电感进行逆变。
实验结果显示,输出电压为交流电信号,频率与输入直流电源的频率相同。
三相逆变电路是现代电力系统中常用的逆变电路。
它通过三个开关管和三个滤波电感将直流电转换为三相交流电。
实验中,我们使用了一个12V的直流电源,通过三个开关管和三个滤波电感进行逆变。
实验结果显示,输出电压为三相交流电信号,频率与输入直流电源的频率相同。
三、PWM调制实验PWM调制是电力电子技术中常用的一种调制方式。
通过改变脉冲宽度的方式,可以实现对输出电压的精确控制。
电力电子技术实验报告电力电子技术实验报告引言:电力电子技术是现代电力系统中不可或缺的一部分。
它涉及到电力的转换、控制和传输等方面,对于提高电力系统的效率、稳定性和可靠性具有重要意义。
本实验报告将介绍我所参与的电力电子技术实验,并对实验结果进行分析和总结。
实验一:直流电源的设计与实现在这个实验中,我们设计并搭建了一个直流电源电路。
通过选择合适的电路元件,我们成功地将交流电转换为稳定的直流电。
在实验过程中,我们注意到电路中的电容和电感元件对于滤波和稳压起到了关键作用。
通过实验,我们进一步理解了直流电源的工作原理和设计方法。
实验二:交流电压调节器的性能测试在这个实验中,我们测试了不同类型的交流电压调节器的性能。
通过改变输入电压和负载电流,我们测量了调节器的输出电压和效率。
实验结果表明,稳压调节器能够在不同负载条件下保持稳定的输出电压,而开关调压器则具有更高的效率和更好的调节性能。
这些结果对于电力系统的稳定运行和节能优化具有重要意义。
实验三:功率因数校正电路的设计和优化在这个实验中,我们设计了一个功率因数校正电路,并对其进行了优化。
通过使用功率因数校正电路,我们能够降低电力系统中的谐波失真和电能浪费。
实验结果显示,优化后的功率因数校正电路能够有效地提高功率因数,并减少电网对谐波的敏感性。
这对于提高电力系统的能效和稳定性具有重要意义。
实验四:逆变器的设计与应用在这个实验中,我们设计并搭建了一个逆变器电路,并将其应用于太阳能发电系统中。
通过将直流电能转换为交流电能,逆变器可以实现电力的输送和利用。
实验结果表明,逆变器能够稳定地将太阳能发电系统的输出电能转换为适用于家庭和工业用电的交流电。
这对于推广和应用太阳能发电技术具有重要意义。
结论:通过参与电力电子技术实验,我们深入了解了电力电子技术的原理和应用。
实验结果表明,电力电子技术在提高电力系统的效率、稳定性和可靠性方面具有重要作用。
我们还通过实验掌握了电力电子电路的设计和优化方法,为今后从事相关工作奠定了基础。
电力电子技术实训心得(精选5篇)我从中学到了很多宝贵的经验和知识。
通过这次电子工艺实习,我深刻的认识到了,理论知识和实践相结合是教学环节中相当重要的一个环节,只有这样才能提高自己的实际操作能力,并且从中培养自己的独立思考、勇于克服困难。
这次实习我真的很高兴,主要是自己亲自参与并弄好了一个收音机。
虽然是第一次自己亲手做实验,但是我在这次实习中认识到,只有自己亲手做了,才会明白其实很多事是很简单的,只要你敢做,就没有你做不到的事。
谁都有第一次,谁都会认为第一次是最难的。
在我刚刚拿到零件的时候,看到那么多的东西,还是很手忙脚乱的。
尤其是电阻那么的小,要是丢上一个,那就是前功尽弃了。
通过这一次的电子器件实习我不仅对成功有了更大向往,而且对于失败我也明白坦然的好处和换个角度想的态度。
一切的技术与经验都是在实践中一点一滴的积累来的,这次我又知道了不少电路元件与如何安装的知识。
实习是培养我们动手能力的一个好机会,通过这次的工艺实习,我们学会了基本的焊接技术,收音机的检测与调试,知道了电子产品的装配过程,我们还学会了电子元器件的识别及质量检验,知道了整机的装配工艺,这些为我们的培养动手能力及严谨的工作作风,也为我们以后的工作打下了良好的基矗总之,在实习过成中,要时刻保持清醒的头脑,出现错误,一定要认真的冷静的去检查分析错误!在实习过程中最挑战我动手能力的一项训练就是焊接。
焊接是金属加工的基本方法之一。
其基本操作 ;五步法 ;——准备施焊,加热焊件,熔化焊料,移开焊锡,移开烙铁(又 ;三步法 ;)——看似容易,实则需要长时间练习才能掌握。
但焊接考核逼迫我们用仅仅一天的时间完成考核目标,可以说是必须要有质的飞跃。
于是我耐下心思,戒骄戒躁,慢慢来。
在不断挑战自我的过程中,我拿着烙铁的手不抖了,送焊锡的手基本能掌握用量了,焊接技术日趋成熟。
当我终于能用最短时间完成一个合格焊点时,对焊接的恐惧早已消散,取而代之的是对自己动手能力的信心。
目录一、实验的基本要求 (2)二、安全操作说明 (6)三、电力电子技术实验实验一单相桥式全控整流电路实验 (7)实验二三相桥式全控整流电路实验 (11)实验三单相交流调压电路实验 (15)实验四直流斩波电路原理实验 (19)实验五SCR、GTO、MOSFET、GTR、IGBT特性实验 (26)实验六基于Multism的开环降压电路的仿真 (29)实验七基于Multism的闭环降压电路的仿真 (31)一、实验的基本要求《半导体变流技术》、《电力电子技术》是电气工程及其自动化、自动化等专业的三大电子技术基础课程之一,课程涉及面广,内容包括电力、电子、控制、计算机技术等,而实验环节是这些课程的重要组成部分。
通过实验,可以加深对理论的理解,培养和提高学生独立动手能力和分析、解决问题的能力。
1、实验的特点和要求电力电子技术与电机控制实验的内容较多、较新,实验系统也比较复杂,系统性较强。
学生在实验中应学会运用所学的理论知识去分析和解决实际系统中出现的各种问题,提高动手能力;同时通过实验来验证理论,促使理论和实践相结合,使认识不断提高、深化。
具体地说,学生在完成指定的实验后,应具备以下能力:(1)掌握电力电子变流装置主电路、触发或驱动电路的构成及调试方法,能初步设计和应用这些电路。
(2)熟悉并掌握基本实验设备、测试仪器的性能及使用方法。
(3)能够运用理论知识对实验现象、结果进行分析和处理,解决实验中遇到的问题。
(4)能够综合实验数据,解释实验现象,编写实验报告。
2、实验前的准备实验准备即为实验的预习阶段,是保证实验能否顺利进行的必要步骤。
每次实验前都应先进行预习,从而提高实验质量和效率,否则就有可能在实验时不知如何下手,浪费时间,完不成实验要求,甚至有可能损坏实验装置。
因此,实验前应做到:(1)复习教材中与实验有关的内容,熟悉与本次实验相关的理论知识。
(2)阅读本教材中的实验指导,了解本次实验的目的和内容;掌握本次实验系统的工作原理和方法;明确实验过程中应注意的问题。
电力电子技术实验指导书兰勇青岛大学自动化工程学院电气工程系实验室2012.9实验一三相半波可控整流电路的研究实验一.实验目的了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻—电感性负载时的工作。
二.实验线路及原理三相半波可控整流电路用三只晶闸管,与单相电路比较,输出电压脉动小,输出功率大,三相负载平衡。
不足之处是晶闸管电流即变压器的二次电流在一个周期内只有1/3时间有电流流过,变压器利用率低。
实验线路见图1-1。
图1-1 三相半波可控整流实验电路三.实验内容1.研究三相半波可控整流电路供电给电阻性负载时的工作。
2.研究三相半波可控整流电路供电给电阻—电感性负载时的工作。
四.实验设备及仪表1.MCL系列教学实验台主控制屏。
2.MCL—51组件3.MCL—52组件4.MCL—53组件5.MCL—54组件6.双踪示波器。
7.万用电表。
五.注意事项1.整流电路与三相电源连接时,一定要注意相序。
2.整流电路的负载电阻不宜过小,应使Id不超过0.8A,同时负载电阻不宜过大,保证Id超过0.1A,避免晶闸管时断时续。
3.正确使用示波器,避免示波器的两根地线接在非等电位的端点上,造成短路事故。
六.实验方法1.研究三相半波可控整流电路供电给电阻性负载时的工作接上电阻性负载,合上主电源:(a)改变控制电压Uct,观察在不同触发移相角α时,可控整流电路的输出电压Ud=f(t)与输出电流波形id=f(t),并记录相应的Ud、Id、Uct值。
(b)记录不同α时的Ud=f(t)及id =f(t)的波形图。
2.研究三相半波可控整流电路供电给电阻—电感性负载时的工作接入MCL—54的电抗器L=700mH,,可把原负载电阻Rd调小,监视电流,不宜超过0.8A观察不同移相角α时的输出Ud=f(t)、id=f(t),并记录相应的Ud、Id值,记录不同α时的Ud=f(t)、id=f(t),Uvt=f(t)波形图。
七.实验报告1.画出三相半波可控整流电路的主电路原理图。