输出非线性方程误差类系统递推最小二乘辨识方法
- 格式:pdf
- 大小:1.11 MB
- 文档页数:21
递推最小二乘法原理递推最小二乘法(Recursive Least Squares, 简称RLS)是一种经典的参数估计方法,广泛应用于信号处理、通信系统、自适应滤波等领域。
它通过不断迭代更新参数,逐步逼近最优解,具有快速收敛、适应性强的特点。
本文将从最小二乘法出发,介绍递推最小二乘法的原理及其应用。
最小二乘法(Least Squares)是一种常见的参数估计方法,用于寻找一组参数,使得模型预测值与观测值之间的误差平方和最小。
对于线性模型,最小二乘法可以通过求解正规方程或者利用矩阵运算的方式得到最优参数。
然而,在实际应用中,数据通常是逐步到来的,因此需要一种能够动态更新参数的方法,于是递推最小二乘法应运而生。
递推最小二乘法的基本原理是利用递推的方式不断更新参数,以逼近最优解。
在每一时刻,根据当前的观测数据和先前的参数估计,通过递推公式计算出新的参数估计值,从而实现参数的动态更新。
这样的方法不仅能够适应数据的动态变化,还能够实现快速的收敛,适用于实时系统和非平稳环境下的参数估计。
递推最小二乘法的核心思想是利用指数加权的方式对历史数据进行处理,赋予近期数据更大的权重,从而更好地适应数据的变化。
通过引入遗忘因子(Forgetting Factor),可以控制历史数据对参数估计的影响程度,使得算法更具灵活性和适应性。
同时,递推最小二乘法还可以结合正交分解等技术,进一步提高计算效率和数值稳定性。
在实际应用中,递推最小二乘法被广泛应用于自适应滤波、信道均衡、系统辨识等领域。
例如,在自适应滤波中,递推最小二乘法可以根据接收信号的实际情况,动态调整滤波器的参数,实现信号的实时去噪和增强。
在通信系统中,递推最小二乘法可以用于自适应调制解调器的设计,提高系统的抗干扰能力和适应性。
此外,递推最小二乘法还被广泛应用于雷达跟踪、无线定位等领域,发挥着重要作用。
总之,递推最小二乘法作为一种经典的参数估计方法,具有快速收敛、适应性强的特点,在信号处理、通信系统、自适应滤波等领域有着重要的应用。
相关分析法辨识系统单位脉冲响应1辨识原理对于下图示的单输入单输出线性系统,其输入输出的因果关系可用卷积公式描述。
公式为:0()()()y t g x t d λλλ∞=-⎰把变量t 换成t +τ,上式两边同乘以x (t ),取时间的平均值,得11lim()(+)(){lim()(+)}22TTTTT T x t y t dt g x t x t dt d TTτλτλλ∞--→∞→∞=-⎰⎰⎰即 0()()()x y x R g R d τστλλ∞=-⎰上式即为维纳-霍夫方程,其给出了输入的自相关函数,输入、输出的互相关函数及脉冲响应函数三者之间的关系。
令x (t )为白噪声信号,则其自相关函数为:()(), ()()x x R k R k τδττλδτλ=-=-代入维纳-霍夫方程得:()()()()xy x R g R d kg τλτλλτ∞=-=⎰则有:()()xy R g kττ=这样,只要记录x(t)、y(t)的值,并计算它们的互相关函数,即可求得脉冲响应函数g(τ)。
在系统有正常输入的情形下,辨识脉冲响应的原理图如下图所示。
2辨识过程2.1预备实验以二阶系统22()2G s s s ++=作为辨识对象。
在实验前首先要进行预备实验,以了解系统特性。
通过简单阶跃响应确定系统过度过程时间T s 大约为11s ,如下图所示。
给系统施加不同周期的正弦信号,系统输出为输入的0.707倍时,确定截止频率f M 大约为0.318Hz 。
2.2选择二位式伪随机序列的参数(1)选择t 和N 由0.3Mt f ∆≤,得0.94t s ∆≤。
因为系统的时间常数1nT s ζω=,根据时间常数可按照0.050.1t T ∆= ()选择t ∆。
由二位式伪随机序列周期要大于系统过渡过程时间,若t ∆选择0.94s ,则由(1)s N t T -⨯∆≥,得12.7021N ≥;若t ∆选择0.195s ,则由(1)s N t T -⨯∆≥,得57.4103N ≥。
系统辨识之最小二乘法方法一、最小二乘一次性算法:首先对最小二乘法的一次性辨识算法做简要介绍如下:过程的黑箱模型如图所示:其中u(k)和z(k)分别是过程的输入输出,)(1-z G 描述输入输出关系的模型,成为过程模型。
过程的输入输出关系可以描述成以下最小二乘格式:)()()(k n k h k z T +=θ (1)其中z(k)为系统输出,θ是待辨识的参数,h(k)是观测数据向量,n(k)是均值为0的随机噪声。
利用数据序列{z (k )}和{h (k )}极小化下列准则函数:∑=-=Lk T k h k z J 12])()([)(θθ (2)使J 最小的θ的估计值^θ,成为最小二乘估计值。
具体的对于时不变SISO 动态过程的数学模型为 )()()()()(11k n k u z B k z z A +=-- (3)应该利用过程的输入、输出数据确定)(1-z A 和)(1-Z B 的系数。
对于求解θ的估计值^θ,一般对模型的阶次a n ,b n 已定,且b a n n >;其次将(3)模型写成最小二乘格式)()()(k n k h k z T +=θ (4)式中=------=T n n T b a b a b b b a a a n k u k u n k z k z k h ],,,,,,,[)](,),1(),(,),1([)(2121 θ (5)L k ,,2,1 =因此结合式(4)(5)可以得到一个线性方程组L L L n H Z +=θ (6)其中==T L TL L n n n n L z z z z )](),2(),1([)](),2(),1([ (7)对此可以分析得出,L H 矩阵的行数为),max(b a n n L -,列数b a n n +。
在过程的输入为2n 阶次,噪声为方差为1,均值为0的随机序列,数据长度)(b a n n L +>的情况下,取加权矩阵L Λ为正定的单位矩阵I ,可以得出:L T L L T L z H H H 1^)(-=θ (8)其次,利用在Matlab 中编写M 文件,实现上述算法。
实验二 递推最小二乘估计(RLS)及模型阶次辨识(F-Test )1 实验方案设计1.1 生成输入数据和噪声用M 序列作为辨识的输入信号,噪声采用标准正态分布的白噪声。
生成白噪声时,首先利用乘同余法生成U[0,1]均匀分布的随机数,再利用U[0,1]均匀分布的随机数生成标准正态分布的白噪声。
1.2 过程仿真辨识模型的形式取)()()()()(11k e k u z B k z z A +=--,为方便起见,取n n n b a == 即nn n n zb a b z b z B z a a a z a z A ------++++=++++=...1)(...1)(22112211用M 序列作为辨识的输入信号。
1.3 递推遗忘因子法数据长度L 取534,初值⎪⎪⎪⎩⎪⎪⎪⎨⎧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==1000010000100001)0(001.0)0(P θ 1.4 计算损失函数、噪声标准差损失函数⎥⎦⎤⎢⎣⎡+---+-=μθμττ)()1()()]1(ˆ)()([)1()(2k h k P k h k k h k z k J k J噪声标准差θλdim )(ˆ-=L L J1.6 F-Test 定阶法计算模型阶次统计量t)22,2(~222)1()1()()1,(----++-=+n L F n L n J n J n J n n t其中,)(∙J 为相应阶次下的损失函数值,L 为所用的数据长度,n 为模型的估计阶次。
若a t n n t >+)1,(,拒绝00:n n H >,若a t n n t <+)1,(,接受00:n n H >,其中αt 为风险水平α下的阀值。
这时模型的阶次估计值可取1+n 。
1.6 计算噪信比和性能指标噪信比22ye σση= 参数估计平方相对偏差i i i ni i i θθθθθδˆ~,~1221-=⎪⎪⎭⎫ ⎝⎛=∑= 参数估计平方根偏差ii i n i ini iθθθθθδˆ~,)()~(2122122-==∑∑== 2 编程说明M 序列中,M 序列循环周期取15124=-=p N ,时钟节拍t ∆=1Sec ,幅度1=a ,特征多项式为1)(56⊕⊕=s s s F 。
递推最小二乘法原理递推最小二乘法(Recursive Least Squares, 简称RLS)是一种经典的自适应滤波算法,它在信号处理、通信系统、控制系统等领域得到了广泛的应用。
本文将介绍递推最小二乘法的原理及其在实际应用中的一些特点。
首先,让我们来了解一下最小二乘法。
最小二乘法是一种数学优化方法,用于寻找一组参数,使得给定的模型与观测数据之间的误差平方和最小。
在线性回归问题中,最小二乘法可以用来拟合一个线性模型,以最小化观测数据与模型预测值之间的差异。
最小二乘法的基本思想是通过最小化误差的平方和来寻找最优的参数。
递推最小二乘法是最小二乘法的一种变种,它的特点在于可以实时地更新参数估计,适用于需要动态调整的系统。
在实际应用中,由于系统参数可能随时间变化,传统的最小二乘法在每次参数更新时都需要重新计算整个数据集,计算复杂度较高,不适合实时性要求高的场景。
而递推最小二乘法则可以通过递推的方式,实时地更新参数估计,适用于动态环境下的参数估计问题。
递推最小二乘法的原理可以用数学公式来描述。
假设我们有一个线性模型,\[y_k = \theta^T x_k + e_k\]其中\(y_k\)是观测数据,\(x_k\)是输入向量,\(\theta\)是待估计的参数,\(e_k\)是噪声。
我们的目标是通过观测数据\(y_k\)和输入向量\(x_k\)来估计参数\(\theta\)。
递推最小二乘法的核心思想是通过递推的方式,实时地更新参数\(\theta\)的估计值。
具体来说,我们可以通过以下递推公式来更新参数\(\theta\)的估计值,\[\theta_k =\theta_{k-1} + \frac{P_{k-1}x_k}{1 + x_k^T P_{k-1} x_k}(y_k x_k^T \theta_{k-1})\]其中\(\theta_k\)是第\(k\)次的参数估计值,\(\theta_{k-1}\)是第\(k-1\)次的参数估计值,\(P_{k-1}\)是第\(k-1\)次的参数估计误差的协方差矩阵。
目录一、系统辨识的定义.................................................................................................................. - 2 -二、最小二乘法的引出.............................................................................................................. - 2 -三、最小二乘法的原理.............................................................................................................. - 3 -3.1 最小二乘法一次完成推导[1]........................................................................................ - 3 -3.2最小二乘法的缺陷[ 5].................................................................................................... - 5 -四、其他系统辨识方法.............................................................................................................. - 5 -4.1 基于BP神经网络的系统辨识方法特点[3]................................................................. - 5 -4.2 基于遗传算法的系统辨识算法................................................................................... - 6 -五、结论...................................................................................................................................... - 7 -六、参考文献.............................................................................................................................. - 7 -系统辨识方法简介摘要:在研究一个控制系统过程中,建立系统的模型十分必要。