仰角、俯角和方位角(五).共32页
- 格式:ppt
- 大小:2.81 MB
- 文档页数:32
九年级下册数学仰角和俯角知识点九年级下册数学知识点: 仰角和俯角在九年级的数学学习中,仰角和俯角是两个重要的概念。
仰角和俯角是与水平线之间的夹角,用于描述物体在垂直方向上的视角。
在日常生活中,我们经常会用到仰角和俯角的概念,比如测量高楼的高度、确定飞机的飞行高度等等。
接下来,让我们深入了解仰角和俯角吧。
一、仰角和俯角的定义仰角和俯角是与水平线之间的夹角,用来描述物体在垂直方向上的视角。
仰角是指从水平线向上看时,视线与水平线之间的夹角;俯角则相反,是指从水平线向下看时,视线与水平线之间的夹角。
例如,当我们仰望一棵树时,我们所看到的视线与水平线之间的夹角就是仰角;而当我们低头俯视地面时,视线与水平线之间的夹角就是俯角。
二、仰角和俯角的计算方法我们可以通过三角函数来计算仰角和俯角的数值。
一般来说,我们会用正切函数来求取夹角的数值。
例如,假设一架飞机在空中低飞,飞机和地面之间的夹角为35度。
我们可以通过计算正切函数来求得仰角(从地面向上看时的夹角)和俯角(从飞机向下看时的夹角)的数值。
正切函数的公式为:tanθ = 对边 ÷邻边在这个例子中,飞机和地面之间的夹角为35度,我们可以假设对边(飞机在地面上的高度)为x,邻边(飞机离开地面的水平距离)为1。
代入公式,我们就可以求得正切值。
通过反函数,我们可以得到对应夹角的数值,也就是仰角和俯角。
三、仰角和俯角的应用仰角和俯角的应用非常广泛。
比如在航空领域,飞行员需要准确测量飞机与地面之间的仰角或俯角来确保飞行的安全。
而在建筑领域,工程师需要计算仰角和俯角来确定大楼的高度和斜坡的陡峭程度。
此外,仰角和俯角也在数学的几何和三角学中有着重要的应用。
它们是理解和计算立体图形、三角形、锥体等形状的关键概念之一。
四、总结仰角和俯角是九年级下册数学中的重要知识点。
通过了解仰角和俯角的定义、计算方法和应用,我们可以更好地理解和运用这一概念。
无论是在生活中还是学习中,仰角和俯角都有着广泛的应用价值。
仰角和俯角的意思仰角和俯角是物理学中常用的概念,用于描述物体或光线与地平面的夹角。
在空间导航、航空航天、地理测量等领域中,仰角和俯角的应用非常广泛。
本文将详细介绍仰角和俯角的概念、计算方法及实际应用。
1. 仰角仰角是指物体或者观测点朝天空方向偏离地面的角度,通常用竖直线与视线的夹角来表示。
在天文学中,仰角通常用于描述天体在天空中的位置。
在观测卫星时,需要知道卫星的仰角,以便调整观测仪器的朝向和位置。
2. 俯角二、仰角和俯角的计算方法1. 计算方法(1)在地理测量中,仰角和俯角可以通过测量两点之间的水平距离和垂直距离来计算。
假设A点比B点高h米,则A点到B点的俯角为atan(h/d),其中d为A点到B点的水平距离。
如果B点比A点高,则仰角为90度减去俯角。
(2)在天文学中,仰角可以通过观测天体时测量天顶角(垂直于地面的角度)和天体高度角(天体与地平面的夹角)来计算。
仰角=90度-天体高度角。
俯角=天体高度角。
(3)在航空航天领域中,仰角和俯角需要通过仪器进行测量。
无人机上装有摄像头,可以通过调整仰角和俯角来改变拍摄视角。
2. 测量仪器(1)测距仪:可以测量两点之间的水平距离和垂直距离。
(2)全站仪:可测量目标物体的仰角、方位角和距离等参数。
三、仰角和俯角的实际应用1. 航空航天在航空航天中,仰角和俯角的应用非常广泛。
飞机、无人机等航空器需要根据目标物体的仰角和俯角来选择飞行高度,调整拍摄角度等。
在航天探测中,也需要测量行星、卫星等目标物体的仰角和俯角。
在地理测量中,仰角和俯角用于计算两点之间的高度差,确定地形高低等。
地面的地形特征对于城市规划、农业种植等方面有着重要的参考价值。
3. 天文观测在天文观测中,仰角和俯角通常用于描述恒星、行星等天体在天空中的位置。
天文观测对于了解宇宙的物理特性和演化历史具有重要的意义。
四、小结仰角和俯角是物理学中重要的概念,在导航、航空航天、地理测量等领域有着广泛的应用。
仰角俯角坡度
⑴:使学生了解仰角、俯角的概念,
复习:(1)勾股定理:
(2)锐角之间的关系:
(3)边角之间的关系
仰角、俯角
当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水
平线下方的角叫做俯角.
、例题
例1热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30o,看这栋离楼底部的俯角为60o,热气球与高楼的水平距离为120 m.这栋高楼有多高(结果精确到0.1m)?
例22003年10月15日“神舟”5号载人航天飞船发射成功.当飞船完成变轨后,就在离地球表面350km的圆形轨道上运行.如图,当飞船运行到地球表面上P点的正上方时,从飞船上最远能直接看到的地球上的点在什么位置?这样的最远点与P点的距离是多少?(地球半径约为6 400 km,结果精确到0. 1 km)
例3如图,一艘海轮位于灯塔P的北偏东65方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34方向上的B处.这时,海轮所在的B处距离灯塔P有多远?
二用三角函数有关知识解决方位角问题
坡度与坡角
坡面的铅直高度h和水平宽度l的比叫做坡度(或叫做坡比),
一般用i表示。
即i=,常写成i=1:m的形式如i=1:2.5
把坡面与水平面的夹角α叫做坡角.
结合图形思考,坡度i与坡角α之间具有什么
关系?
例4同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图6-33水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m)。