李雅普诺夫方法分析控制系统稳定性0306
- 格式:pptx
- 大小:6.10 MB
- 文档页数:78
8.3控制系统的李雅普诺夫稳定性分析稳定性描述系统受到外界干扰,平衡工作状态被破坏后,系统偏差调节过程的收敛性。
它是系统的重要特性,是系统正常工作的必要条件。
经典控制理论用代数判据、奈氏判据、对数频率判据、特征根判据来判断线性定常系统的稳定性,用相平面法来判断二阶非线性系统的稳定性,这些稳定性判据无法满足以多变量、非线性、时变为特征的现代控制系统对稳定性分析的要求。
1892年,俄国学者李雅普诺夫建立了基于状态空间描述的稳定性理论,提出了依赖于线性系统微分方程的解来判断稳定性的第一方法(称为间接法)和利用经验和技巧来构造李雅普诺夫函数借以判断稳定性的第二方法(称为直接法)。
李雅普诺夫提出的这一理论是确定系统稳定性的更一般的理论,不仅适用于单变量、线性、定常系统,还适用于多变量、非线性、时变系统,它有效地解决过一些用其他方法未能解决的非线性微分方程的稳定性问题,在现代控制系统的分析与设计中,得到了广泛的应用与发展。
8.3.1 李雅普诺夫稳定性概念忽略输入后,非线性时变系统的状态方程为(8-70) (,)t =&xf x 式中 x —n 维状态向量;T —时间变量;(,)t f x —n 维函数,其展开式为12(,,,,)i i n xf x x x t =&L (n i ,,1L =) 假定方程的解为 ,x 0和t 0 分别为初始状态向量和初始时刻,。
00(;,)t t x x 0000(;,)t t =x x x 1.平衡状态 如果对于所有t ,满足(,)e e t =&xf x =0 (8-71) 的状态x e 称为平衡状态(又称为平衡点)。
平衡状态的各分量不再随时间变化。
若已知状态方程,令 所求得的解x ,便是平衡状态。
0=&x对于线性定常系统,其平衡状态满足=&xAx 0e =Ax ,如果矩阵A 非奇异,系统只有唯一的零解,即存在一个位于状态空间原点的平衡状态。
第四章系统稳定性及其李雅普诺夫稳定4-1 稳定性一般概念对于一个实际的控制系统,其工作的稳定性无疑是一个极其重要的问题,因为一个不稳定的系统在实际应用中是很难有效地发挥作用的。
从直观上看,系统的稳定性就是一个处于稳态的系统,在某一干扰信号的作用下,其状态偏离了原有平衡位置,如果该系统是稳定的,那么当干扰取消后有限的时间内,系统会在自身作用下回到平衡状态;反之若系统不稳定,则系统永远不会回到原来的平衡位置。
系统的稳定一般有外部稳定和内部稳定两种。
外部稳定又称作输出稳定,也就是当系统在干扰取消后,在一定时间内,其输出会恢复到原来的稳态输出。
输出稳定有时描述为系统的BIBO稳定,即有限的系统输入只能产生有限的系统输出。
系统内部稳定主要针对系统内部状态,反映的是系统内部状态受干扰信号的影响。
当扰动信号取消后,系统的内部状态会在一定时间内恢复到原来的平衡状态,则称系统状态稳定。
在经典控制论中,研究对象都是用高阶微分方程或传递函数描述的单输入单输出(SISO)系统,反映的仅是输入输出的关系,不会涉及系统内部的状态。
因此经典控制论中只讨论系统的输出稳定问题。
系统的稳定性是系统本身的特性,与系统的外部输入(控制)无关。
在经典控制论中,我们通过研究线性定常系统的特征根的情况来判断系统的输出稳定性:如果系统的特征根都有负的实部(即都在复平面的左部),则系统输出稳定。
对于n阶线性连续系统,其特征方程为:…………………………(4-1)当n≥4时,要求出其所有特征根是非常困难的,从而要想通过解出高阶系统的特征根来判别系统稳定性也是不现实的。
所以1877年劳斯(Routh)和1895年霍尔维茨(Hurwitz)分别提出了有名的劳斯-霍尔维茨稳定判据,它可以通过线性定常系统特征方程的系数的简单代数运算来判别系统输出稳定性,而不必求出各个特征根。
有关Routh-Hurwitz判据的详细内容请参阅有关经典控制论教材。
当系统不是线性定常系统时,或者对于系统内部状态稳定问题,经典控制论中的方法就不好解决了,这就需要下面介绍的李雅普诺夫(Lyapunov)稳定性的理论。
第六章 李雅普诺夫稳定性分析在反馈控制系统的分析设计中,系统的稳定性是首先需要考虑的问题之一。
因为它关系到系统是否能正常工作。
经典控制理论中已经建立了劳斯判据、Huiwitz 稳定判据、Nquist 判据、对数判据、根轨迹判据等来判断线性定常系统的稳定性,但不适用于非线性和时变系统。
分析非线性系统稳定性及自振的描述函数法,则要求系统的线性部分具有良好的滤除谐波的性能;而相平面法则只适合于一阶、二阶非线性系统。
1892年俄国学者李雅普诺夫(Lyapunov )提出的稳定性理论是确定系统稳定性的更一般的理论,它采用状态向量来描述,不仅适用于单变量、线性、定常系统,还适用于多变量、非线性、时变系统。
§6-1 外部稳定性和内部稳定性系统的数学模型有输入输出描述(即外部描述)和状态空间描述(即内部描述),相应的稳定性便分为外部稳定性和内部稳定性。
一、外部稳定性1、定义(外部稳定性):若系统对所有有界输入引起的零状态响应的输出是有界的,则称该系统是外部稳定的。
(外部稳定性也称为BIBO (Bounded Input Bounded Output )稳定性) 说明:(1)所谓有界是指如果一个函数)(t h ,在时间区间],0[∞中,它的幅值不会增至无穷,即存在一个实常数k ,使得对于所有的[]∞∈0t ,恒有∞<≤k t h )(成立。
(2)所谓零状态响应,是指零初始状态时非零输入引起的响应。
2、系统外部稳定性判据线性定常连续系统∑),,(C B A 的传递函数矩阵为Cxy Bu Ax x=+=BUA sI X BU X A sI CX Y BU AX sX 1)()(--==-=+=B A sIC s G 1)()(--=当且仅当)(s G 极点都在s 的左半平面内时,系统才是外部稳定(或BIBO 稳定)的。
【例6.1.1】已知受控系统状态空间表达式为u x x ⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=121160 , []x y 10= 试分析系统的外部稳定性。