以太网和交换机基础讲解
- 格式:ppt
- 大小:7.10 MB
- 文档页数:64
交换机的基本配置方法一.实验原理1.1以太网交换机基础以太网的最初形态就是在一段同轴电缆上连接多台计算机,所有计算机都共享这段电缆。
所以每当某台计算机占有电缆时,其他计算机都只能等待。
这种传统的共享以太网极大的受到计算机数量的影响。
为了解决上述问题,我们可以做到的是减少冲突域类的主机数量,这就是以太网交换机采用的有效措施。
以太网交换机在数据链路层进行数据转发时需要确认数据帧应该发送到哪一端口,而不是简单的向所有端口转发,这就是交换机MAC地址表的功能。
以太网交换机包含很多重要的硬件组成部分:业务接口、主板、CPU、内存、Flash、电源系统。
以太网交换机的软件主要包括引导程序和核心操作系统两部分。
1.2以太网交换机配置方式以太网交换机的配置方式很多,如本地Console口配置,Telnet远程登陆配置,FTP、TFTP配置和哑终端方式配置。
其中最为常用的配置方式就是Console口配置和Telnet 远程配置。
二.实验内容:交换机配置方法三.实验目的:掌握交换机几种常用配置方法四.实验环境:在实验中,我们采用华为3Com Quidway三层交换机来组建实验环境。
具体实验环境如图所示。
用标准Console线缆的水晶头一段插在交换机的Console口上,另一端的接口插在PC机上的Conslole上。
同时为了实现Telnet配置,用一根网线的一段连接交换机的以太网口,另一端连接PC机的网口。
五.实验步骤:(1)首先启动超级终端,点击Windows的开始-程序-附件-通讯-超级终端。
(2)根据提示输入连接名称后确定,在选择连接的时候选择对应的串口(COM1或COM2),配置串口参数。
串口的配置参数如下:单击“确定”按钮即可正常建立与交换机的通信。
Telnet配置:如果交换机配置了IP地址,我们就可以在本地或远程使用Telnet登陆到交换机上进行配置。
(1)配置交换机的IP地址:S3526最多支持32个VLAN虚接口,可以在VLAN虚接口上分别配置32个IP地址。
4.1 以太网基础 以太网简介z 以太网由Xerox 公司PARC 研究中心于1973年5月22日首次提出x I c以太电缆分接器接口电缆收发器站点接口控制器终端器以太网系统的真正开端是在夏威夷岛上建造的用于无线电通信的ALOHA 系统。
对于采用广播信道的网络而言,最为关键的一个设计问题就是如何给各个站点分配信道的使用权。
ALOHA 是夏威夷大学的Norman Abramson 和他的伙伴们发明的一种全新的动态信道分配方法,其基本思想很简单:用户只要有数据要发送,就让他们发送。
由于广播的反馈性,发送方只要侦听信道就可以知道发出的数据是否被破坏,如果被破坏,发送方等待一段随机的时间再重发数据。
区别于传统的静态信道访问方法如TDM (Time Division Multiplexing )、FDM(Frequency Division Multiplexing ),ALOHA 可以很好的处理数据通信的突发性,提高信道的利用率。
后来,为了尽量减少冲突的发生,在ALOHA 的基础上出现了很多的动态信道分配方法。
其中在ALOHA 基础上加入了载波监听的CSMA/CD (Carrier Sense Multiple Access with Collision Detection )是最重要也是应用最为广泛的一种改进。
第一个CSMA/CD 系统是由Xerox PARC 建造的一个2.94Mb/s 的系统。
这也是第一个被称为以太网(Ethernet )的系统。
1CSMA/CD 规定了一个想传输数据的节点必须执行如下步骤:1、监视信道直到其空闲。
2、传输数据,并监视信道看是否有冲突发生。
3、如果检测到冲突发生,停止传输,发出一个冲突产生信号,再等待一个随机的时间,再回到第一步。
这个随机的时间依如下规则选择:如果数据包冲突了n (n<16)次,则此节点以相同的可能性从0 ,1,..... ,2n - 1中随机选一个数K ,然后等待K * 512 比特时间(例如:在10Mbps 以太网中,1比特时间=10-7秒),如果n>15,则放弃发送。
1. 交换机技术基础1.1.以太网简介以太网是当今现有局域网采用的最通用的通信协议标准,组建于七十年代早期。
Ethernet(以太网)是一种传输速率为10Mbps的常用局域网(LAN)标准。
在以太网中,所有计算机被连接一条同轴电缆上,采用具有冲突检测的载波感应多处访问(CSMA/CD)方法,采用竞争机制和总线拓朴结构。
基本上,以太网由共享传输媒体,如双绞线电缆或同轴电缆和多端口集线器、网桥或交换机构成。
在星型或总线型配置结构中,集线器/交换机/网桥通过电缆使得计算机、打印机和工作站彼此之间相互连接。
以太网系统由三个基本单元组成:●物理介质,用于传输计算机之间的以太网信号;●介质访问控制规则,嵌入在每个以太网接口处,从而使得计算机可以公平的使用共享以太网信道;●以太帧,由一组标准比特位构成,用于传输数据。
Ethernet 基本网络组成:●共享媒体和电缆:10BaseT(双绞线),10Base-2(同轴细缆),10Base-5(同轴粗缆)。
●转发器或集线器●网桥●交换机以太网协议:IEEE 802.3标准中提供了以太帧结构。
当前以太网支持光纤和双绞线媒体支持下的四种传输速率:●10 Mbps – 10Base-T Ethernet(802.3)●100 Mbps – Fast Ethernet(802.3u)●1000 Mbps – Gigabit Ethernet(802.3z))●10 Gigabit Ethernet – IEEE 802.3ae1.2.以太网交换机简介以太网交换机,也称为交换式集线器,是简化(典型)的网桥,一般用于互连相同类型的LAN(例如:以太网/以太网的互连)。
工作在 OSI 网络参考模型的第二层上.以太网交换机,也称为交换式集线器,一般用于互连相同类型的LAN(例如:以太网/以太网的互连)。
作为局域网的主要连接设备,以太网交换机成为应用普及最快的网络设备之一。
随着交换技术的不断发展,以太网交换机的价格急剧下降,交换到桌面已是大势所趋。
交换机基本操作一、交换机基础知识交换机是一种计算机网络设备,用于在局域网内部连接多个网络设备,实现网络通信。
交换机具有存储转发技术和MAC地址学习功能,可以实现网络设备之间快速、准确的数据交换。
交换机可以按照网络类型分为以太网交换机、光纤交换机、ATM交换机等;按照端口类型可以分为固定端口交换机、模块化交换机、堆叠交换机等;按照管理方式可以分为非可管理交换机、可管理交换机、智能型交换机等。
二、交换机基本操作1. 连接交换机将交换机与电源连接后,使用网线将PC或其他网络设备与交换机连接,确保连接线路正确无误。
2. 设置管理IP地址对于可管理交换机,需要先设置管理IP地址,在本地浏览器输入管理IP地址,可以进入交换机管理页面。
3. 创建VLANVLAN是逻辑分隔的网络,可以将交换机端口划分到不同的VLAN中,实现网络安全隔离和流量控制。
在交换机管理页面中,创建新的VLAN并将端口划分进去即可。
4. 配置端口对交换机端口进行配置,可以设置端口的速率、工作模式、VLAN、流控等。
在交换机管理页面中,依次选择对应的端口和设置项进行配置即可。
5. 查看交换机状态可以通过查看交换机状态实现故障排除和网络优化,查看端口的状态、链路速率、流量占用等信息。
在交换机管理页面中,通过选择相应的端口或查看交换机总体状态来查看交换机状态。
6. 物理连接检测检查网络设备与交换机之间的物理连接是否正确可靠。
可以通过交换机管理页面中的物理连接检测功能来检测。
7. MAC地址表管理MAC地址为网络设备的唯一标识,在交换机中要学习并维护MAC地址表。
可以通过交换机管理页面中的MAC地址表管理功能来查看、添加、删除MAC地址表项。
三、交换机常见故障处理1. 端口异常如果端口无法连接或连接不稳定,可以先检查物理连接是否正常,端口是否配置正确,还可以通过查看端口状态和流量占用情况来分析故障原因。
2. MAC冲突MAC冲突会导致网络设备无法正常通信,可以通过查看MAC 地址表和ARP表,找到MAC地址冲突的设备,进而解决问题。
以太网技术的使用教程随着科技的发展,以太网技术已经成为现代社会中最常见的网络通信方式之一。
无论是家庭、企业还是学校,几乎每个地方都离不开以太网。
在本文中,我们将探讨以太网技术的基本原理和使用教程,帮助读者更好地了解和应用这一技术。
一、以太网的基本原理以太网是一种局域网技术,它通过使用双绞线或光纤等传输介质,将计算机、服务器、打印机等设备连接起来,实现数据的传输和共享。
以太网采用的是分组交换的方式,将数据拆分成小的数据包,然后通过网络交换机进行传输。
这种方式能够提高网络的传输效率和可靠性。
二、以太网的硬件设备要使用以太网,我们首先需要准备一些硬件设备。
首先是网络交换机,它是连接各个设备的核心设备。
根据网络规模和需求,我们可以选择不同端口数量和速度的交换机。
其次是网线,它是连接设备和交换机的媒介。
常见的网线有Cat5、Cat6等不同规格,根据需要选择合适的网线。
最后是计算机、服务器和其他设备,它们是网络的终端设备,通过网线与交换机相连。
三、以太网的配置和连接在使用以太网之前,我们需要进行一些配置和连接。
首先,将交换机与电源连接,并连接上网线。
然后,将网线的一端插入交换机的端口,另一端插入计算机或其他设备的网口。
确保网线插入牢固,不松动。
接下来,打开计算机或设备的网络设置,选择以太网连接,并通过动态IP或静态IP方式进行配置。
配置完成后,我们就可以开始使用以太网进行数据传输和共享了。
四、以太网的应用以太网技术广泛应用于各个领域。
在家庭中,我们可以通过以太网连接多台计算机,实现文件共享和互联网访问。
在企业中,以太网连接了各个部门的计算机和服务器,实现了内部数据的快速传输和共享。
在学校中,以太网连接了教室、实验室和图书馆等地的计算机,方便师生进行教学和学习。
五、以太网的扩展和升级随着科技的不断进步,以太网技术也在不断发展。
目前,最常见的以太网标准是10/100/1000Mbps,即千兆以太网。
但随着网络需求的增加,千兆以太网已经无法满足高带宽的要求。
以太网交换机结构和原理1.物理结构:交换机的内部由多个交换模块组成,通常包括端口管理模块、转发引擎和交换矩阵。
端口管理模块负责管理每个端口的状态,包括连接状态、速度和双工模式等。
转发引擎用来处理数据包的转发和接收,以及生成和更新MAC地址表。
交换矩阵是交换机的核心部分,负责实现快速、准确的数据包转发。
2.数据转发和交换算法:以太网交换机的关键任务是根据数据包的目的MAC地址转发数据包。
当交换机接收到数据包时,它会通过查找MAC地址表来确定数据包的目的地址所对应的端口。
如果交换机的MAC地址表中没有对应的地址,它会广播数据包到所有连接的端口上。
交换机使用不同的交换算法来确定数据包的转发路径。
其中,最常用的算法是学习算法和转发算法。
学习算法用来学习和记录设备之间的MAC 地址和端口的对应关系,以建立和更新MAC地址表。
转发算法用来确定数据包的转发路径,以保证数据包能够快速、准确地到达目的地。
3.网络流量控制:流量控制的主要方法包括速率限制、拥塞控制和碰撞检测。
速率限制用来限制每个端口进出的数据包速率,以避免网络拥堵。
拥塞控制主要针对网络中的拥塞情况,通过调整转发速率,避免数据包堆积和丢失。
碰撞检测用来检测并解决网络中的碰撞问题,以确保数据的可靠传输。
此外,以太网交换机还支持虚拟局域网(VLAN)的功能。
VLAN可以通过将不同的设备划分到不同的虚拟网络中,以实现安全隔离和更好的网络性能。
总结起来,以太网交换机通过物理结构、数据转发和交换算法以及网络流量控制来实现多个设备之间的数据传输。
它的设计和实现使得局域网中的数据传输更加高效、可靠,并且支持多种功能,如VLAN等。
随着技术的发展,以太网交换机的性能和功能还将不断提升,以适应不断变化和发展的网络需求。
以太网交换机结构和原理以太网交换机是一种基于以太网技术的网络设备,主要用于实现局域网的数据交换。
它的主要作用是根据目的MAC地址和端口的对应关系,将数据包从一个端口复制并转发给目标端口,从而实现数据的快速传输和转发。
下面将从交换机的结构和原理两方面进行详细介绍。
一、交换机的结构1.交换机的外部结构交换机通常具有多个接口,用于连接多台终端设备,如计算机、服务器、打印机等。
每个接口都有一个端口号,用于标识不同的接口。
交换机能够通过不同的端口号将数据发送到相应的接口。
2.交换机的内部结构交换机内部通常包含以下几个主要部分:(1)端口:交换机的每个端口都与一个终端设备相连,可以通过端口来接收和发送数据。
(2)转发引擎:转发引擎是交换机的核心部分,主要负责实现数据包的转发和处理。
转发引擎通常由ASIC芯片(专用集成电路)组成,能够对数据包进行快速处理和转发。
(3)存储器:交换机通常具有一定的存储器容量,用于存储MAC地址表、数据包缓存等。
(4)控制板:控制板通常由CPU、操作系统和管理功能组成,用于控制和管理交换机的运行。
二、交换机的工作原理交换机的工作原理主要有两种模式:存储转发模式和直通模式。
1.存储转发模式(1)数据接收:当交换机接收到一个数据包时,首先会通过物理层和数据链路层的处理将数据包的帧头提取出来,并将源MAC地址记录到MAC地址表中。
(2)MAC地址表:MAC地址表存储了每个端口对应的MAC地址,以及MAC地址和接口的对应关系。
当交换机接收到一个新的数据包时,会根据源MAC地址在MAC地址表中查找对应的接口。
(3)根据MAC地址转发:如果在MAC地址表中找到了源MAC地址对应的接口,则将数据包发送到相应的接口,并更新源MAC地址的端口信息。
如果没有找到源MAC地址对应的接口,则将数据包广播到所有的端口上。
(4)根据目的MAC地址转发:当交换机接收到一个数据包时,会根据目的MAC地址在MAC地址表中查找对应的接口。
3.2以太网交换机3.2.1 以太网交换机的工作原理图3.7 以太网交换机交换机用以替代集线器将 PC、服务器和外设连接成一个网络。
因为集线器是一个总线共享型的网络设备,在集线器连接组成的网段中,当两台计算机通讯时,其它计算机的通讯就必须等待,这样的通讯效率是很低的。
而交换机区别于集线器的是能够同时提供点对点的多个链路,从而大大提高了网络的带宽。
图3.8 以太网交换机中的交换表交换机的核心是交换表。
交换表是一个交换机端口与MAC地址的映射表。
一帧数据到达交换机后,交换机从其帧报头中取出目标MAC地址,通过查表,得知应该向哪个端口转发,进而将数据帧从正确的端口转发出去。
如图3.13所示,当左上方的计算机希望与右下方的计算机通讯时,左上方主机将数据帧发给交换机。
交换机从e0端口收到数据帧后,从其帧报头中取出目标MAC地址0260.8c01.4444。
通过查交换表,得知应该向e3端口转发,进而将数据帧从e3端口转发出去。
我们可以看到,在e0、e3端口进行通讯的同时,交换机的其它端口仍然可以通讯。
例如e1、e2之间仍然可以同时通讯。
如果交换机在自己的交换表中查不到该向哪个端口转发,则向所有端口转发。
当然,广播数据报(目标MAC地址为FFFF.FFFF.FFFF的数据帧)到达交换机后,交换机将广播报文向所有端口转发。
因此,交换机有两种数据帧将会向所有端口转发:广播帧和用交换表无法确认转发端口的数据帧。
交换机的核心是交换表。
那么交换表是如何得到的呢?交换表是通过自学习得到的。
我们来看看交换机是如何学习生成交换表的。
交换表放置在交换机的内存中。
交换机刚上电的时候,交换表是空的。
当0260.8c01. 1111主机向0260.ec01.2222主机发送报文的时候,交换机无法通过交换表得知应该向哪个端口转发报文。
于是,交换机将向所有端口转发。
虽然交换机不知道目标主机0260.ec01.2222在自己的哪个端口,但是它知道报文是来自e0端口。