4旋转图形的画法
- 格式:ppt
- 大小:136.50 KB
- 文档页数:18
11.2 旋转教学目标1、掌握图形旋转的概念。
2、理解旋转中心、旋转角、对应点、对应线段、对应角的含义。
3、掌握图形旋转的性质。
4、会画图形绕旋转中心旋转某一角度的图形。
教学重点及难点图形旋转的性质;会画图形绕旋转中心旋转某一角度的图形。
教学过程 一、情景引入1、观察(课件展示:、水车车盘转动、钟摆摆动)2、思考:这些图形运动的特征?3、讨论:二、新知学习与探索图形的旋转:在平面内,将一个图形绕一个定点按某一方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心。
(学生思考、讨论)得:1、旋转中心在旋转过程中保持不动2、图形的旋转由旋转中心和旋转的角度所决定(操作课件,点击ppt.5第二文本框,超级链接到几何画板,内容是书本的问题1,解决书本上2个问题) 如图△A ′B ′C ′是△ABC 绕点O 旋转所得。
则点A 和A ′,点B 和B ′,点C 和C′是对应点, 线段AB 和A ′B ′,BC 和B ′C′,AC 和A ′C ′是对应线段,∠AO A ′,∠BO B ′,∠CO C ′是旋转角。
图形旋转的性质三、巩固练习想一想:请同学们判断哪一组图形间存在旋转变换做一做:(点击ppt.10上的按钮“做一做”超级链接到几何画板,内容为书本第100页的思考),通过操作让学生探索出结果:(1)点A 绕点O 按逆时针旋转900后,它所经过的路线是以O 为圆心,OA 为半径,圆心角为900的一段弧。
(2)线段AB 绕点A 按顺时针旋转方向旋转450后,它扫过的平面是以A 为圆心,AB 为半径,圆心角为450的扇形。
(1)(2)(3)画出直角三角形ABC 绕点C 逆时针旋转900得到的三角形A'B'C'.四、自主小结 五、作业布置六、课后探索对等腰直角三角形ABC 进行如下的图形变换,请同学们想象每一个点的对应点落在什么位置?(1)以点B 为旋转中心,顺时针旋转90度.(2)以点B 为旋转中心,逆时针旋转45度.(3)以点A 为旋转中心,逆时针旋转45度.(4)以点AC 中点为旋转中心,逆时针旋转180度。
图形的平移与旋转内容分析本讲内容需要理解平移与旋转的基本概念.理解对应点、对应角、对应线段、旋转中心、旋转角的意义.掌握图形平移后图形的形状、大小保持不变,图形在旋转运动过程中的不变性.重点是能够画出平移、旋转后得图形.难点是掌握旋转对称图形与中心对称图形的区别与联系.知识结构模块一:图形的平移知识精讲1、平移将图形上的所有点都按照某个方向作相同距离的位置移动,叫做平移.2、平移的特征图形平移后,对应点之间的距离、对应线段的长度、对应角的大小都相等,图形平移后,图形的形状、大小都不变.3、平移距离平移后各对应点之间的距离叫做图形平移的距离.例题解析【例1】下列运动形式是平移的是()A.时钟计时B.汽车转弯C.风扇旋转D.飞机起飞【难度】★【答案】D【解析】A.时钟计时(旋转);B.汽车转弯(旋转);C.风扇旋转(旋转).【总结】考查图形旋转、平移的概念.【例2】观察图案,在A、B、C、D四幅图案中,能通过图案的平移得到的是( )A B C D【难度】★【答案】C【解析】A、D通过旋转得到,B通过翻折得到.【总结】考查图形旋转、平移、翻折的概念.【例3】在下面的六幅图中,(1)(2)(3)(4)(5)(6)中的图案_________可以通过平移图案(1)得到的.【难度】★【答案】(4).【解析】(2)翻折;(3)旋转180 ;(5)形状发生改变;(6)形状发生改变.【总结】考查图形旋转、平移、翻折的概念.FECBA【例4】 图形经过平移后,图形的性质:①线段的长度;②两条线段或直线的相对位置关系;③角度的大小;④图形的面积.中不变的有( ) A .1个 B .2个 C .3个 D .4个【难度】★ 【答案】D【解析】平移的特征:图形平移后,对应点之间的距离、对应线段的长度、对应角的大小都相等,图形平移后,图形的形状、大小都不变.【总结】考查平移的特征.【例5】 经过平移,△ABC 的边AB 移到了EF ,作出平移后的三角形.【难度】★★ 【答案】略【解析】分别过点E 、F 做////ED AC FD BC ,交于点D ,即EFD 如图即为所求.【总结】根据平移的定义:将图形上的所有点都按照某个方向作相同距离的位置移动,叫做平移.即可画出图形.【例6】 作线段AB 和CD ,且AB ⊥CD ,交点为O ,AB = 2CD .分别取OA 、OB 、OC 、OD的中点A ’、B ’、C ’、D ’,连接A ’、C ’、B ’、D ’,得到一个四边形,将四边形沿水平方向向右平移两个单位,画出平移后的图形. 【难度】★★ 【答案】略 【解析】【总结】考察学生的画图能力.虚线图形为所求OE DCBAC'B'CBA【例7】 平行四边形ABCD 中,4AB =,6BC =.O 是对角线交点,将OAB ∆平移至EDC∆位置.(1)说出平移的方向与距离.(2)四边形OCED 是什么四边形,为什么?(3)若平行四边形ABCD 的面积是20,求五边形ABCED 面积. 【难度】★★【答案】(1)沿BC 方向平移6个单位; (2)四边形OCED 是平行四边形,////AO DE BO CE ,;(3)五边形ABCED 面积为25.【解析】根据题意,易证得:14S CDE S ABCD =,25ABCED S ∴=.【总结】主要考察平行四边形的性质以及图形运动的综合应用.【例8】 如图所示,P 为平行四边形ABCD 内一点,求证:以AP 、BP 、CP 、DP 为边可以构成一个四边形,并且所构成的四边形的对角线的长度恰好分别等于AB 和BC . 【难度】★★ 【答案】略【解析】分别过点B 、C 作AP 、DP 的平行线BM ,CM , 相较于点M ,联结PM ,交BC 于点N ,则可证明四边形BPCM 为满足条件的四边形.【总结】主要考察平行四边形的性质以及图形运动的综合应用.【例9】 如图,三角形ABC 的底边BC 长3厘米,BC 边上的高是2厘米,将该三角形以每秒3厘米的速度沿高的方向向上平形移动2秒,求这时该三角形扫过的面积(阴影部分). 【难度】★★★ 【答案】218cm .【解析】将'''A B C 填补到ABC ,∴阴影部分的面积S =矩形2'''32318()BCC B BC BB cm =⋅=⨯⨯=.【总结】本题主要考查与图形运动相结合的综合应用.DPCBAMDCBA【例10】 如图所示,长方形ABCD 中,AB = 12cm ,BC = 8cm ,试问将长方形沿着AB 方向平移多少才能使平移后的长方形与原来的长方形ABCD 重叠部分的面积为224cm .【难度】★★★ 【答案】9cm .【解析】解:设平移距离为xcm , 重叠部分的面积()812968x x =⋅-=-, 96824x ∴-=,9x ∴=【总结】考查动点问题与图形运动相结合的综合应用.1、旋转的定义在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转过的角称为旋转角.从以下几点理解定义:① 旋转中心在旋转过程中保持不变;② 图形的旋转是由旋转中心,旋转角度和旋转方向决定的;③ 旋转角度一般小于360°.2、旋转的特征(1)旋转后图形上每一点都绕着旋转中心旋转了同样的角度; (2)旋转后的图形与原图形对应线段相等、对应角相等; (3)对应点到旋转中心的距离相等;(4)旋转后的图形与原来的图形的形状和大小都没有发生变化. 3、旋转对称图形的定义把一个图形绕着一个顶点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形.这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角0360α<<).如电风扇、五角星、圆等都是旋转对称图形,对旋转对称图形可从以下几个方面理解:模块二:图形的旋转知识精讲(1)旋转中心在旋转的图形上;(2)旋转的角度小于360°.4、图形的旋转与旋转对称图形的区别和联系(1)图形的旋转是指一个图形从一个位置旋转到另一个位置,即同一个图形在位置上的变化;旋转对称图形,是指一个图形所具有的特性,即旋转一定角度后位置没有变化,仍与自身重合;(2)图形的旋转随着旋转角度的不同从一个位置旋转到不同位置;旋转对称图形旋转一定角度后仍在原处与自身重合.图形的旋转与旋转对称图形都是绕旋转中心旋转.例题解析【例11】一个图形进行旋转运动,可以作为旋转中心的点是()A.有且仅有一个B.有且仅有两个C.有有限多个D.有无限多个【难度】★【答案】D【解析】由旋转定义可知:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转过的角称为旋转角.【总结】考察旋转的定义.【例12】下列图不是中心对称图形的是()①②③④A.①③B.②④C.②③D.①④【难度】★【答案】D【解析】旋转180 后能与自身完全重合的图形是中心对称图形.【总结】考察中心对称图形的定义.【例13】 在艺术字中,有些字母是中心对称图形,下面的5个字母中,是中心对称图形的有( )A .2个B .3个C .4个D .5个【难度】★ 【答案】B【解析】H 、I 、N 是中心对称图形;E 、A 是轴对称图形. 【总结】考察中心对称图形的定义.【例14】 图中的“笑脸”是图(1)逆时针旋转90 形成的是( )【难度】★ 【答案】C【解析】由旋转定义可得. 【总结】考察旋转定义.AH I NE(1)ABC DC 'B 'A 'OBAC【例15】 下列图形中,绕某个点旋转180︒能与自身重合的有( )① 正方形 ②长方形 ③等边三角形 ④线段 ⑤角 A .5个B .2个C .3个D .4个【难度】★★ 【答案】C【解析】①,②,④.【总结】考察中心对称图形的定义.【例16】 请在下列网格图中画出所给图形绕点O 顺时针依次旋转900︒、1800︒、2700︒后所成的图形.(注意:有阴影部分图形旋转后的对应图形要涂上阴影.不要求写画法)【难度】★★ 【答案】详见解析【解析】将旋转角度除以180︒,所得偶数与原图重合,所得奇数与原图形成中心对称.【总结】考察学生运用规律寻找最小旋转角及画图能力.【例17】 如图,画出ABC ∆绕点O 顺时针旋转100︒所得到的图形. 【难度】★★ 【答案】详见解析. 【解析】【总结】考察学生的画图能力,注意看清楚旋转方向.D'D CBADB'A'CBA【例18】 如图,已知ABC ∆绕某一点逆时针转动一个角度.得到旋转后的'''A B C ∆,其中A 、B 、C 的对应点分别是'A 、'B 、'C .试确定旋转中心O .【难度】★★【答案】联结任意两对对称点,连线的垂直平分线的交点即旋转中心O . 【解析】【总结】考察学生的画图能力以及对旋转中心的理解.【例19】 D 是等腰Rt ABC ∆内一点,BC 是斜边,如果将ABD ∆绕点A 逆时针方向旋转到'ACD ∆的度数是( ).A .30︒B .45︒C .60︒D .90︒【难度】★★ 【答案】D【解析】根据旋转角相等可得'90D AD CAB ∠=∠=︒. 【总结】考察旋转角的概念及性质.【例20】 如图,把ABC ∆绕点C 顺时针旋转35︒,得到'''A B C ∆,''A B 交AC 于点D ,若'90A DC ∠=︒,则A ∠度数为( ). A .45︒ B .55︒ C .90︒ D .75︒【难度】★★ 【答案】B【解析】'35'90'55ACA A DC A A ∠=︒∠=︒∴∠=∠=︒,,. 【总结】图形经过旋转之后,对应角不发生改变.CBAC‘B’A‘OF AP'CB PA【例21】 矩形的对角线相交于点O ,过点O 的直线交AD ,BC 于点E ,F ,2AB =,3BC =,则图中阴影部分的面积为_____.【难度】★★ 【答案】3. 【解析】BOF DOE SS=,S 阴12S =矩形12332=⨯⨯= 【总结】根据图形特征寻找到面积相等的部分,考察学生的观察力.【例22】 自行车的两个轮胎的外径(直径)是66.0米.如果自行车每分钟行66米,那么自行车的车轮每分钟转多少圈?【难度】★★【答案】100π圈.【解析】661000.66ππ=(圈). 【总结】考察学生对圆周长的运用.【例23】 将一图形绕着点O 顺时针方向旋转70°后,再绕着点O 逆时针方向旋转120°,这时如果要使图形回到原来的位置,需要将图形绕着点O 如何旋转( ).A .顺时针方向50°B .逆时针方向50°C .顺时针方向190°D .逆时针方向190°【难度】★★ 【答案】A【解析】根据旋转特征,第二次旋转后相当于图形逆时针旋转了50°,因此只要顺时针旋转50°即可回到原来的位置.【总结】考察图形的旋转特征.【例24】 如图,P 是正三角形ABC 内的一点,且6PA =,8PB =,10PC =.若将PAC ∆绕点A 逆时针旋转后,得到'P AB ∆,则点P 与点'P 之间的距离为______________,APB ∠=___________.【难度】★★★【答案】'6PP =,150APB ∠=︒.【解析】''60PAC P AB P AP ∠=∠∴∠=︒,,''6AP AP PP ∴===, 8'10BP CP BP ===,,'90BPP ∴∠=︒, ''9060150APB BPP P PA ∴∠=∠+∠=︒+︒=︒.【总结】考察学生对旋转图形性质的综合应用.【例25】 如图,将边长为2的两个互相重合的正方形纸片按住其中一个不动,另一个绕点B【难度】★★★ 【答案】30︒. 【解析】 解:联结BH易证'RT BA H ≌RT BCH30HBC ∴∠=︒,'60A BC ∴∠=︒,'30CBC ∴∠=︒.【总结】考察图形旋转性质的应用,本题综合性较强,教师可选择性讲解.【例26】 (1)如图1,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同 侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求AEB ∠的大小.(2)如图2,OAB ∆固定不动,保持COD ∆的形状和大小不变,将COD ∆绕着点O 逆时针旋转15︒,求AEB ∠的大小.【难度】★★★【答案】(1)60︒;(2)60︒.【解析】(1)易证AOC ≌BOD ,OAC OBD ∴∠=∠,AOB AEB ∴∠=∠,60AEB ∴∠=︒; (2)同理60AEB ∠=︒.【总结】考察图形运动及几何图形性质的综合应用,本题综合性较强,教师可选择性讲解.图1ABCDEO 图2ABCDEOAE DCBA【例27】 如图,在△ABC 中,90BAC ∠=,AB AC =,90EAD ∠=,AE AD =. (1)试问△ADC 可以通过何种运动可以得到△AEB ? (2)联结ED ,△AED 是什么三角形?(3)若2AD =,4AC =,求AED ABC SS .【难度】★★★【答案】(1)ADC 绕点A 顺时针旋转90︒得到AEB ; (2)AED 是等腰直角三角形;(3)14AED ABC S S =.【解析】(1)略; (2)易证ADC ≌AEB ,可得:AD AE =,DAC EAB ∠=∠,90BAC EAD ∴∠=∠=︒,AED ∴是等腰直角三角形;(3)14482S ABC =⨯⨯=,12222S ADE =⨯⨯=,14AED ABC S S ∴=.【总结】考察图形运动及几何图形性质的综合应用.【习题1】以下现象:①电梯的升降运动;②飞机在地面沿直线滑行;③风车的转动;④ 汽车轮胎的转动.其中属于平移的是( )A .②③B .②④C .①②D .①④【难度】★ 【答案】C【解析】根据图形运动特征,①②是平移运动,③④是旋转运动 【总结】考察学生图形运动的特征.随堂检测【习题2】下列说法正确的是().A.平移就是将一个图形的某些线段平行移动B.平移后的图形与原图形大小相同,形状不同C.平移后的图形与原图形大小不同,形状相同D.平移后的图形与原图形大小、形状都相同【难度】★【答案】D【解析】根据平移运动的特征可知选D.【总结】考察平移运动的特征.【习题3】等边三角形是旋转对称图形,它的最小旋转角是_____度.【难度】★【答案】120︒.【解析】由等边三角形的特征可知,最小旋转角是120︒.【总结】考察最小旋转角的计算.【习题4】如图,是中心对称图形的是()【难度】★【答案】A【解析】A是中心对称图形,B、C、D是轴对称图形.【总结】考察中心对称图形和轴对称图形的特征.【习题5】如图,在平行四边形ABCD 中,AE 垂直于BC ,垂足为E .试画出将ABE ∆平移 后的图形,使其平移的方向为点A 到点D 的方向,平移的距离为线段AD 的长. 【难度】★★ 【答案】详见解析. 【解析】△DCF 就是ABE ∆平移后的图形. 【总结】考察图形平移的画法.【习题6】正方形网格中,ABC ∆为格点三角形(顶点都是格点),将ABC ∆绕点A 按逆时针方向旋转90︒得到11AB C ∆.(1)在正方形网格中,作出11AB C ∆;(不要求写作法)(2)设网格小正方形的边长为1cm ,用阴影表示出旋转过程中线段BC 所扫过的图形,然后求出它的面积.(结果保留π) 【难度】★★【答案】94π.【解析】(1)如图所示;(2)S 阴影=S 扇1C AC +11S ABC S AB C S --扇1B AB =S 扇1C AC S -扇1B AB221144AC AB ππ=-()11925169444πππ=-=⋅=.【总结】考察图形运动的综合应用.EDCBAFAB CB 1C 1ABCB'C'A BCD EF【习题7】如图,将ABC ∆绕点A 逆时针旋转80︒得到AB C ''∆.若50BAC ∠=︒,则CAB '∠的度数为( ) A .30︒ B .40︒ C .50︒ D .80︒【难度】★★ 【答案】A【解析】将ABC ∆绕点A 逆时针旋转80︒得到AB C ''∆ '8050'30BAB BAC CAB ∴∠=︒∠=︒∴∠=︒,,. 【总结】考察图形的旋转运动,注意旋转过程中旋转角始终相等.【习题8】钟表的分针绕其轴心转动,分针经过15分钟后,转过的角度是______度,分针从 12出发,转过150°后,则它指的数字是_______. 【难度】★★ 【答案】90︒,5.【解析】表盘一圈360︒,共分成12个格,所以每一个30︒,15分钟转过3格,因此90︒;150︒是5格,从12走5格后是数字5.【总结】考察钟表的运动特征,主要是利用旋转的思想去解题.【习题9】如图,三个圆是同心圆,则图中阴影部分的面积为 . 【难度】★★【答案】14π.【解析】通过旋转可将阴影部分拼成14圆,21144S r ππ==. 【总结】考察学生观察力及圆的面积公式.【习题10】如图,四边形ABCD 是正方形,F 是BA 延长线上的点,ADF ∆旋转一定角度后 得到ABE ∆,如果4AF =,7AB =. (1)指出旋转中心和旋转角度;(2)求DE 的长度. 【难度】★★【答案】(1)旋转中心是点A ;旋转角为90︒;(2)3DE =. 【解析】由旋转可得ADF ≌ABE ,47AF AE AB AD ∴====,,743DE AD AE ∴=-=-=.【总结】考察图形旋转的性质的应用.PAC DA'B'【习题11】如图所示,ABC ∆是直角三角形,BC 是斜边,将ABP ∆绕点A 逆时针旋转后, 能与'ACP ∆重合,如果2AP =,那么'PP =______. 【难度】★★ 【答案】22.【解析】由旋转可得'PAP 是等腰直角三角形,2AP =,'22PP ∴=.【总结】考察图形旋转的性质的应用.【习题12】如图所示,在直角ABC ∆中,90C ∠=︒,4BC =,4AC =,现将ABC ∆沿CB 方向平移到A B C '''∆的位置.(1)若平移的距离为3,求ABC ∆与A B C '''∆重叠部分的面积;(2)若平移的距离为(04)a a ≤≤,求ABC ∆与A B C '''∆重叠部分的面积S 的取值范围. 【难度】★★★【答案】(1)12;(2)21482S a a =-+,(04)a ≤≤.【解析】S 阴()()22221111''4482222C B BC CC a a a ==-=-=-+.【总结】考察平移的特征及三角形的面积公式的运用.【习题13】如图,王虎使一长为4cm ,宽为3cm 的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)木板上点A 位置变化为12A A A →→,其中第二次翻滚被桌面上一小木 块挡住,使木板与桌面成30︒角,求点A 翻滚到2A 位置时共走过的路径长. 【难度】★★★【答案】72π.【解析】两次运动是分别以B 、C 为圆心,5cm 、3cm 为半径,圆心角为90°、60°的两段弧长,故走过的路径长为:9060575318018022l πππππ=⋅+⋅=+=.【总结】考察图形的运动,主要发现点的运动路程就所经过的弧长.AA 1A 2B'A'CBA 虚线图形为所求CBA【作业1】如图,作出ABC ∆绕旋转中心A ,逆时针旋转75︒,得到的图形. 【难度】★ 【答案】【解析】以A 为圆心,将线段AB 、AC 分别逆时针旋转75︒,即可得到旋转后图形. 【总结】考察学生的画图能力.【作业2】如图,图形旋转一定角度后能与自身重合,则旋转的角度可能是().A .30°B .60°C .90°D .120° 【难度】★ 【答案】C【解析】由旋转性质可得. 【总结】考察旋转性质的运用.【作业3】ABC ∆中,108ACB ∠=︒,将它绕着C 逆时针旋转30︒后得到''A B C ∆,则'ACB ∠的度数是多少? 【难度】★ 【答案】138︒.【解析】''10830138ACB ACB BCB ∠=∠+∠=︒+︒=︒. 【总结】考察旋转性质的运用.课后作业P'DCBAP 'PCB A【作业4】在下图的网格中按要求画出图象,并回答问题.(1)先画出ABC ∆向下平移5格后的111A B C ∆,再画出ABC ∆以O 点为旋转中心,沿顺时针方向旋转90︒后的222A B C ∆;(2)在与同学交流时,你打算如何描述⑴中所画的222A B C ∆的位置. 【难度】★★ 【答案】略【解析】根据图形旋转特征画出图形. 【总结】考查图形运动中的图形旋转的画法.【作业5】正方形ABCD 中的ABP ∆绕点B 顺时针旋转能与'CBP ∆重合,若4BP =,求点P 所走过的路径长. 【难度】★★ 【答案】2π.【解析】点P 所走过的路径是以B 为圆心,4BP =为半径的14圆的弧, 根据弧长公式9042180180n r l πππ⋅=== 【总结】在图形旋转的过程中,图形上任意一点经过的路程都是一段弧长.【作业6】如图,P 是正ABC ∆内的一点,若将PBC ∆绕点B 旋转到PBA'∆,则PBP '∠的度 数是( ) A .45︒ B .60︒ C .90︒ D .120︒【难度】★★ 【答案】B【解析】'60P BP ABC ∠=∠=︒.【总结】图形旋转的过程中,旋转角处处相等.A'C'B'C BA【作业7】如果一个旋转对称图形的最小旋转角为︒n,那么n满足怎样的条件时,这个图形一定是中心对称图形?【难度】★★【答案】n是180°的因数.【解析】图形旋转180︒后能与自身完全重合的图形是中心对称图形.【总结】考查中心对称图形与旋转对称图形的关系.【作业8】线段AB =4厘米,将线段AB绕着AB的中点O旋转180°,它所扫过的平面部分是_________形,面积等于________平方厘米.【难度】★★【答案】圆、4π.【解析】线段AB绕着AB的中点O旋转180°扫过的图形是以O为圆心,2厘米为半径的圆,再根据圆的面积公式求出圆的面积.【总结】考查对图形运动的特征的理解及运用.【作业9】如右图所示,Rt ABC∆沿AC边所在的直线向上平移2cm,若4cmBC=,求Rt ABC∆扫过的面积.【难度】★★★【答案】28cm.【解析】平移的距离是2cm,则'2AA cm=,又4cmBC =,则平行四边形''ABB A的高为4cm,S∴=底⨯高=()2248cm⨯=.【总结】平移所扫过的图形为平行四边形,根据面积公式可以算出面积28cm.【作业10】小明和小红玩一种游戏,他们要将甲图和乙图中的三角形通过水平或竖直平移的方法得到图丙,平移的过程中,每次水平或竖直平移一格,先拼完的为胜,小明选择了图甲,小红选择了图乙,那么谁先获胜?【难度】★★★【答案】小明.【解析】小明需要4312<,所以小明获胜.⨯=步,1216⨯=步,小红需要4416【总结】本题主要考查图形平移的特征.。
§9.1 图形的旋转【知识点总结】1、生活中的旋转例1:下列现象中:①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋千运动.属于旋转的有()A。
2个 B.3个C。
4个 D.5个2、旋转的概念将图形绕一个顶点转动一定的角度,这样的图形运动称为图形的旋转,这个定点称为旋转中心,旋转的角度称为旋转角。
图形的旋转不改变图形的形状、大小,只改变图形上点的位置. 例2:如图所示,ΔABC绕顶点C顺时针方向旋转某一角度后,得到ΔA′B′C′.请回答下列问题:(1)旋转中心是哪一点?(2)旋转角是哪个角?(3)经过旋转,点A、B分别移动到什么位置?(4)找出图形中所有相等的角和线段。
例2图3、旋转的性质一个图形和它经过旋转所得到的图形中,对应点到旋转中心距离相等,两组对应点分别与旋转中心连线所成的角相等.例3:四边形ABCD是正方形,E、F分别是DC和CB延长线上的点,且DE=BF,连接AE、AF、EF (1)求证:△ADE≌△ABF;(2)填空:△ABF可以由△ADE绕旋转中心点,按顺时针方向旋转度得到;(3)若BC=8,DE=6,求△AEF的面积.4、画旋转后的图形利用图形的旋转的性质,可以画出一个图形绕某点按照一定的方向旋转一定角度后的图形。
基本画法:将图形上的一些特殊点与旋转中心连接,以旋转中心为圆心,连线段长为半径画图,按照旋转的角度来找出对应点,再画出所有的对应线段。
例4:如图,O为ΔABC外的一点,求作:ΔABC绕点O按顺时针方向旋转60°后所得的ΔA′B′C′。
题型一确定图形的旋转角度例1:如图所示,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A。
30°B。
45°C。
90°D。
135°题型二确定图形的旋转中心.O例2:如图,O为正方形ABCD的边CD的中点,如果正方形CDEF旋转后能与正方形ABCD重合,那么图形所在的平面上可以作为旋转中心的点共个。
11.2 图形的旋转上海市风华初级中学姚程琳一、教学目标:1.学法指导通过本节课的学习感悟几何学习方法——说、画、推说:用规范的几何语言描述图形的旋转;画:画图形经过旋转后的图形推(介绍):逻辑推理2.知识与技能掌握图形的旋转的概念理解旋转中心、旋转角、对应点、对应线段、对应角的含义通过实验操作,归纳图形旋转的性质会画已知图形绕已知点经过旋转后的图形;用规范的几何语言描述画图步骤3.过程与方法观察归纳:观察图形旋转运动,体会具体到抽象的思维过程,归纳出图形旋转的规范表述实验操作:用数学工具画图形旋转后的图形,从操作中认知感悟画图步骤小组合作:用形状相同大小相等的三角形拼出风车,培养团队合作能力;体会数学的美二、教学重点:以图形旋转的各知识点为载体,让学生对几何学习方法——说、画、推中的前两种方法“说、画”有深刻的理解,对“推”有一定的认识。
三、教学难点:1.找旋转角2.用规范的几何语言正确表述图形旋转及画图步骤四、教具、学具:教具:多媒体课件、自制三角形、量角器、圆规、三角尺学具:学生练习卷、三角形纸片、量角器、圆规、三角尺五、教学过程:一、引入1. 采用设问方式提出几何学习方法——说、画、推。
激发学生兴趣带着问题进行新课学习2. 情境引入:澳大利亚馆中旋转电影视频,引出课题二、新课(一)说:用规范的几何语言描述图形的旋转1. 通过一组来自生活的图形旋转的实例,引导观察图形旋转的共同特点2. 用规范几何语言描述图形旋转,掌握对应边、对应角、对应点的含义,并使用实物三角形旋转巩固练习3. 通过学生观察三幅图形旋转运动的异同点,引导学生得到图形绕任意点旋转都能与原图形重合的结论4. 巩固练习:掌握找旋转角的两种方法,并熟练运用。
(二)操作并归纳图形旋转的性质通过学生操作:旋转三角形纸片,引导学生探索归纳图形旋转的性质。
体悟由具体到抽象,由感性到理性的思维过程(三)画出图形旋转后的图形;规范的几何描述图形旋转的画图步骤1.情境引入: 小明与同学去欢乐谷玩,夜晚登上了观光摩天轮,15分钟后,小明所坐的车厢已经绕支点顺时针方向旋转了135°,小明现在在哪?板演画图过程:遵循学生认知过程由浅入深:点——线段——三角形的画图方法,并总结画图形旋转后图形的画图步骤2.规范的几何描述图形旋转的画图步骤:教师讲解点的画法,并挖字填空;学生回答三角形旋转后的图形的画法(四)拓展尝试,体悟逻辑推理操作:请分别以三角形的另外两个顶点为旋转中心,模仿我的操作方式,你可以拼出几叶的风车呢21图一图二图三图四通过小组讨论,作品展示,展现数学的美,并求出∠1和∠2的度数。