用待定系数法求二次函数的解析式(公开课)
- 格式:ppt
- 大小:453.50 KB
- 文档页数:18
《用待定系数法求二次函数解析式》说课稿一、教材分析1、教材的地位和作用:求函数解析式是初中数学主要内容之一,求二次函数的解析式也是联系高中数学的重要纽带。
在新课标里求函数解析式也是中考的必考内容,而在初中阶段主要学习了一次函数(正比例函数)、反比例函数、二次函数。
2、学习目标(1)通过对用待定系数法求二次函数解析式的探究,掌握求解析式的方法;(2)能灵活的根据条件恰当地选取选择解析式,体会二次函数解析式之间的转化。
3、教学的重点:通过教学,让学生掌握用待定系数法求函数解析式:(1)一般式法(2)顶点式(3)交点式4、教学难点:点的坐标到式子的转化(容易代错)二、学情分析我在授课时注重引导、启发、研究和探讨以符合学生的心理发展特点,从而促进知识的掌握和思维能力的进一步发展。
三、教法分析针对学生思维特点和心理特征,本节课我采用启发式、合作探究以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下共同探索用待定系数法求二次函数解析式。
四、学法指导在引导分析时,留出学生的思考空间,让学生自己去探索把思路方法和需要解决的问题弄清。
五、教学程序本节课的教学过程由:创设问题,引入新课、自主探索,例题精析、总结反思突破重点、课后作业,这四个教学环节构成。
六、评价分析:本节课的设计,我以学生活动为主线,通过“观察、分析、探索、交流”等过程,让学生在复习中温故而知新,在应用中获得新知。
本节教学过程主要由创设问题情境,引入新课;知识应用;回顾练习;归纳小结;课后作业等五个教学环节构成。
体现了让学生成为行为主体即“动手实践、自主探索、合作交流”的《数学新课标》要求。
用待定系数法求二次函数的解析式教案用待定系数法求二次函数的解析式教案(1)年级九年级课题 26.1 用待定系数法求二次函数的解析式教学媒体多媒体教学目标知识技能会用待定系数法求二次函数解析式.过程方法根据条件恰当设二次函数解析式形式,体会二次函数解析式之间的转换.情感态度体会学习数学知识的价值,提高学生学习的兴趣.教学重点运用待定系数法求二次函数解析式.教学难点根据条件恰当设二次函数解析式形式.教学过程设计教学程序及教学内容一、情境引入已知一次函数图像上的两点的坐标,可以利用待定系数法求出它的解析式,要求二次函数的解析式,需要知道抛物线上几个点的坐标?应该怎样求出二次函数解析式?引出课题:用待定系数法求二次函数的解析式.二、探究新知1.二次函数中有几个待定系数?需要几个抛物线上的点的坐标才能求出来?抛物线经过点(-1,10),(1,4),(2, 7),求出这个二次函数的解析式。
得到:已知抛物线上的三点坐标,可以设函数解析式为,代入后得到一个三元一次方程,解之即可得到的值,从而求出函数解析式,这种解析式叫一般式.2.二次函数中有几个待定系数?需要知道图像上几个点的坐标才能求出来?抛物线的顶点坐标为(1, 2),点(1,-1)也在图像上,能求出它的函数解析式吗?得到:知道抛物线的顶点坐标,可以设函数解析式是先代入顶点坐标(1, 2)得到,再代入点(1,-1)即可得到的值,从而求出函数解析式,这种解析式叫顶点式.用待定系数法求二次函数的解析式教案(2)《用待定系数法求二次函数解析式》教学案例《用待定系数法求二次函数解析式》,“待定系数法”是数学思想方法中的一种重要的方法,在实际生活和生产实践中有着广泛的应用.学生对于“待定系数法”的学习渗透在不同的学习阶段,在初中七、八年级学生学习了正比例函数、反比例函数、一次函数时已经初步学会了用待定系数法求函数解析式;.因此这节课的学习既是前面知识的延续和深化,又为后面的学习奠定基础,起着承前启后的作用.另外,待定系数法作为解决数学实际问题的基本方法和重要手段,在其他学科中也有着广泛的应用.一.教学目标:1、理解二次函数的三种不同形式,并选择恰当的形式用待定系数法确定其解析式。
22.1.4 第2课时用待定系数法求二次函数的解析式说课稿我说课的内容为湘教版数学九年级下册不共线三点确定求二次函数解析式。
一、教材分析1、教材的地位和作用:二次函数是初中数学重要内容之一,而用待定系数法求函数解析式在前面的一次函数,反比例函数中已经多次得以运用,确定一次函数有两个独立系数,要两个独立条件,这些知识方法同学们已熟悉,本节把这些所学推向初中学段的最高点—二次函数解析式的确定。
由于前几节已经对二次函数的两种表达式进行了多方面的认识,是学习本节最直接的认知基础,通过本节的学习,进一步深化对二次函数的认识。
2、教学目标①通过对用待定系数法求二次函数解析式的探究,掌握求解析式的方法②能灵活的根据条件恰当的选择解析式,体会二次函数解析式之间的转化。
③从学习中体会数学知识的价值,从而提高学习数学知识的兴趣。
3、教学重点:用待定系数法求函数解析式。
教学难点为:根据不同的条件灵活的选择恰当的解析式从而用待定系数法求函数解析式。
二、学情分析对于九年级学生,数学基础比较薄弱,抽象思维能力和演绎推理能力依然比较缺乏,所以我在授课时注重引导、启发、激励和探讨,从而促进知识的掌握和思维能力的进一步发展。
三、教法分析针对我班学生的特点,本节课我采用创设问题情境,由学生观察,发现,老师启发引导,探索相结合以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下共同探索用待定系数法求二次函数解析式。
三、学法指导在引导分析时,留出学生的思考空间,让学生去探索,同时鼓励学生大胆质疑,把思路方法和需要解决的问题弄清。
四、教学程序(一)创设问题情境,引入新课:1、用待定系数法求函数解析式的一般步骤:①设函数的解析式; ②列方程组求待定系数;③解待定系数④还原学生活动:学生总结用待定系数法求函数解析式的一般步骤。
2、二次函数解析式有三种表达形式:①一般式:y=ax2+bx+c ;(其中 a≠0, a, b, c 为常数)②顶点式:y=a(x-h)2+k ;(其中a≠0, a, h, k 为常数,(h,k)为顶点坐标。
§6.2.5 待定系数法求二次函数的解析式主备:王灿龙 审核:蒋凤一、学习目标:1、通过对用待定系数法求二次函数解析式的探究,掌握求解析式的方法。
2、能灵活的根据条件恰当地选取选择解析式,体会二次函数解析式之间的转化。
二、知识导学:1.(复习)二次函数的关系式有如下三种形式: (1)一般式:)0(2≠++=a c bx ax y(2)顶点式:)0()(2≠+-=a k h x a y(3)两根式:)0)()((21≠--=a x x x x a y2.说明:用待定系数法求二次函数的函数关系式,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则.三、合作交流 例题精析1、一般地,形如y =ax 2+bx +c (a,b,c 是常数,a ≠0)的函数,叫做二次函数,所以,我们把________________________叫做二次函数的一般式。
例1(1)抛物线c bx x y ++=2过点A (1,3),B(2,2),求此抛物线的解析式.(2)已知二次函数的图象过(1,0),(-1,-4)和(0,-3)三点,求这个二次函数解析式。
2、二次函数y =ax 2+bx +c 用配方法可化成:y =a(x -h)2+k ,顶点是(h ,k)。
配方: y =ax 2+bx +c =__________________=___________________=__________________ =a(x +b 2a )2+4ac -b 24a 。
对称轴是x =-b 2a ,顶点坐标是(-b 2a ,4ac -b24a ), h =-b2a ,k=4ac -b 24a , 所以,我们把_______________________叫做二次函数的顶点式。
例2 (1)已知抛物线的顶点为(1,-3),且与y 轴交于点(0,1);(2)已知二次函数的图象经过原点,且当x =1时,y 有最小值-1, 求这个二次函数的解析式。
(修改)教案——22.1.4.2用待定系数法求二次函数解析式【教学目标】1.会用待定系数法求二次函数的解析式.2.体验由已知条件特点,灵活选择二次函数三种形式的过程,正确求出二次函数的解析式.3.理解二次函数三种形式的本质.【教学重难点】用待定系数法求二次函数的解析式.【教学过程】一.旧知回顾1.回忆所学函数的解析式?一次函数的解析式为__________________;反比例函数的解析式为__________________;二次函数的解析式为______________________________________________________;2.回忆求一次函数和反比例函数的解析式的方法是什么?此法的一般步骤是什么?二.合作探究问题1:二次函数图象上三个点(-2,1)(-1,0)(0,-3),会求这个函数的解析式?变式:一个二次函数,当自变量x=-2时,函数值y=1,当自变量x=-1时,函数值y=0,当自变量x=0时,函数值y=-3,会求这个函数的解析式?归纳:已知三点或三组对应值,求二次函数解析式的方法叫做一般式法.问题2:二次函数图象过点(1,-8)和顶点(-2,1),会求这个二次函数的解析式?变式1:抛物线过点(1,-8),且当x=-2时,y有最值为1,试求出这个二次函数的解析式.变式2:抛物线过点(1,-8),(0,-3),且其对称轴是直线x=-2,试求出这个二次函数的解析式.变式3:抛物线过点(-1,0),(-3,0),(1,-8),试求出这个二次函数的解析式.归纳:已知顶点坐标或最值或对称轴,求解析式的方法叫做顶点式法.已知抛物线与x轴的交点坐标,求解析式的方法叫做交点式法.要点诠释:在设函数解析式时,一定要根据题中所给条件选择合适形式:①当已知抛物线上的三点坐标时,可设函数的一般式②当已知抛物线的顶点坐标或对称轴或最值时,可设函数的顶点式已知抛物线与x轴的交点坐标,求解析式的方法叫做交点式法.三.课堂练习1.已知二次函数的图像过点(0, 0),(1,-3),(2,-7)三点,求该二次函数解析式.2.若二次函数的图像有最高点为(1,-6),且经过点(2,-8),求此二次函数的解析式.3.若二次函数的图像与x轴的交点坐标为(1,0)、(2,0)且过点(3,4),求此二次函数的解析式.4.如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C 两点的坐标;(3)求过O,B,C三点的圆的面积.四.课堂小结1.二次函数解析式常见两种表示形式 :(1)一般式:2y ax bx c =++(a 、b 、c 为常数,a ≠0);(2)顶点式:2()y a x h k =-+(a 、h 、k 为常数,a ≠0);(3)交点式:)0,)()((2121≠--=a x x x x x x a y 是交点横坐标,2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下一设:先设出二次函数的解析式,如2y ax bx c =++或2()y a x h k =-+,))((21x x x x a y --=;二代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组);三解:解此方程或方程组,求待定系数;四还:将求出的待定系数还原到解析式中.3.要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式: ① 当已知抛物线上的三点坐标时,可设函数的解析式为2y ax bx c =++;② 当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为2()y a x h k =-+;③ 已知抛物线与x 轴的交点坐标,可设函数的解析式为))((21x x x x a y --=五.教学反思(1)体会解题过程中的数形结合思想与转化思想.(2)活用待定系数法求二次函数的解析式.。
人教版数学九年级上册26.1.5《用待定系数法求二次函数的解析式》说课稿一. 教材分析《人教版数学九年级上册》第26.1.5节《用待定系数法求二次函数的解析式》是本册教材的重要内容之一。
这部分内容是在学生已经掌握了二次函数的一般形式和图象的基础上进行讲解的,旨在让学生通过待定系数法求解二次函数的解析式,从而更好地理解和掌握二次函数的知识。
本节教材主要分为两个部分,第一部分是待定系数法的引入和解释,第二部分是待定系数法在求解二次函数解析式中的应用。
在第一部分中,教材通过例题和练习题让学生理解待定系数法的概念和原理;在第二部分中,教材通过例题和练习题让学生掌握待定系数法在求解二次函数解析式中的应用。
二. 学情分析在九年级的学生中,大部分学生已经掌握了二次函数的一般形式和图象,但是对于待定系数法的理解和应用还有待提高。
因此,在教学过程中,我需要注重引导学生理解和掌握待定系数法的概念和原理,并通过例题和练习题让学生熟悉和掌握待定系数法在求解二次函数解析式中的应用。
三. 说教学目标本节课的教学目标是让学生理解和掌握待定系数法的概念和原理,能够运用待定系数法求解二次函数的解析式,并能够通过练习题进行巩固和提高。
四. 说教学重难点本节课的教学重难点是待定系数法的理解和应用。
在教学过程中,我需要注重引导学生理解和掌握待定系数法的概念和原理,并通过例题和练习题让学生熟悉和掌握待定系数法在求解二次函数解析式中的应用。
五. 说教学方法与手段在教学过程中,我将采用讲授法和练习法相结合的教学方法。
首先,我会通过讲解和示例让学生理解和掌握待定系数法的概念和原理;然后,我会通过布置练习题让学生熟悉和掌握待定系数法在求解二次函数解析式中的应用。
此外,我还会利用多媒体教学手段,如PPT和动画等,来帮助学生更好地理解和掌握知识。
六. 说教学过程1.引入:通过复习二次函数的一般形式和图象,引导学生思考如何求解二次函数的解析式。
2.讲解:讲解待定系数法的概念和原理,并通过示例让学生理解待定系数法在求解二次函数解析式中的应用。
人教版九年级数学上册22.1.6《用待定系数法求二次函数的解析式》说课稿一. 教材分析人教版九年级数学上册第22.1.6节《用待定系数法求二次函数的解析式》是二次函数内容的一部分。
这部分内容是在学生已经掌握了二次函数的一般形式,了解了二次函数的图象和性质的基础上进行学习的。
本节课的主要内容是用待定系数法求二次函数的解析式,待定系数法是解决这类问题的基本方法,对于学生来说是一个重要的数学方法。
本节课的内容对于学生来说难度较大,需要学生具有较强的逻辑思维能力和转化能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于二次函数的一般形式和图象性质有一定的了解。
但是,学生在解决实际问题时,往往不知道如何运用已学的知识,对于待定系数法的运用还不够熟练。
此外,学生的逻辑思维能力和转化能力还有待提高。
三. 说教学目标1.知识与技能目标:让学生掌握用待定系数法求二次函数的解析式的方法,能够运用该方法解决实际问题。
2.过程与方法目标:通过自主学习、合作交流的方式,培养学生解决问题的能力和合作意识。
3.情感态度与价值观目标:让学生感受数学在生活中的应用,提高学生学习数学的兴趣。
四. 说教学重难点1.教学重点:用待定系数法求二次函数的解析式。
2.教学难点:如何引导学生理解和运用待定系数法,以及如何将实际问题转化为数学问题。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师引导的教学方法。
2.教学手段:利用多媒体课件、黑板、粉笔等教学工具。
六. 说教学过程1.导入新课:通过一个实际问题,引入待定系数法求二次函数的解析式。
2.自主学习:让学生自主探究待定系数法的步骤和原理。
3.合作交流:学生分组讨论,分享各自的解题思路和方法。
4.教师引导:教师针对学生的讨论进行点评和指导,帮助学生解决问题。
5.巩固练习:给学生提供一些练习题,让学生运用待定系数法解决问题。
6.总结归纳:教师引导学生总结待定系数法的运用方法和注意事项。