溶浸-采矿
- 格式:doc
- 大小:35.00 KB
- 文档页数:8
一种煤下铝土矿原位高效溶浸置换开采的方法全文共四篇示例,供读者参考第一篇示例:煤下铝土矿是一种重要的铝资源,但传统的采矿方法存在着破坏环境、浪费资源等问题。
研究人员提出了一种原位高效溶浸置换开采方法,旨在提高矿石的开采效率,降低环境污染,保护资源。
这种方法的核心是利用化学溶解的原理,将矿石中的有用金属溶解出来,然后进行置换反应,生成相对更容易提取金属的物质。
具体步骤为:首先将矿石进行碾磨,使矿石颗粒大小均匀;然后将矿石放入溶剂中,经过一段时间的反应,金属会被溶解出来;接着,加入一种置换剂,与溶解出来的金属进行反应,生成相对稳定的金属产物;通过过滤等方法将金属产物提取出来。
这种方法相比传统的采矿方法具有以下优势:可以高效地溶解金属,使得金属的提取率大幅提高。
由于置换反应相对较快,而且产物比较稳定,因此可以大大缩短提取金属的时间。
这种方法不会产生大量的废矿渣,从而减少对环境的污染。
传统的采矿方法常常伴随着大量的废弃物的产生,给周围的生态环境带来巨大的负担。
而原位高效溶浸置换开采方法则可以有效避免这一问题。
这种方法可以有效保护资源。
煤下铝土矿是一种宝贵的资源,传统的采矿方法往往会造成资源的浪费。
而原位高效溶浸置换开采方法可以更加充分地利用矿石中的金属,避免资源的浪费。
一种煤下铝土矿原位高效溶浸置换开采的方法不仅可以提高开采效率,降低环境污染,还能有效保护资源。
相信随着这种方法的不断完善和推广,将会为煤下铝土矿的开采带来革命性的改变。
第二篇示例:在过去的几十年里,人们对于煤下铝土矿资源的开采一直困扰着矿业工作者。
传统的开采方法存在着环境污染严重、效率低下等问题,因此迫切需要一种新的、高效的开采方法来解决这些问题。
近年来,随着科技的发展和矿产资源的日益紧缺,原位高效溶浸置换开采技术逐渐受到人们的关注。
原位高效溶浸置换开采技术是指将溶解剂直接注入矿石层,使矿石中的有用金属溶解在溶解剂中,然后通过置换反应将有用金属从溶液中沉淀出来,实现矿石的高效开采。
溶浸采铀(矿)技术教案第四章浸出液中金属的提取在溶浸采矿中,经过浸出,矿石中的有用组分进入浸出液中,有用组分的含量均较低。
通常,铀的含量为每升十到几百毫克,高的也不过几克;铜的含量为每升几克到十几克,高的也只有几十克,而杂质的含量却较高,如游离的硫酸及铁、磷、、铝、锰、钒、钙、镁、硅、钼等。
此外,还有泥质,羟类有机质等。
浸出液中有用组分的提取,其实质是创造条件使溶液中各种离子不稳定,通过一定的工艺手段,使有用组分和混在一起的有害杂质分开,并予以清除。
这些手段包括加人某种试剂,铁、锌等置换,离子交换树脂吸附,活性炭吸附,溶剂萃取或者对电极施加电压通以电流等。
这些手段随浸出液的性质不同而分别采用,现分述之。
1 铀的提取从铀的浸出液中提取铀的方法有化学沉淀法、离子交换法和有机溶剂萃取法。
化学沉淀法存在生产工序多,工艺复杂,生产效率低,化学试剂和材料消耗量大,回收率低及化学浓缩物中铀含量不高(一般20%~40%)等缺点,目前除处理碱浸液尚有应用外,工业生产中已被离子交换法和有机溶剂萃取法所代替,这两种方法技术是经济而有效的,并成为标准工艺。
离子交换法,又称树脂吸附法。
它是浸出液中某种离子与固体离子交换剂(树脂)的可交换离子之间的化学置换过程。
它的优点是:①选择性好。
能获得纯度较高的铀化学浓缩物;②既能从清液中提取铀,也可从矿浆中提取铀,这很适用于溶浸采铀法的吸附;③离子交换树脂能反复使用;④化学试剂和材料消耗量少;⑤吸附尾液可返回使用。
有机溶剂萃取法,简称萃取法。
它是用一种与水不相混溶的有机溶剂与含铀的浸出液相互接触,将浸出液中的铀提取到有机溶剂中,与浸出液中的杂质分开,以达到提取和纯化铀的目的。
萃取法与离子交换法一样,对铀的选择性能好,同时对铀的萃取速度,容量和纯度(一定条件下)方面超过树脂吸附法,但只适用于清液、富液和杂质含量低的浸出液。
两种提取方法的选择原则是:一是浸出液中铀浓度的高低;二是浸出液的性质,即是清液还是矿浆。
溶浸采矿方法1 定义溶浸采矿是根据某些矿物的物理化学特性,将工作剂注入矿层(堆),通过化学浸出、质量传递、热力和水动力等作用,将地下矿床或地表矿石中某些有用矿物,从固态转化为液态或气态,然后回收,以达到以低成本开采矿床的目的。
2 种类溶浸采矿方法包括地表堆浸法、原地浸出法和细菌化学采矿法等。
溶浸采矿彻底改革了传统的采矿工艺,特别是地下溶浸采矿,少需或无需传统的采矿工程(如开拓、剥离、采掘、搬运等),使复杂的选冶工艺更趋简单。
溶浸采矿可处理的金属矿物有:铜、铀、金、银、离子型稀土、锰、铂、铅、锌、镍、铬、钴、铁、汞、砷、铱等20多种。
但应用得多的是铜、铀、金、银、离子型稀土。
2.1 地表堆浸法堆浸法是指将溶浸液喷淋在矿石或边界品位以下的含矿岩石(废石)堆上,在其渗滤过程中,有选择的溶解和浸出矿石或废石堆中的有用成分,使之转入产品溶液(称浸出富液)中,以便进一步提取或回收的一种方法。
按浸出地点和方式的不同,堆浸可分为露天堆浸和地下堆浸两类,前者用于处理已采至地面的低品位矿石、废石和其它废料;后者用于处理地下残留矿石或矿体,如果这些矿体或矿柱未采动,为提高堆浸效果,需预先进行松动爆破。
1)适用范围堆浸法的适用范围是:(1)处于工业品位或边界品位以下,但其所含金属量仍有回收价值的贫矿与废石。
根据国内外堆浸经验,含铜0.12%以上的贫铜矿石(或废石)、含金0.7g·t以上的贫金矿石(或废石)、含铀0.05%以上的贫铀矿石(或废石),可以采用堆浸法处理。
(2)边界品位以上但氧化程度较深的难处理矿石。
(3)化学成分复杂,并含有有害伴生矿物的低品位金属矿和非金属矿。
(4)被遗弃在地下,暂时无法开采的采空区矿柱、充填区或崩落区的残矿、露天矿坑底或边坡下的分枝矿段及其它孤立的小矿体。
(5)金属含量仍有利用价值的选厂尾矿、冶炼加工过程中的残渣与其它废料。
2)地表堆浸地表堆浸法是将溶浸液喷淋在破碎而又有孔隙的废石(围岩废石与低品位矿石的混合物)或矿石堆上,溶浸液在往下渗滤的过程中,有选择性溶解和浸出其中的有用成份,然后从浸出堆底部流出并汇集起来的浸出液中提取并回收金属的方法。
溶浸采矿1.定义溶浸采矿是根据某些矿物的物理化学特性,将工作剂注入矿层(堆),通过化学浸出、质量传递、热力和水动力等作用,将地下矿床或地表矿石中某些有用矿物,从固态转化为液态或气态,然后回收,以达到以低成本开采矿床的目的。
2.种类溶浸采矿方法包括地表堆浸法、原地浸出法和细菌化学采矿法等。
溶浸采矿彻底改革了传统的采矿工艺,特别是地下溶浸采矿,少需或无需传统的采矿工程(如开拓、剥离、采掘、搬运等),使复杂的选冶工艺更趋简单。
溶浸采矿可处理的金属矿物有:铜、铀、金、银、离子型稀土、锰、铂、铅、锌、镍、铬、钴、铁、汞、砷、铱等20多种。
但应用得多的是铜、铀、金、银、离子型稀土。
地表堆浸法堆浸法是指将溶浸液喷淋在矿石或边界品位以下的含矿岩石(废石)堆上,在其渗滤过程中,有选择的溶解和浸出矿石或废石堆中的有用成分,使之转入产品溶液(称浸出富液)中,以便进一步提取或回收的一种方法。
按浸出地点和方式的不同,堆浸可分为露天堆浸和地下堆浸两类,前者用于处理已采至地面的低品位矿石、废石和其它废料;后者用于处理地下残留矿石或矿体,如果这些矿体或矿柱未采动,为提高堆浸效果,需预先进行松动爆破。
1)适用范围堆浸法的适用范围是:(1)处于工业品位或边界品位以下,但其所含金属量仍有回收价值的贫矿与废石。
根据国内外堆浸经验,含铜0.12%以上的贫铜矿石(或废石)、含金0.7g·t以上的贫金矿石(或废石)、含铀0.05%以上的贫铀矿石(或废石),可以采用堆浸法处理。
(2)边界品位以上但氧化程度较深的难处理矿石。
(3)化学成分复杂,并含有有害伴生矿物的低品位金属矿和非金属矿。
(4)被遗弃在地下,暂时无法开采的采空区矿柱、充填区或崩落区的残矿、露天矿坑底或边坡下的分枝矿段及其它孤立的小矿体。
(5)金属含量仍有利用价值的选厂尾矿、冶炼加工过程中的残渣与其它废料。
2)地表堆浸地表堆浸法是将溶浸液喷淋在破碎而又有孔隙的废石(围岩废石与低品位矿石的混合物)或矿石堆上,溶浸液在往下渗滤的过程中,有选择性溶解和浸出其中的有用成份,然后从浸出堆底部流出并汇集起来的浸出液中提取并回收金属的方法。
溶浸采矿技术现状与发展趋势姓名:汪惊奇学号:115514006 专业:采矿工程摘要:阐述了我国金属矿产资源的三大特点:品位低、复杂难处理、中小型矿多,认为溶浸采矿技术能有效处理二次资源,提高资源综合利用率,缓解我国矿产资源紧缺的局面。
主要介绍了废石堆浸、矿石堆浸、地下浸出三类溶浸采矿技术特点,并综述了溶浸技术在国内外铜、金、铀等矿山的应用情况,总结了强化溶浸过程的主要技术措施:浸矿微生物选育、强制通风、物理手段、表面活性剂、金属离子催化等,分析了目前溶浸采矿面临的四大技术问题:矿堆渗透性差、堆内溶液分布不均、堆内氧气浓度低、温度分布不均,并指出了溶浸技术在我国应用趋势及理论研究展望。
关键词:溶浸采矿;应用现状;强化技术;技术问题;发展趋势我国矿产资源总量丰富,矿种较为齐全,但人均占有矿产资源量相对不足,铜、铁、铝等主要金属资源探明储量严重不足或短缺,我国矿产资源的显著特点是:(1)品位低。
我国铁矿平均品位为33.5%,比世界平均品位低10%以上,澳大利亚、巴西等国一般在65%以上;锰矿平均品位22%,世界平均品位为48%;在全国已探明的铜资源中,平均地质品位只有0.87%,远低于智利等主要产铜国,其中品位大于2%的铜矿仅占总储量的6.4%,品位大于1%的铜矿占总储量的35.9%。
(2)复杂难处理。
我国80%的有色矿床中都有共伴生元素,尤以铝、铜、铅、锌矿产为多。
铜矿床中综合型共伴生矿占了72.8%,我国西部地区赋存丰富的复杂难选铜矿和含砷铜矿,铜金属量在几百万吨以上;金矿总储量中伴生金占28%;银总储量中伴生矿占60%;共伴生的汞、锑、钼则分别占到各自总储量的20%~33%,共生伴生矿因矿石组份复杂,造成选冶难度增加,加大建设投资和生产经营成本。
(3)中小型矿居多。
超大型矿床少,中小型矿床多,利用成本高。
迄今发现的铜矿900个矿产地,大型矿床占2.7%,中型矿床占8.9%,小型矿床多达到88.4%。
当代化工研究Modern Chemical Research6行业动态2020・20溶浸采矿技术的应用及其发展*张富强(山西地宝能源有限公司山西030045)摘耍:本文主要分析了溶浸采矿技术餉应用情况和发展概况,重点介绍了不同餉溶浸采矿技术餉应用情况和发展现状等内容,其可以有效提升矿产资源的回收利用效率,提高资源利用程度,减少资源浪费,并提高资源开采率.通过分析溶浸釆矿技术的应用及其发展情况,不断推进采矿技术丝进步和创新,进而提高资源开采率和开采质量.关键词:溶浸采矿技术;应用;发展中图分类号:T文献标识码:AApplication and Development of Leaching Mining TechnologyZhang Fuqiang(Shanxi Dibao Energy Co.,Ltd.,Shanxi,030045)Abstracts This paper mainly analyzes the application and development of leaching mining technology,focusing on the application and development status of different leaching mining technologies,which can effectively improve the recycling^iciency of mineral resources,improve the utilization of resources,reduce resource waste and improve resource recovery rate.By analyzing the application and development of leaching mining technology,the p rogress and innovation of m ining technology are continuously p romoted,and then the mining rate and quality of r esources are improved.Key words:leaching mining technology^application;development随着科技的发展,溶浸采矿技术也在实际应用过程中进行了改进,其技术手段和应用形式也在持续发生着变化,并逐步呈现出应用范围广、浸出效果好、回收利用率高的优点,改变了传统溶浸采矿技术存在的不足,溶浸效果也得到加强。
一、名词解释1、溶浸液——由溶浸剂+氧化剂+水(或尾液)按一定比例配制而成的溶液,用于注入矿层,溶解矿物的液体。
2、溶浸剂——用于溶解矿物的化学试剂。
3、氧化剂——氧化还原反应里得到电子或有电子对偏向的物质。
4、浸出液——溶浸液与矿物充分接触、反应后,将矿物由固相转变为液相进入溶液。
5、孔隙度——孔隙体积占原矿岩体积的百分比。
6、自然安息角——矿石在崩落过程中形成自然矿堆,自然坡面与水平面的夹角称为自然安息角。
7、松散矿岩的块度——组成松散体的固体矿石块的尺寸、形状和它各级矿石块所组成的百分比称为松散介质的块度。
8、扩散——具有浓度梯度的溶液中,发生物质由高浓度向低浓度转移,并达到逐步均匀的现象叫扩散。
9、比表面积——体系内矿岩块表面积之和与体系外表面积之比值。
10、溶浸角——用溶浸液向矿堆淋浸过程中,溶浸液所能湿润和到达矿石堆范围的边界线,该线与水平面的夹角称溶浸角。
11、液固比——矿浆中水溶液质量与固体物料质量的比值。
12、渣计浸出率如果浸出前后原矿样和渣重量变化不大时,式中:P——渣计浸出率(%);tC——原矿铀品位(%);1C——浸出渣铀品位(%)。
2如果浸出前后的重量变化较大时,式中:Q——原矿样干重量();1——浸渣干重量()。
Q213、液计浸出率式中:——液计浸出率(%);n——浸出级数;——第n级浸出合格液铀浓度(g/L);——第n级浸出合格液的体积(L);——原矿石铀品位(%);——原矿石干重量()。
14、堆置浸矿——对不在原地的矿石或废石堆直接布液进行浸出,并通过一定方式将合格浸出液提取成产品(对铀提取铀化学浓缩物),这就是堆置浸出。
15、制粒堆浸——往粉矿中加入适宜的粘结剂,使其形成较大颗粒,然后喷淋溶浸液进行浸出。
16、就地破碎浸矿——利用露天或井下碎胀补偿空间,通过爆破或地压手段将矿石就地进行破碎,然后进行淋浸,并通过集液系统将浸出液送往提取车间,制成合格产品。
17、原地浸出——矿石处于天然埋藏条件,没有经过任何位移,而是通过注液钻孔将配制好的溶浸液注入含矿层中,溶浸液与铀矿物充分接触,发生氧化、溶解作用,从而将固相铀转变为液相铀汇入含矿含水层液体中,经抽液钻孔抽至地表,进水冶厂处理成所需铀产品。
溶浸采矿区地下水化学特征及水资源保护——以福建上杭洋坡坑为例包国良;周鹏鹏【摘要】溶浸采矿工艺是直接向花岗岩风化层中注入酸、碱等化学试剂,然后从浸出点抽取浸出液以获得所需元素.这一工艺显著的环境影响是化学试剂将会直接污染到花岗岩风化层中地下水资源.且在南方部分地区,花岗岩风化层往往会富集具有供水意义的地下水资源.在这种矿区地下水资源的保护显得尤为重要;研究分析矿区花岗岩风化层的地下水资源的水化学特征,结果表明,矿区地下水类型以HCO3-Na和HCO3-Na·Ca为主,且与该地区的地质背景情况有很好的对应关系,其成因是岩石风化与大气降水共同作用的结果,是大气降水渗入岩层并经过溶滤作用、阳离子交换吸附作用等复杂水文地球化学过程,最终形成现今的地下水类型.阐明矿区地下水水化学特征及其成因机制的基础上,对溶浸采矿区的地下水资源保护提出合理化建议.【期刊名称】《地下水》【年(卷),期】2012(034)005【总页数】4页(P40-42,60)【关键词】溶浸采矿;风化层;地下水化学;地下水资源保护【作者】包国良;周鹏鹏【作者单位】福建省地质调查研究院,福建福州350013;中国科学院地质与地球物理研究所,北京100029【正文语种】中文【中图分类】P641.12花岗岩在我国分布广泛,据统计在南方八省占地表面积的18.5%。
花岗岩约占所有侵入岩面积的80%,分布范围广[1],许多矿床如稀土、铜、金等重要矿床就埋藏于其中,且其多发育连续的网状风化裂隙,利于地下水聚集,在我国南方部分地区多构成具有供水意义的含水层。
溶浸采矿工艺是指不用剥离山体表土,仅挖掘矿井,灌注溶浸剂,从天然埋藏条件下的非均匀矿体中有选择性地浸出并回收其中的有用成份。
利用溶浸采矿来开采矿产资源的方法应用已比较成熟,目前它已发展成为我国大规模处理贫矿、尾矿、废矿石等物料,提取铀、铜、稀土、金和银等矿产的一种有效而又经济可行的方法[2]。
溶浸采矿方法1 定义溶浸采矿是根据某些矿物的物理化学特性,将工作剂注入矿层(堆),通过化学浸出、质量传递、热力和水动力等作用,将地下矿床或地表矿石中某些有用矿物,从固态转化为液态或气态,然后回收,以达到以低成本开采矿床的目的。
2 种类溶浸采矿方法包括地表堆浸法、原地浸出法和细菌化学采矿法等。
溶浸采矿彻底改革了传统的采矿工艺,特别是地下溶浸采矿,少需或无需传统的采矿工程(如开拓、剥离、采掘、搬运等),使复杂的选冶工艺更趋简单。
溶浸采矿可处理的金属矿物有:铜、铀、金、银、离子型稀土、锰、铂、铅、锌、镍、铬、钴、铁、汞、砷、铱等20多种。
但应用得多的是铜、铀、金、银、离子型稀土。
2.1 地表堆浸法堆浸法是指将溶浸液喷淋在矿石或边界品位以下的含矿岩石(废石)堆上,在其渗滤过程中,有选择的溶解和浸出矿石或废石堆中的有用成分,使之转入产品溶液(称浸出富液)中,以便进一步提取或回收的一种方法。
按浸出地点和方式的不同,堆浸可分为露天堆浸和地下堆浸两类,前者用于处理已采至地面的低品位矿石、废石和其它废料;后者用于处理地下残留矿石或矿体,如果这些矿体或矿柱未采动,为提高堆浸效果,需预先进行松动爆破。
1)适用范围堆浸法的适用范围是:(1)处于工业品位或边界品位以下,但其所含金属量仍有回收价值的贫矿与废石。
根据国内外堆浸经验,含铜0.12%以上的贫铜矿石(或废石)、含金0.7g·t以上的贫金矿石(或废石)、含铀0.05%以上的贫铀矿石(或废石),可以采用堆浸法处理。
(2)边界品位以上但氧化程度较深的难处理矿石。
(3)化学成分复杂,并含有有害伴生矿物的低品位金属矿和非金属矿。
(4)被遗弃在地下,暂时无法开采的采空区矿柱、充填区或崩落区的残矿、露天矿坑底或边坡下的分枝矿段及其它孤立的小矿体。
(5)金属含量仍有利用价值的选厂尾矿、冶炼加工过程中的残渣与其它废料。
2)地表堆浸地表堆浸法是将溶浸液喷淋在破碎而又有孔隙的废石(围岩废石与低品位矿石的混合物)或矿石堆上,溶浸液在往下渗滤的过程中,有选择性溶解和浸出其中的有用成份,然后从浸出堆底部流出并汇集起来的浸出液中提取并回收金属的方法。
溶浸-采矿溶浸采矿技术现状与发展趋势姓名:汪惊奇学号:115514006 专业:采矿工程摘要:阐述了我国金属矿产资源的三大特点:品位低、复杂难处理、中小型矿多,认为溶浸采矿技术能有效处理二次资源,提高资源综合利用率,缓解我国矿产资源紧缺的局面。
主要介绍了废石堆浸、矿石堆浸、地下浸出三类溶浸采矿技术特点,并综述了溶浸技术在国内外铜、金、铀等矿山的应用情况,总结了强化溶浸过程的主要技术措施:浸矿微生物选育、强制通风、物理手段、表面活性剂、金属离子催化等,分析了目前溶浸采矿面临的四大技术问题:矿堆渗透性差、堆内溶液分布不均、堆内氧气浓度低、温度分布不均,并指出了溶浸技术在我国应用趋势及理论研究展望。
关键词:溶浸采矿;应用现状;强化技术;技术问题;发展趋势我国矿产资源总量丰富,矿种较为齐全,但人均占有矿产资源量相对不足,铜、铁、铝等主要金属资源探明储量严重不足或短缺,我国矿产资源的显著特点是:(1)品位低。
我国铁矿平均品位为33.5%,比世界平均品位低10%以上,澳大利亚、巴西等国一般在65%以上;锰矿平均品位22%,世界平均品位为48%;在全国已探明的铜资源中,平均地质品位只有0.87%,远低于智利等主要产铜国,其中品位大于2%的铜矿仅占总储量的6.4%,品位大于1%的铜矿占总储量的35.9%。
(2)复杂难处理。
我国80%的有色矿床中都有共伴生元素,尤以铝、铜、铅、锌矿产为多。
铜矿床中综合型共伴生矿占了72.8%,我国西部地区赋存丰富的复杂难选铜矿和含砷铜矿,铜金属量在几百万吨以上;金矿总储量中伴生金占28%;银总储量中伴生矿占60%;共伴生的汞、锑、钼则分别占到各自总储量的20%~33%,共生伴生矿因矿石组份复杂,造成选冶难度增加,加大建设投资和生产经营成本。
(3)中小型矿居多。
超大型矿床少,中小型矿床多,利用成本高。
迄今发现的铜矿900个矿产地,大型矿床占2.7%,中型矿床占8.9%,小型矿床多达到88.4%。
在已探明的15000个矿床中,66%为小型,23%为中型,11%为大矿。
此外,我国有色金属矿山在采、选过程中产生了大量的表外矿、废石和尾矿,目前我国矿山废石场和排土场每年新增面积十万亩[1],如我国白银公司露天矿废石场堆放2.5 亿吨废石,铜金属含量达100 万吨以上。
1 溶浸采矿技术分类溶浸采矿是建立在化学反应与物理化学作用的基础上,利用某些能溶解矿石中有用成分的浸矿药剂,并借助某些微生物、催化剂、矿石表面活性剂的作用,有选择性地溶解、浸出矿石或矿体中的有用金属成分,使其从固态转化为液态再进行回收,从而达到开采矿石目的的一种新型采矿方法。
与传统的开采方法相比,溶浸采矿最突出的特点就是可以经济合理地处理低品位矿石,甚至可以处理表外矿石、残矿、尾矿和废石,因此溶浸采矿对有效开发低品位矿产资源、资源的综合利用、尾矿资源的二次开发等具有重要意义,美国采用堆浸处理的铜矿石品位低至0.04%,此外,溶浸采矿技术被誉为绿色采矿技术,具有良好的环境价值。
目前,溶浸采矿主要可分为废石堆浸、矿石堆浸和地下浸出:1.1 废石堆浸主要用于处理露天矿或地下矿排弃的废石和其它废料,矿石物料不需另行破碎而直接浸出,其成分、形状和块度因时因地而异,堆在现有地形上,底板无需额外施工。
浸出时,在废石堆表面喷淋酸性含菌溶液,溶液渗流到矿堆内部,在细菌和溶液的作用下,矿石释放有价金属,浸出富液汇集到浸堆底部,流入集液池,再用泵将集液池中溶液抽到矿堆顶部进行循环喷淋,直到集液池中溶液浓度达到设计要求,才将合格溶液送入萃取、电积车间,萃余液可用来继续喷淋。
1.2 矿石堆浸矿石堆浸主要用于处理贫矿和低品位表外矿,目前已在氧化铜矿、易浸硫化铜矿、金矿和铀矿的堆浸实现工业化生产。
矿石堆浸法与废石堆浸法的生产流程原则上是相同的,但需要选择堆浸场地、建造浸垫,尽量避免溶液渗漏,此外,还需将大块矿石破碎到一定粒度,并将粉矿进行制粒后筑堆,一般选用皮带筑堆法,防止筑堆机械对矿堆的反复碾压。
1.3 地下浸出地下浸出可分为原地浸出法和就地浸出法两种。
原地溶浸是指溶浸液从天然埋藏条件下的非均质矿石中,有选择性地浸出有用成分的采矿方法,其矿石处于天然状态下,通过注液工程往矿层注入溶浸液,使之与非均质矿石中的有用成分接触,反应生成可溶性化合物,由集液工程抽至地表,输送到水冶厂进行处理。
这种情况下,要求岩体有足够渗透能力,矿物与溶液能充分接触,这种方式要求矿体上部和底部围岩不透水,因此适用范围较窄。
就地溶浸与原地溶浸一样,通过注液工程和集液工程,将溶浸液注入和抽出,达到从地层深部对矿石进行溶浸的目的。
但对于坚硬岩矿床,矿床节理裂隙、空洞等不够发育,注入溶液不能在矿床内进行有效流动,不能与矿石进行充分接触。
因此矿石需要经过预先爆破,将其破碎到一定的块度,使矿石产生一定的松动和位移,为溶液的渗滤和对矿石中有用成分的浸出创造必要条件。
2 溶浸采矿应用现状2.1 国内溶浸采矿技术应用现状溶浸采矿技术在我国历史悠久,远在纪元前六、七世纪的《山海经》中就有“石脆之山,其阴多铜,灌水出焉,北流注于禺,其中多流赤者”。
20 世纪60 年代,安徽铜陵有色金属公司松树山铜矿率先应用就地破碎浸矿法回收铜残矿;90 年代中后期,德兴铜矿建成年产2000 吨电铜堆浸厂;2000 年,中条山铜矿峪矿建成年产500 吨电解铜的地下溶浸提铜示范系统;2003 年,云南官房铜矿建成处理含铜0.9%的原生硫化铜和次生硫化铜的生物堆浸厂;2006 年,福建紫金山建成万吨级生物提铜堆浸厂。
1985 年云南腾冲381 矿岩型铀矿床首次进行铀的原地浸出,资源总回收率为65%,金属成本降低了50%,成为我国第一个原地浸出的矿山。
1987 年江西某铀矿万吨级试验获得成功,浸出率达90%以上,金属生产成本降低30%~40%,1989 年停止了常规水冶生产,成为全堆浸矿山。
1992 年新疆512 矿扩建了50t/d 规模的原地溶浸厂,至此,铀的原地溶浸已经走向规模生产。
80 年代中期,我国对离子型稀土矿进行原地溶浸取得成功。
2.2 国外溶浸采矿技术应用现状在国外,该技术已成功用于多种金属的提取,目前已有几十座铜、铀、金矿山有大规模的工业应用。
早在16 世纪,德国Harz 地区和西班牙Rio Tinto 矿山就采用溶浸方法处理硫化矿石。
1947 年Colmer 和Hinkle 又从酸性废坑水中分离出氧化亚铁硫杆菌,人们开始逐渐认识和利用细菌在硫化矿浸出中的作用。
20 世纪60 年代,美国和苏联开始试用原地溶浸法开采铀矿,并在怀俄明州建成世界第一座溶浸采铀矿山,20 世纪70 年代,美国Kennecott矿业公司建成世界最大的微生物堆浸场,处理矿石量36 亿吨,年产7.2 万吨铜金属。
1986年南非Fairview 矿建成世界第一个金矿生物浸出工厂,日处理金精矿10 吨。
近20 年,溶浸技术在美国、智利、澳大利亚等国得到推广,目前,世界25%铜、20%铀来自溶浸开采。
自20 世纪80 年代开始到目前为止,世界上先后共有19 座生物浸出技术提取铜、钴的工厂投入生产。
3 溶浸过程强化技术随着溶浸技术的日益广泛应用,浸矿微生物选育、强制通风、外加营养源、物理手段、表面活性剂、金属离子催化等强化浸出手段使溶浸采矿有了更大的发展。
3.1 浸矿微生物选育人类对微生物浸矿技术的认识和深入研究是从1947 年美国人Colmer 发现细菌的氧化作用开始的。
浸矿细菌生长速度慢,只有大肠杆菌的10-4,且在实际浸矿体系中,表面活性剂、重金属离子、卤素离子等超过一定浓度时,都会抑制细菌的生长,甚至造成菌体死亡。
因此,人们通过驯化、诱变、基因工程等途径培育出适合各种硫化矿浸出并能够大规模应用的高效菌种。
廖梦霞等人针对某低品位难处理金矿的工程菌进行了菌株对砷的适应性驯化,比较了细菌驯化前后对矿石浸出的影响,结果表明,细菌经过耐砷驯化后,能耐受8g/L 的As3+,对矿石中砷的适应性显著提高;蒋金龙等人利用亚硝基肌对氧化亚铁硫杆菌进行化学诱变,发现诱变后菌株的氧化活性在原先的基础上提高了4 倍;徐海岩等人利用氧化亚铁硫杆菌抗砷工程菌处理含砷金精矿,获得了较好的抗砷效果。
3.2 强制通风对于以CO2 为唯一碳源,并依靠硫化物、S、及Fe2+氧化反应取得能源的好氧细菌,持续供给O2 和CO2 是保证它们不断生长繁殖和保持活性的必需条件。
除了机械搅拌溶液或加速溶液渗滤循环强化供氧之外,一般还往溶液中补充通入空气。
补充空气可使铁的氧化速度提高,但过度充气也会影响细菌活性。
3.3 物理手段向浸出体系外加合适的直流电压,可使细菌体内酶的活性提高,细菌浓度增加,从而提高浸矿速度,并可以进行金属硫化矿物的选择性浸出。
一些研究者利用微波和磁场强化后的水配制培养基,发现磁化水配制9K 培养基能促进细菌的生长,提高细菌的活性,对细菌浸矿有明显的促进作用,缩短细菌预氧化周期,增加浸出率。
另外,电磁辐射的微波也具有相应的磁场,引起溶液界面压力差,促进氧气在水中的溶解,从而促进了细菌的生长从而强化浸矿。
3.4 添加表面活性剂对细菌浸矿有利的表面活性剂大致分为三种:(1)阳离子型表面活性剂;(2)非离子型表面活性剂;(3)阴离子型表面活性剂。
表面活性剂可以改变矿物表面性质,增加矿物的亲水性,有利于细菌与矿物接触,加速浸矿速度。
在黄铜矿细菌浸出的过程中,添加活性碳可以加速黄铜矿细菌浸出的速度,并大大提高铜的浸出率,如唐云[19]等人在黄铜矿细菌浸出体系中添加表面活性剂吐温20,实验结果表明,在表面活性剂质量分数为0.003%时,对浸矿有促进作用,明显缩短了滞后期。
3.5 金属离子催化溶液中的离子在附着于矿物表面后能改变矿物表面的电化学行为。
如果某种离子能够形成氧化还原电极,促进金属硫化物浸出介质中的电化学反应,那么这种离子就能加速矿物的生物浸出。
在发现金属阳离子能催化黄铜矿的化学浸出之后,人们对Ag+催化黄铜矿的细菌浸出过程进行了研究,结果证明,Ag+能加快黄铜矿的生物浸出速度,大大提高浸出率。
黄铜矿在氧化浸出过程中,其表面生成了一层不导电致密的元素硫膜,形成扩散屏障,使电子传递困难,阻碍CuFeS2 的溶解反应。
当Ag+存在时,铜的析出速率更快,原因是硫与Ag2S 混合形成一个多孔的产物层,对黄铜矿的溶解不产生阻碍作用。
Price 等人认为[20],在Ag+作催化剂的条件下形成的硫单质,除了具有多孔性外,还具有更高的电导性,因此有利于电子通过黄铜矿的表面进行交换。
4 溶浸采矿存在的主要问题虽然溶浸采矿技术在国内外得到较为广泛的应用,且在理论研究方面也取得一系列进展,但矿堆渗透性差、溶液分布不均、细菌活性低、堆内温度分布不均等问题制约着溶浸技术快速发展。