矿物的化学与生物处理
- 格式:ppt
- 大小:8.47 MB
- 文档页数:69
1.化学选矿:所谓化学选矿是基于矿物组分的化学性质的差异,利用化学方法改变矿物的性质,使目标组分或杂质组分选择性地溶于浸出溶剂中,从而达到分离的目的。
化学选矿广泛地用于处理各种难选的黑色金属、有色金属、贵金属和非金属矿产资源的开发。
2.化学选矿与物理选矿的区别重选、浮选、磁选、电选等都是在没有改变矿物化学组成的情况下进行的。
化学选矿改变矿物化学组成的情况下进行的。
化学选矿需要消耗大量的化学试剂。
3.化学选矿的主要过程:答法:①原料准备阶段→物料分解阶段→产品的制取阶段②焙烧→浸出→固液分离→净液→产品制取固液分离采用沉降倾析、过滤和分级等方法处理浸出矿浆,以便获得供后续作业处理的澄清液或固体物料。
机械:浓缩机(池)、过(压)滤机、离心机、水力旋流器。
1. 焙烧是在适宜的气氛和低于物料熔点的温度条件下,使矿物原料中的目的组分矿物发生物理和化学变化的工艺过程。
该过程通常是作为选矿准备作业,以使目的组分转变为易浸出或易于物理分选的形态。
2. 根据焙烧在化学选矿过程中的作用和其主要化学反应性质可分为:还原焙烧;氧化焙烧;氯化焙烧;氯化离析;加盐焙烧;煅烧。
3. 还原焙烧金属氧化物矿石等在还原剂作用下的焙烧。
目的在于将物料还原为较低价的氧化物或金属,以便于分离和富集,如镍矿石还原成金属后利于浸出;贫赤铁矿还原为磁铁矿石可以磁选富集。
5. 氧化焙烧利用空气中氧与硫化矿作用,将金属硫化物在空气中焙烧成金属氧化物或硫酸盐,或将低价氧化物转变为高价氧化物,有时还可脱去挥发性物质,如砷、锑、硒等。
铜的硫酸化焙烧应该温度低于650℃,氧化焙烧要高于650 ℃。
氧化焙烧温度应高于相应硫化物的着火温度,而硫化物的着火温度与其粒度有关。
实践中焙烧温度常常波动于580~850℃,一般不超过900 ℃6氯化焙烧:在氯化剂存在的条件下,焙烧矿石、精矿、冶金过程的中间产品,使其中某些金属氧化物、硫化物转化为氯化物的过程。
7. 煅烧在低于熔点的适当温度下,加热物料,使其分解并除去所含结晶水、二氧化碳或三氧化硫等挥发性物质的过程称为煅烧。
生物冶金技术应用现状及发展趋势前言有记载的最早的生物冶金活动是1670 年,在西班牙的矿坑中回收细菌浸出的铜[8]。
1950 年美国开始原生硫化铜矿表外矿生物堆浸试验,并于1958年获得了生物冶金史上第一个专利。
直到1974 年,美国科学家从酸性矿水中分离得到了一种氧化亚铁杆菌。
此后美国的布利诺等又从犹他州宾厄姆峡谷矿水中分离出了氧化硫硫杆菌和氧化亚铁硫杆菌,并用这两种菌浸泡硫化铜矿石,结果发现能较好的把金属从矿石中溶解出来。
至此,生物冶金技术才开始得到人们的关注并逐渐发展起来目前,世界矿产资源日渐贫杂,资源、能源、环境问题越发引起人们重视,我国矿产资源国家战略地位与日俱增。
随着矿物贫杂化和严重能源危机及环境污染的加剧,传统的冶金技术面临巨大挑战,寻求更为高效、低能、清洁的绿色资源利用途径成为研究焦点。
根据美国国家研究委员会(NRC) 2001年的研究报告,在未来20年,美国矿业最重要的革新将是采用湿法冶金工艺取代有色行业传统的熔炼工艺。
微生物湿法冶金技术是一门新兴的矿物加工技术,它包括微生物浸出技术和微生物浮选技术。
在自然界,微生物在多种元素的循环当中起着重要作用,地球上许多矿物的迁移和矿床的形成都和微生物的活动有关。
生物湿法冶金是一种很有前途的新工艺,它不产生二氧化硫,投资少,能耗低,试剂消耗少,能经济地处理低品位、难处理的矿石。
目前,这种方法仍处于发展之中,它还必须克服自身的一些局限性,如反应速度慢、细菌对环境的适应性差,超出了一定的温度范围细菌难以成活,经不起搅拌,等等。
为此,一些科学家建议应从遗传工程方面开展工作,通过基因工程得到性能优良的菌种。
摘要生物冶金技术,又称生物浸出技术,通常指矿石的细菌氧化或生物氧化,由自然界存在的微生物进行。
这些微生物被称作适温细菌,大约有0.5~2.0微米长、0.5微米宽,只能在显微镜下看到,靠无机物生存,对生命无害。
这些细菌靠黄铁矿、砷黄铁矿和其他金属硫化物如黄铜矿和铜铀云母为生。
矿物加工实验技术矿物加工实验技术是矿物资源开发的重要环节,它涉及到矿物的加工与提取,是冶金、化工、能源和环保等领域的重要技术。
本文将从实验原理、实验操作、实验装置和实验注意事项四个方面介绍矿物加工实验技术。
一、实验原理矿物加工实验技术的主要原理是通过物理、化学或生物等方法改变原矿物质的物理和化学性质,使其适应工业生产需要的特定物质。
矿物加工实验技术包括粉碎、磨矿、浮选、浸出、火法提取等方法。
粉碎是指利用机械碾磨等手段将矿物样品分解成一定的颗粒度,使其适合于下一步的处理。
磨矿则是指将矿物样品进行更加细致的磨碎,以便更好地分离矿物粒子。
浮选是指利用矿物表面和水分子相互作用特性的不同,将矿物粒子从废渣中分离出来,达到提取矿物的目的。
浸出是指通过溶解矿物样品中的某种成分,以达到提取目的的方法。
火法提取则是指利用化学反应使矿物在高温下分解出目标物质的方法。
二、实验操作1. 制备试样:样品应根据实验目的合理取量,并进行漏泄试验,剖面分析,最终决定粉碎目标和所需粒度。
2. 粉碎与磨矿:在普通实验室条件下常用的磨矿设备为球磨机或者是罐装版本的高速磨碎器,常用磨矿材料为小型钢球或磨棒等。
初次碾压应相对较粗,再逐步加细达到所需粒度。
3. 浮选:在进行浮选前,应先对矿物样品进行处理,比如加入调节因子和捕收剂等。
在浮选过程中,控制搅拌轴转速和气泡量,保持良好的气泡-矿物粒子接触状态,以确保矿物浮选效果。
4. 浸出:选用合适的浸出剂、溶液质量浓度、浸取时间等参数,浸出操作应采取无层流方式,保持均匀搅拌,不应搅拌过烈。
5. 火法提取:加热温度应根据实验室条件和矿物样品选择,操作过程中应特别注意矿物样品是否有爆炸性或易挥发的物质,以避免事故。
三、实验装置1. 粉碎与磨矿:球磨机、高速磨碎器、气流磨2. 浮选:搅拌桶式浮选机、气浮型浮选机、槽式浮选机3. 浸出:恒温水浴锅、恒温恒湿箱4. 火法提取:加热炉、电炉四、实验注意事项1. 实验过程中应注意安全,佩戴好防护装备。
矿物加工中生物冶金的应用与挑战在当今的矿物加工领域,生物冶金作为一种新兴的技术手段,正逐渐展现出其独特的优势和潜力。
生物冶金是指利用微生物或其代谢产物从矿石中提取有价金属的过程,它不仅为矿产资源的开发利用提供了新的途径,也为解决传统冶金方法所面临的环境和能源问题带来了希望。
生物冶金的应用领域广泛,其中在铜、金、铀等金属的提取中表现尤为突出。
以铜为例,传统的火法炼铜工艺不仅能耗高,而且会产生大量的二氧化硫等有害气体,对环境造成严重污染。
而生物浸出技术则可以在常温常压下进行,通过微生物的作用将矿石中的铜溶解出来,具有能耗低、环境友好等优点。
在金矿的提取中,生物氧化预处理技术可以有效地破坏包裹金的硫化物矿物,提高金的浸出率。
对于铀矿,生物浸出技术也能够有效地从低品位铀矿石中提取铀,降低生产成本。
生物冶金的应用优势显而易见。
首先,它对环境的影响相对较小。
传统的冶金方法往往需要消耗大量的能源和化学试剂,同时产生大量的废弃物和污染物。
而生物冶金过程中,微生物的代谢活动相对温和,产生的废弃物较少,且大多可以通过自然生态系统进行降解和处理。
其次,生物冶金可以处理低品位矿石。
随着高品位矿石的日益减少,如何有效地利用低品位矿石成为了矿业面临的重要挑战。
生物冶金技术能够从这些低品位矿石中提取有价金属,提高了矿产资源的利用率。
再者,生物冶金的成本相对较低。
微生物的培养和维护成本相对较低,而且可以在常温常压下进行反应,减少了能源和设备的投入。
然而,生物冶金在实际应用中也面临着一系列的挑战。
微生物的生长和代谢需要特定的条件,如适宜的温度、pH 值、营养物质等。
如果这些条件得不到满足,微生物的活性就会受到抑制,从而影响金属的提取效率。
此外,微生物的代谢过程较为复杂,其对矿石的作用机制还不完全清楚,这给工艺的优化和控制带来了困难。
生物冶金的反应速度通常较慢,与传统的冶金方法相比,需要更长的时间来完成金属的提取过程。
这在一定程度上限制了其在大规模工业生产中的应用。