自建函数模型解决实际问题教案
- 格式:doc
- 大小:69.50 KB
- 文档页数:6
2.2用函数模型解决实际问题导入新课思路1.(事例导入)一张纸的厚度大约为0.01 cm,一块砖的厚度大约为10 cm,请同学们计算将一张纸对折n次的厚度和n块砖的厚度,列出函数关系式,并计算n=20时它们的厚度.你的直觉与结果一致吗?解:纸对折n次的厚度:f(n)=0.01·2n(cm),n块砖的厚度:g(n)=10n(cm),f(20)≈105 m,g(20)=2 m.也许同学们感到意外,通过对本节的学习大家对这些问题会有更深的了解.思路2.(直接导入)请同学们回忆指数函数、对数函数以及幂函数的图像性质,本节我们通过实例比较它们的应用.推进新课新知探究提出问题①如果张红购买了每千克1元的蔬菜x千克,需要支付y元,把y表示为x的函数.②正方形的边长为x,面积为y,把y表示为x的函数.③某保护区有1单位面积的湿地,由于保护区努力,湿地每年以5%的增长率增长,经过x年后湿地的面积为y,把y表示为x的函数.④分别用表格、图像表示上述函数.⑤指出它们属于哪种函数模型.⑥讨论它们的单调性.⑦继续扩大x的取值范围,比较它们的增长差异.⑧另外还有哪种函数模型?活动:先让学生动手做题后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.①总价等于单价与数量的积.②面积等于边长的平方.③由特殊到一般,先求出经过1年、2年、…….④列表画出函数图像.⑤引导学生回忆学过的函数模型.⑥结合函数表格与图像讨论它们的单调性.⑦让学生自己比较并体会.⑧另外还有与对数函数有关的函数模型.讨论结果:①y=x.②y=x2.③y=(1+5%)x,④如下表图5 图6 图7⑤它们分别属于:y =kx +b (直线型),y =ax 2+bx +c (a ≠0,抛物线型),y =ka x +b (指数型).⑥从表格和图像得出它们都为增函数.⑦在不同区间增长速度不同,随着x 的增大y =(1+5%)x 的增长速度越来越快,会远远大于另外两个函数.⑧另外还有与对数函数有关的函数模型,形如y =log a x +b ,我们把它叫作对数型函数. 函数模型是应用最广泛的数学模型之一.许多实际问题一旦认定是函数关系.就可以通过研究函数的性质把握问题,使问题得到解决.应用示例思路1例1 某公司一年需要一种计算机元件8 000个,每天需同样多的元件用于组装整机.该元件每年分n 次进货,每次购买元件的数量均为x ,购一次货需手续费500元.已购进而未使用的元件要付库存费,可以认为平均库存量为12x 件,每个元件的库存费是一年2元.请核算一下,每年进货几次花费最小?解:无论分几次进货,公司进货的总数是8 000个元件,元件费用是固定不变的,影响总费用变化的量只是库存费和购货手续费,若想减少库存费,就要增加进货次数,而进货次数的增加又使手续费的总量增加了,这就需要将二者对总费用的影响用数学关系表示清楚,进而求最小的花费.设购进8 000个元件的总费用为F ,一年总库存费为E ,手续费为H ,其他费用为C (C 为常数),则E =2×12x ,H =500×8 000x ,x =8 000n(n ≥1,n ∈Z ), 所以F =E +H +C =2×12x +500×8 000x+C =8 000n +500n +C =500⎝ ⎛⎭⎪⎫16n +n +C =500⎝ ⎛⎭⎪⎫4n -n 2+4 000+C ≥4 000+C , 当且仅当4n =n ,即n =4时,总费用最少,故以每年进货4次为宜.例2 电声器材厂在生产扬声器的过程中,有一道重要的工序:使用AB 胶粘合扬声器中的磁钢与夹板.长期以来,由于对AB 胶的用量没有一个确定的标准,经常出现用胶过多,胶水外溢;或用胶过少,产生脱胶,影响了产品质量.经过实验,已有一些恰当用胶量的具解:我们取磁钢面积x 为横坐标、用胶量y 为纵坐标,建立直角坐标系.根据上表数据在直角坐标系中描点,得出图8.图8从图中我们清楚地看到这些点基本上分布在一条直线附近.画出这条直线,使图上的点比较均匀地分布在直线两侧.用函数y =ax +b 表示用胶量与磁钢面积的关系.取点(56.6,0.812),(189.0,2.86),将它们的坐标代入y =ax +b ,得方程组⎩⎪⎨⎪⎧0.812=56.6a +b ,2.86=189.0a +b . 解得a =0.015 47,b =-0.063 50.这条直线是y =0.015 47x -0.063 50.点评:通过一些数据寻求事物规律,往往是通过绘出这些数据在直角坐标系中的点,观察这些点的整体特征,看它们接近我们熟悉的哪一种函数图像,选定函数形式后,将一些数据代入这个函数的一般表达式,求出具体的函数表达式,再做必要的检验,基本符合实际,就可以确定这个函数基本反映了事物规律.这种方法称为数据拟合.在自然科学和社会科学中,很多规律、定律都是先通过实验,得到数据,再通过数据拟合得到的.例3 某公司为了实现1 000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y (单位:万元)随着利润x (单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:y =0.25x ,y =log 7x +1,y =1.002x ,其中哪个模型能符合公司的要求?活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:某个奖励模型符合公司要求,就是依据这个模型进行奖励时,奖金总数不超过5万元,同时奖金不超过利润的25%,由于公司总的利润目标为1 000万元,所以人员销售利润一般不会超过公司总的利润.于是只需在区间[10,1 000]上,检验三个模型是否符合公司要求即可.不妨先作出函数图像,通过观察函数的图像,得到初步结论,再通过具体计算,确认结果.解:借助计算器或计算机作出函数y =0.25x ,y =log 7x +1,y =1.002x 的图像(图9).图9观察函数的图像,在区间[10,1 000]上,模型y =0.25x ,y =1.002x 的图像都有一部分在直线y =5的上方,只有模型y =log 7x +1的图像始终在y =5的下方,这说明只有按模型y =log 7x +1进行奖励时才符合公司的要求.下面通过计算确认上述判断.首先计算哪个模型的奖金总数不超过5万.对于模型y =0.25x ,它在区间[10,1 000]上递增,而且当x =20时,y =5,因此,当x >20时,y >5,所以该模型不符合要求;对于模型y =1.002x ,由函数图像,并利用计算器,可知在区间(805,806)内有一个点x 0满足1.002x 0=5,由于它在区间[10,1 000]上递增,因此当x >x 0时,y >5,所以该模型也不符合要求;对于模型y =log 7x +1,它在区间[10,1 000]上递增,而且当x =1 000时,y =log 71 000+1≈4.55<5,所以它符合奖金总数不超过5万元的要求.再计算按模型y =log 7x +1奖励时,奖金是否不超过利润的25%,即当x ∈[10,1 000]时,是否有y x=log 7x +1x≤0.25成立. 令f (x )=log 7x +1-0.25x ,x ∈[10,1 000].利用计算器或计算机作出函数f (x )的图像(图10),由函数图像可知它是递减的,因此图10 f (x )<f (10)≈-0.316 7<0,即log 7x +1<0.25x .所以当x ∈[10,1 000]时,log 7x +1x<0.25. 说明按模型y =log 7x +1奖励,奖金不超过利润的25%.综上所述,模型y =log 7x +1确实能符合公司的要求.变式训练市场营销人员对过去几年某商品的价格及销售数量的关系作数据分析发现有如下规律:该商品的价格每上涨x %(x >0),销售数量就减少kx %(其中k 为正常数).目前,该商品定价为a 元,统计其销售数量为b 个.(1)当k =12时,该商品的价格上涨多少,就能使销售的总金额达到最大? (2)在适当的涨价过程中,求使销售总金额不断增加....时k 的取值范围. 解:依题意,价格上涨x %后,销售总金额为y =a (1+x %)·b (1-kx %)=ab 10 000[-kx 2+100(1-k )x +10 000]. (1)取k =12,y =ab 10 000⎝ ⎛⎭⎪⎫-12x 2+50x +10 000, 所以x =50,即商品价格上涨50%,y 最大为98ab . (2)因为y =ab 10 000[-kx 2+100(1-k )x +10 000], 此二次函数的开口向下,对称轴为x =501-k k,在适当涨价过程后,销售总金额不断增加,即要求此函数当自变量x 在{x |x >0}的一个子集内增大时,y 也增大.所以501-k k>0,解得0<k <1. 点评:这类问题的关键在于列函数解析式建立函数模型,然后借助不等式进行讨论.思路2例1 某工厂有216名工人接受了生产1 000台GH 型高科技产品的总任务,已知每台GH 型产品由4个G 型装置和3个H 型装置配套组成.每个工人每小时能加工6个G 型装置或3个H 型装置.现将工人分成两组同时开始加工,每组分别加工一种装置.设加工G 型装置的工人有x 人,他们加工完G 型装置所需时间为g (x ),其余工人加工完H 型装置所需时间为h (x )(单位:小时,可不为整数).(1)写出g (x ),h (x )解析式;(2)比较g (x )与h (x )的大小,并写出这216名工人完成总任务的时间f (x )的解析式;(3)应怎样分组,才能使完成总任务用的时间最少?解:(1)由题意,知需加工G 型装置4 000个,加工H 型装置3 000个,所用工人分别为x 人,216-x 人.∴g (x )=4 0006x ,h (x )= 3 000216-x ·3, 即g (x )=2 0003x ,h (x )=1 000216-x(0<x <216,x ∈N +). (2)g (x )-h (x )=2 0003x -1 000216-x =1 000·432-5x 3x 216-x . ∵0<x <216,∴216-x >0.当0<x ≤86时,432-5x >0,g (x )-h (x )>0,g (x )>h (x );当87≤x <216时,432-5x <0,g (x )-h (x )<0,g (x )<h (x ).∴f (x )=⎩⎪⎨⎪⎧ 2 0003x ,0<x ≤86,x ∈N +;1 000216-x ,87≤x <216,x ∈N +.(3)完成总任务所用时间最少即求f (x )的最小值.当0<x ≤86时,f (x )递减,∴f (x )≥f (86)=2 0003×86=1 000129. ∴f (x )min =f (86),此时216-x =130.当87≤x <216时,f (x )递增,∴f (x )≥f (87)=1 000216-87=1 000129. ∴f (x )min =f (87),此时216-x =129.∴f (x )min =f (86)=f (87)=1 000129. ∴加工G 型装置,H 型装置的人数分别为86,130或87,129.变式训练m 与各季度售价差的平方和最小)收购该种农产品,并按每个100元纳税10元(又称征税率为10个百分点),计划可收购a 万吨,政府为了鼓励公司多收购这种农产品,决定将税率降低x 个百分点,预测收购量可增加2x 个百分点,(1)根据题中条件填空,m =________(元/吨);(2)写出税收y (万元)与x 的函数关系式;(3)若要使此项税收在税率调节后不少于原计划税收的83.2%,试确定x 的取值范围.解:(1)∵f (m )=(m -195.5)2+(m -200.5)2+(m -204.5)2+(m -199.5)2=4m 2-1 600m+160 041,∴m =200.(2)降低税率后的税率为(10-x )%,农产品的收购量为a (1+2x %)万吨,收购总金额为200a (1+2x %),故y =200a (1+2x %)(10-x )%=20010 000a (100+2x )(10-x )=150a (100+2x )(10-x )(0<x <10).(3)原计划税收为200a ×10%=20a (万元),依题意得150a (100+2x )(10-x )≥20a ×83.2%,即x 2+40x -84≤0. 解得-42≤x ≤2.又0<x <10,∴0<x ≤2.∴x 的取值范围是0<x ≤2.2.假设国家收购某种农产品的价格是120元/担,其中征税标准为每100元征8元(叫税率为8%),计划可收购m 万担(其中m 为正常数),为了减轻农民负担,如果税率降低x %,预计收购量可增加(2x )%.(1)写出税收y (万元)与x 的函数关系式;(2)要使此项税收在税率调节后不低于原计划的78%,求x 的取值范围.解:(1)y =120m ×104[1+(2x )%]×(8-x )%=120m (-2x 2-84x +800).(2)由题意知120m (-2x 2-84x +800)≥0.78×120m ×104×8%,解得0<x ≤2.所以x 的取值范围是0<x ≤2.例2 民营企业生产A ,B 两种产品,根据市场调查与市场预测,A 产品的利润与投资成正比,其关系如图11,B 产品的利润与投资的算术平方根成正比,其关系如图12.(注:利润与投资单位:万元)(1)分别将A ,B 两种产品的利润表示为投资的函数关系式.(2)该企业已筹集到10万元资金,并全部投入A 、B 两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元?(精确到1万元)图11 图12解:(1)设投资为x 万元,A 产品的利润为f (x )万元,B 产品的利润为g (x )万元. 由题设f (x )=k 1x ,g (x )=k 2x ,由图知f (1)=14,∴k 1=14. 又g (4)=52,∴k 2=54. 从而f (x )=14x (x ≥0),g (x )=54x (x ≥0). (2)设A 产品投入x 万元,则B 产品投入10-x 万元,企业利润为y 万元.则y =f (x )+g (10-x )=x 4+5410-x (0≤x ≤10), 令10-x =t ,则y =10-t 24+54t =-14⎝ ⎛⎭⎪⎫t -522+6516(0≤t ≤10), 当t =52时,y max =6516≈4, 此时x =10-254=3.75(万元). ∴当A 产品投入3.75万元,B 产品投入6.25万元时,企业获得最大利润约为4万元. 变式训练某商场计划投入一笔资金采购一批紧销商品,经过市场调查发现,如果月初出售,可获利15%,并可用本和利再投资其他商品,到月末又可获利10%;如果月末出售,可获利30%,但要付出仓储费用700元,请根据商场情况,如何购销获利较多?解:设商场投资x 元,在月初出售,到月末可获利y 1元,在月末出售,可获利y 2元,则y 1=15%x +10%(x +15%x )=0.265x ,y 2=0.3x -700.图13利用函数图像比较大小,在直角坐标系中,作出两函数的图像如图13所示,得两图像的交点坐标为(20 000,5 300).由图像,知当x >20 000时,y 2>y 1.当x =20 000时,y 1=y 2;当x <20 000时,y 2<y 1.∴当投资小于20 000元时,月初出售;当投资等于20 000元时,月初、月末出售均可;当投资大于20 000元时,月末出售.知能训练光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为k ,通过x 块玻璃以后强度为y .(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃以后,光线强度减弱到原来的13以下.(lg 3≈0.477 1) 解:(1)光线经过1块玻璃后强度为(1-10%)k =0.9k ;光线经过2块玻璃后强度为(1-10%)·0.9k =0.92k ;光线经过3块玻璃后强度为(1-10%)·0.92k =0.93k ;光线经过x 块玻璃后强度为0.9x k .∴y =0.9x k (x ∈N +).(2)由题意,知0.9x k <k 3, ∴0.9x <13.两边取对数,x lg 0.9<lg 13. ∵lg 0.9<0,∴x >lg 13lg 0.9. ∵lg 13lg 0.9=lg 31-2lg 3≈10.4,∴x min =11. ∴通过11块玻璃以后,光线强度减弱到原来的13以下. 拓展提升某池塘中野生水葫芦的面积与时间的函数关系的图像如图14所示.假设其关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,野生水葫芦的面积就会超过30 m 2;③野生水葫芦从4 m 2蔓延到12 m 2只需1.5个月;④设野生水葫芦蔓延到2 m 2、3 m 2、6 m 2所需的时间分别为t 1,t 2,t 3,则有t 1+t 2=t 3;⑤野生水葫芦在第1到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均速度.哪些说法是正确的?图14解:①说法正确.∵关系为指数函数,∴可设y=a x(a>0且a≠1).∴由图知2=a1.∴a=2,即底数为2.②∵25=32>30,∴说法正确.③∵指数函数增加速度越来越快,∴说法不正确.④t1=1,t2=log23,t3=log26,∴说法正确.⑤∵指数函数增加速度越来越快,∴说法不正确.课堂小结活动:学生先思考或讨论,再回答.教师提示、点拨,及时评价.引导方法:从基本知识和基本技能两方面来总结.答案:(1)建立函数模型;(2)利用函数图像性质分析问题、解决问题.作业习题4—2 A组2.设计感想本节设计由学生熟悉的素材入手,结果却出乎学生的意料,由此使学生产生浓厚的学习兴趣.课本中两个例题不仅让学生学会了函数模型的应用,而且体会到它们之间的差异;我们补充的例题与之相映生辉,是课本的补充和提高,其难度适中是各地高考模拟经常选用的素材.其中拓展提升中的问题紧贴本节主题,很好地体现了指数函数的性质特点,是一个不可多得的素材.(设计者:林大华)。
实际问题的函数建模教案第一章:引言1.1 课程目标:通过本章的学习,学生将了解实际问题的函数建模的基本概念和方法,并能够运用这些知识解决简单的实际问题。
1.2 教学内容:实际问题的函数建模的定义和意义实际问题建模的基本步骤实际问题建模的常用方法1.3 教学活动:介绍实际问题的函数建模的概念和重要性通过实例演示实际问题的函数建模的基本步骤和方法引导学生进行小组讨论,分享不同的问题解决方法1.4 作业与评估:学生将完成一篇关于实际问题建模的小组报告学生将通过课堂演讲展示他们的建模方法和结果第二章:线性函数建模2.1 课程目标:通过本章的学习,学生将能够理解线性函数的概念,并能够将实际问题转化为线性函数模型。
2.2 教学内容:线性函数的定义和性质将实际问题转化为线性函数模型的方法线性函数模型的求解和分析2.3 教学活动:介绍线性函数的基本概念和性质通过实例展示如何将实际问题转化为线性函数模型学生将通过小组合作,解决实际问题并建立线性函数模型2.4 作业与评估:学生将完成一些关于线性函数建模的练习题学生将通过小组报告展示他们的线性函数建模方法和结果第三章:多项式函数建模3.1 课程目标:通过本章的学习,学生将了解多项式函数的概念,并能够将实际问题转化为多项式函数模型。
3.2 教学内容:多项式函数的定义和性质将实际问题转化为多项式函数模型的方法多项式函数模型的求解和分析3.3 教学活动:介绍多项式函数的基本概念和性质通过实例展示如何将实际问题转化为多项式函数模型学生将通过小组合作,解决实际问题并建立多项式函数模型3.4 作业与评估:学生将完成一些关于多项式函数建模的练习题学生将通过小组报告展示他们的多项式函数建模方法和结果第四章:指数函数建模4.1 课程目标:通过本章的学习,学生将了解指数函数的概念,并能够将实际问题转化为指数函数模型。
4.2 教学内容:指数函数的定义和性质将实际问题转化为指数函数模型的方法指数函数模型的求解和分析4.3 教学活动:介绍指数函数的基本概念和性质通过实例展示如何将实际问题转化为指数函数模型学生将通过小组合作,解决实际问题并建立指数函数模型4.4 作业与评估:学生将完成一些关于指数函数建模的练习题学生将通过小组报告展示他们的指数函数建模方法和结果第五章:实际问题建模的案例分析5.1 课程目标:通过本章的学习,学生将能够分析并解决一些复杂的实际问题,运用不同的函数建模方法。
函数模型及其应用的教学教案教学教案:函数模型及其应用一、教学目标1.了解函数模型的基本概念和特性;2.掌握函数模型在实际问题中的应用;3.培养学生的数学建模能力和问题解决能力。
二、教学重点和难点1.函数模型的基本概念和特性;2.函数模型在实际问题中的应用。
三、教学方法1.讲授与示范相结合;2.小组合作学习;3.课堂实践。
四、教学过程步骤一:导入新知识(10分钟)1.复习函数的基本概念和性质;2.提出问题:“函数模型是什么?它有什么特点?”;3.学生回答问题并进行讨论。
步骤二:讲解函数模型的基本概念(20分钟)1.介绍函数模型的定义和表示方法;2.引导学生理解函数模型的含义:根据已知条件,建立函数模型来描述一个实际问题;3.示范几个常见的函数模型。
步骤三:探究函数模型的特性(20分钟)1.引入函数模型的性质:单调性、奇偶性、周期性等;2.以实例为例,让学生观察并总结函数模型的特性;3.学生合作完成几个练习题。
步骤四:应用函数模型解决实际问题(30分钟)1.通过实例介绍函数模型在实际问题中的应用,如物体自由落体、物种数量增长等;2.让学生进行小组合作,选择一个实际问题,建立相应的函数模型并解决问题;3.学生展示他们的解决方案,进行评价和讨论。
步骤五:巩固与拓展(20分钟)1.让学生复习巩固所学的内容,完成一篇小结;2.引导学生思考:函数模型在其他学科中的应用;3.教师进行点评和总结。
五、教学评估1.课堂表现评价:学生是否积极参与讨论、是否能熟练运用函数模型解决实际问题等;2.书面作业评价:布置相关练习题,检查学生的掌握程度。
六、教学资源1.教材:《数学教材》;2.多媒体教学工具;3.实际问题的资料。
七、教学反思通过本节课的教学,学生能够理解函数模型的基本概念和特性,能够应用函数模型解决实际问题。
在教学过程中,我注重将知识与实际问题相结合,让学生能够在解决问题的过程中感受到函数模型的重要性和应用价值。
函数模型的应用实例教案教案:函数模型的应用实例一、课程背景在数学教学中,函数是一个非常重要的概念,在实际生活中也有许多应用。
函数模型是数学中一种常用的模型方法,它可以很好地描述和解决一些实际问题。
本课程将以函数模型的应用实例为切入点,帮助学生理解函数模型的概念和运用方法。
二、教学目标1.知识与能力目标:-理解函数模型的基本概念;-掌握函数模型的建立方法;-运用函数模型解决实际问题。
2.过程与方法目标:-引导学生发现问题和解决问题的方法;-培养学生的创新思维和实际应用能力;-培养学生的合作学习和表达能力。
3.情感态度和价值观目标:-培养学生对数学的兴趣和热爱;-培养学生的团队协作和分享精神;-培养学生的实际问题解决能力。
三、教学过程1.引入(10分钟)-介绍函数的概念和作用,以及函数模型在实际中的应用;-分享一个有关函数模型的实际问题,如汽车行驶的距离与时间的关系。
2.探究(20分钟)- 提出一个问题:假设一辆汽车以60km/h的速度行驶,行驶时间为t小时,求行驶的距离d;-学生们自主讨论解决此问题的思路和方法;-指导学生建立函数模型:行驶距离d与行驶时间t之间的关系可以用函数d(t)表示,其中d(t)=60t。
3.拓展(30分钟)-提出更多有关函数模型的实际问题,如货物运输成本与距离的关系、人口增长与时间的关系等;-学生们自主讨论解决这些问题的方法,并建立相应的函数模型;-学生们分为小组,互相分享并比较各自的解决方法和函数模型。
4.总结(15分钟)-引导学生总结函数模型的建立方法:观察题目中的各种因素,确定变量及其之间的关系,建立函数模型;-引导学生总结函数模型的应用领域:经济、物理、生物等各个领域均有函数模型的应用。
5.展示(20分钟)-邀请几个学生上台演示他们解决实际问题的步骤和函数模型;-学生们展示自己的函数模型,分享成功的经验和困惑;-整理和归纳学生们的展示内容,进行点评和讨论。
六、教学评价1.形成性评价:观察学生的探究过程和成果,给予及时的反馈和指导;2.自评和互评:学生们根据课堂表现、参与度和拓展能力进行自我评价和互评;3.总结性评价:布置作业,让学生运用函数模型解决其他实际问题,并提交书面报告。
《函数模型的应用实例》教案第一章:引言1.1 课程背景本节课将引导学生了解函数模型在实际生活中的应用,通过具体的实例让学生感受函数模型的重要性。
1.2 教学目标(1)了解函数模型的概念及其在实际问题中的应用。
(2)通过实例分析,学会建立函数模型解决实际问题。
1.3 教学内容(1)函数模型的定义及其特点。
(2)函数模型在实际问题中的应用实例。
第二章:线性函数模型2.1 课程背景本节课将引导学生了解线性函数模型,并通过实例让学生学会如何建立线性函数模型解决实际问题。
2.2 教学目标(1)了解线性函数模型的定义及其特点。
(2)学会建立线性函数模型解决实际问题。
2.3 教学内容(1)线性函数模型的定义及其特点。
(2)线性函数模型在实际问题中的应用实例。
第三章:二次函数模型3.1 课程背景本节课将引导学生了解二次函数模型,并通过实例让学生学会如何建立二次函数模型解决实际问题。
3.2 教学目标(1)了解二次函数模型的定义及其特点。
(2)学会建立二次函数模型解决实际问题。
3.3 教学内容(1)二次函数模型的定义及其特点。
(2)二次函数模型在实际问题中的应用实例。
第四章:指数函数模型4.1 课程背景本节课将引导学生了解指数函数模型,并通过实例让学生学会如何建立指数函数模型解决实际问题。
4.2 教学目标(1)了解指数函数模型的定义及其特点。
(2)学会建立指数函数模型解决实际问题。
4.3 教学内容(1)指数函数模型的定义及其特点。
(2)指数函数模型在实际问题中的应用实例。
第五章:总结与拓展5.1 课程背景本节课将对前面所学的函数模型进行总结,并通过拓展实例让学生进一步感受函数模型在实际生活中的应用。
5.2 教学目标(1)总结本节课所学的内容,巩固所学知识。
(2)通过拓展实例,进一步感受函数模型在实际问题中的应用。
5.3 教学内容(1)对前面所学的函数模型进行总结。
(2)通过拓展实例,感受函数模型在实际问题中的应用。
实际问题的函数建模教案第一章:引言1.1 课程目标:理解函数建模的概念和重要性。
掌握将实际问题转化为函数模型的基本方法。
1.2 教学内容:函数建模的定义和应用领域。
实际问题与函数模型的关系。
函数建模的基本步骤。
1.3 教学方法:讲授法:介绍函数建模的基本概念和方法。
案例分析法:通过实际案例展示函数建模的应用。
1.4 教学活动:导入:通过一个简单的实际问题引出函数建模的概念。
讲解:介绍函数建模的定义和应用领域。
案例分析:分析一个实际问题,展示如何将其转化为函数模型。
第二章:一次函数建模2.1 课程目标:理解一次函数的概念和性质。
学会使用一次函数建模解决实际问题。
2.2 教学内容:一次函数的定义和性质。
一次函数建模的方法和步骤。
一次函数在实际问题中的应用。
2.3 教学方法:讲授法:介绍一次函数的基本概念和性质。
案例分析法:通过实际案例展示一次函数建模的应用。
2.4 教学活动:讲解:介绍一次函数的定义和性质。
案例分析:分析一个实际问题,展示如何使用一次函数建模解决。
练习:让学生尝试解决一个一次函数建模的实际问题。
第三章:二次函数建模3.1 课程目标:理解二次函数的概念和性质。
学会使用二次函数建模解决实际问题。
3.2 教学内容:二次函数的定义和性质。
二次函数建模的方法和步骤。
二次函数在实际问题中的应用。
3.3 教学方法:讲授法:介绍二次函数的基本概念和性质。
案例分析法:通过实际案例展示二次函数建模的应用。
3.4 教学活动:讲解:介绍二次函数的定义和性质。
案例分析:分析一个实际问题,展示如何使用二次函数建模解决。
练习:让学生尝试解决一个二次函数建模的实际问题。
第四章:指数函数建模4.1 课程目标:理解指数函数的概念和性质。
学会使用指数函数建模解决实际问题。
4.2 教学内容:指数函数的定义和性质。
指数函数建模的方法和步骤。
指数函数在实际问题中的应用。
4.3 教学方法:讲授法:介绍指数函数的基本概念和性质。
案例分析法:通过实际案例展示指数函数建模的应用。
《函数模型的应用实例》教案一、教学目标1. 理解函数模型在实际问题中的应用。
2. 学会构建函数模型解决实际问题。
3. 培养学生的数学建模能力和创新思维。
二、教学内容1. 函数模型概述2. 常见函数模型及其应用3. 函数模型的构建方法4. 函数模型在实际问题中的应用案例分析5. 函数模型的评估与优化三、教学重点与难点1. 教学重点:函数模型在实际问题中的应用,函数模型的构建方法。
2. 教学难点:函数模型的评估与优化。
四、教学方法1. 案例分析法:通过实际问题案例,引导学生学会构建函数模型解决问题。
2. 讨论法:分组讨论,分享不同函数模型在实际问题中的应用。
3. 实践操作法:让学生动手实践,优化函数模型。
五、教学准备1. 教学PPT2. 实际问题案例及解决方案3. 计算机软件(如MATLAB、Excel等)4. 练习题教案内容示例:第一课时:函数模型概述1. 导入:介绍函数模型在实际生活中的应用,如线性规划、最优化问题等。
2. 讲解:讲解函数模型的概念、特点和分类。
3. 案例分析:分析实际问题案例,引导学生理解函数模型。
4. 练习:让学生练习构建简单的函数模型。
第二课时:常见函数模型及其应用1. 导入:介绍常见函数模型,如线性函数、二次函数等。
2. 讲解:讲解常见函数模型的性质及其在实际问题中的应用。
3. 案例分析:分析实际问题案例,引导学生运用常见函数模型解决问题。
4. 练习:让学生运用常见函数模型解决实际问题。
后续课时依次讲解函数模型的构建方法、函数模型在实际问题中的应用案例分析、函数模型的评估与优化等内容。
教学反思:在教学过程中,关注学生的学习反馈,及时调整教学方法和节奏,确保学生能够掌握函数模型在实际问题中的应用。
注重培养学生的创新思维和动手实践能力,提高他们的数学建模能力。
六、教学活动设计1. 课堂讲解:介绍函数模型的基本概念和重要性。
2. 案例分析:分析实际问题,引导学生识别和构建函数模型。
第2课时 建立一次函数模型解决实际问题【学习目标】1.了解两个条件可以确定一次函数.2.能根据所给信息,利用待定系数法,确定一次函数表达式. 3.能利用所学知识解决简单的实际问题. 【学习重点】一次函数的实际应用. 【学习难点】行为提示:这些知识很重要,温故而知新.提示:看书独学时对于书中的问题一定要认真探究,书写答案. 学习笔记:归纳:(1)凡是因变量随自变量均匀变化的,都可以用一次函数表示;(2)用所建立的函数模型,在已知数据邻近作预测,是与实际事实比较吻合的;(3)用所建立的函数模型远离已知数据作预测不可靠. 一、情景导入 生成问题旧知回顾:如图是某汽车行驶的路程s (km)与时间t (min)的函数关系图.观察图中所提供的信息,解答下列问题: (1)汽车在前9 min 的平均速度是多少?解:12÷9=43(km/min). (2)汽车在中途停了多长时间? 解:16-9=7(min). (3)当16≤t ≤30时,求s 与t 的函数关系式. 解:设当16≤t ≤30时,s 与t 的函数关系式为s =kt +b .由题意得⎩⎪⎨⎪⎧16k +b =12,30k +b =40. 解得⎩⎪⎨⎪⎧k =2,b =-20. 所以s 和t 的函数关系式为s =2t -20.二、自学互研 生成能力知识模块一 建立一次函数模型解决预测类型的实际问题 【自主探究】 阅读教材P 135“动脑筋”,完成下列内容: (1)“动脑筋”问题为什么可以建立一次函数模型?解:因为高度随时间均匀变化.(2)用这个模型预测到的1912的记录与实际吻合,为什么用此公式预测的1988年的记寻高于实际记录?答:用所建立的函数模型,在已知数据邻近作预测,是与实际事实比较吻合的,用所建立的函数模型远离已知数据作预测不可靠.【合作探究】阅读教材P 136例2,完成下列内容: (1)两个变量之间的变化规律是什么? 答:指距随身高均匀变化.(2)通过例2中获得的公式,测一测自己的指距,算一算自己的身高. 答:略.(3)小明的爸爸在小明生日时给小明测体重,以下是小明1岁至4岁的体你能为小明的体重与岁数建立函数模型吗?①因为小明每次的体重比前一岁的体重增加了2.5kg ,所以建立一次函数模型.用y (kg)表示小明x (岁)的体重,设y 与x 的函数关系是y =kx +b .根据表中数据可求得表达式为y =2.5x +4.5.②用函数关系式预测小明5岁时的体重为17__kg . ③能够用这个公式预测小明50岁的体重吗?不能,理由是远离已知数据作预测不可靠.知识模块二 利用所给信息,确定一次函数表达式 【自主探究】直线y =kx +b (k ≠0)经过点(0,4),且与x 轴、y 轴所构成的直角三角形的面积为8,则此直线的表达式为y =x +4或y =-x +4.【合作探究】出版社印刷适合中学生阅读的科普读物,该读物首次出版印刷的印数不x (册)的一次函数.求这个一次函数的表达式;(不要求写出x 的取值范围)(2)如要出版社投入成本48 000元,那么能印该读物多少册?解:(1)设投入成本y (元)与印数x (册)的函数表达式为y =kx +b ,依题意有⎩⎪⎨⎪⎧5 000k +b =28 500,8 000k +b =36 000. 解得k=52 ,b =16 000.故所求函数表达式为y =52 x+16 000;(2)∵48 000=52x +16 000,∴能印该读物12 800册.三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到小黑板上,再一次通过小组间就上述疑难问题相互解疑.2.各小组由小组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 建立一次函数模型解决预测类型的实际问题 知识模块二 利用所给信息,确定一次函数表达式四、检测反馈 达成目标见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:_______________________________________ 2.存在困惑:_______________________________________。
实际问题的函数建模教案第一章:引言1.1 课程目标通过本章的学习,学生将了解实际问题的函数建模的基本概念和方法,并能够运用函数模型解决简单的实际问题。
1.2 教学内容实际问题的函数建模的定义和意义函数模型的类型和特点实际问题建模的基本步骤1.3 教学方法讲授法:讲解实际问题的函数建模的基本概念和方法案例分析法:分析实际问题,引导学生运用函数模型解决问题1.4 教学评估课堂讨论:学生能够参与课堂讨论,理解实际问题的函数建模的基本概念和方法课后作业:布置相关案例分析题,检验学生对函数模型的应用能力第二章:线性函数建模2.1 课程目标通过本章的学习,学生将了解线性函数建模的基本概念和方法,并能够运用线性函数模型解决简单的实际问题。
2.2 教学内容线性函数的基本概念和性质线性函数建模的方法和步骤线性函数模型在实际问题中的应用2.3 教学方法讲授法:讲解线性函数的基本概念和性质案例分析法:分析实际问题,引导学生运用线性函数模型解决问题2.4 教学评估课堂讨论:学生能够参与课堂讨论,理解线性函数建模的基本概念和方法课后作业:布置相关案例分析题,检验学生对线性函数模型的应用能力第三章:二次函数建模3.1 课程目标通过本章的学习,学生将了解二次函数建模的基本概念和方法,并能够运用二次函数模型解决简单的实际问题。
3.2 教学内容二次函数的基本概念和性质二次函数建模的方法和步骤二次函数模型在实际问题中的应用3.3 教学方法讲授法:讲解二次函数的基本概念和性质案例分析法:分析实际问题,引导学生运用二次函数模型解决问题3.4 教学评估课堂讨论:学生能够参与课堂讨论,理解二次函数建模的基本概念和方法课后作业:布置相关案例分析题,检验学生对二次函数模型的应用能力第四章:指数函数建模4.1 课程目标通过本章的学习,学生将了解指数函数建模的基本概念和方法,并能够运用指数函数模型解决简单的实际问题。
4.2 教学内容指数函数的基本概念和性质指数函数建模的方法和步骤指数函数模型在实际问题中的应用4.3 教学方法讲授法:讲解指数函数的基本概念和性质案例分析法:分析实际问题,引导学生运用指数函数模型解决问题4.4 教学评估课堂讨论:学生能够参与课堂讨论,理解指数函数建模的基本概念和方法课后作业:布置相关案例分析题,检验学生对指数函数模型的应用能力第五章:多项式函数建模5.1 课程目标通过本章的学习,学生将了解多项式函数建模的基本概念和方法,并能够运用多项式函数模型解决简单的实际问题。
3.2.2函数模型的应用举例
第二课时自建函数模型解决实际问题
【教学目标】
能够收集图表数据信息,建立拟合函数解决实际问题。
【教学重难点】
重点:收集图表数据信息、拟合数据,建立函数模解决实际问题。
难点:对数据信息进行拟合,建立起函数模型,并进行模型修正。
【教学过程】
(一)创设情景,揭示课题
2010年4月8日,西安交通大学医学院紧急启动“建立甲型HⅠN Ⅰ趋势预测与控制策略数学模型”研究项目,马知恩教授率领一批专家昼夜攻关,于4月19日初步完成了第一批成果,并制成了要供决策部门参考的应用软件。
这一数学模型利用实际数据拟合参数,并对全国和北京、山西等地的疫情进行了计算仿真,结果指出,将患者及时隔离对于抗击甲型HⅠNⅠ至关重要、分析报告说,就全国而论,甲型HⅠNⅠ病人延迟隔离1天,就医人数将增加1000人左右,推迟两天约增加工能力100人左右;若外界输入1000人中包含一个病人和一个潜伏病人,将增加患病人数100人左右;若4月21日以后,政府示采取隔离措施,则高峰期病人人数将达60万人。
这项研究在充分考虑传染病控制中心每日工资发布的数据,建立了甲型HⅠNⅠ趋势预测动力学模型和优化控制模型,并对甲型HⅠN
Ⅰ未来的流行趋势做了分析预测。
本例建立教学模型的过程,实际上就是对收集来的数据信息进行拟合,从而找到近似度比较高的拟合函数。
(二)探究过程:
例1、某桶装水经营部每天的房租、工作人员等固定成本为200元,每桶水的进价是5元。
销售单价与日销售量的关系如图所示:
请根据以上的数据作出分析,这个经营部怎样定价才能获得最大利润?
探索以下问题:
(1)随着销售价格的提升,销售量怎样变化?成一个什么样的函数关系?
(2)最大利润怎么表示?润大利润=收入-支出
具体的解答过程详见课本中的例5,在此略。
例2.某地区不同身高的未成年男性的体重平均值发下表
(身高:cm;体重:kg)
1)根据表中提供的数据,建立恰当的函数模型,使它能比较近似地反映这个地区未成年男性体重与身高ykg与身高xcm的函数模型的解析式。
2)若体重超过相同身高男性平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175cm ,体重为78kg的在校男生的体重是事正常?
探索以下问题:
1)建立适当的坐标系,根据统计数据,画出它们相应的散点图;
2)观察所作散点图,你认为它与以前所学过的何种函数的图象较为接近?
3)你认为选择何种函数来描述这个地区未成年男性体重ykg与身高xcm的函数关系比较合适?
4)确定函数模型,并对所确定模型进行适当的检验和评价.
5)怎样修正所确定的函数模型,使其拟合程度更好?
解答过程见课本中的例6
本例给出了通过测量得到的统计数据表,要想由这些数据直接发现函数模型是困难的,要引导学生借助计算器或计算机画图,帮助判断.
点评:根据散点图,利用待定系数法确定几种可能的函数模型,
然后进行优劣比较,选定拟合度较好的函数模型.在此基础上,引导学生对模型进行适当修正,并做出一定的预测.此外,注意引导学生体会本例所用的数学思想方法.
变式.将沸腾的水倒入一个杯中,然后测得不同时刻温度的数据如下表:
1)建立适当的坐标系,描点画出水温随时间变化的图象;
2)建立一个能基本反映该变化过程的水温y(℃)关于时间()
x s的函数模型,并作出其图象,观察它与描点画出的图象的吻合程度如何.
3)水杯所在的室内温度为18℃,根据所得的模型分析,至少经过几分钟水温才会降到室温?再经过几分钟会降到10℃?对此结果,你如何评价?
本例意图是引导学生进一步体会,利用拟合函数解决实际问题的思想方法,可依照例1的过程,自主完成或合作交流讨论.
当堂检测:
某地新建一个服装厂,从今年7月份开始投产,并且前4个月的产量分别为1万件、1 .2万件、1.3万件、1.37万件.由于产品质量好,服装款式新颖,因此前几个月的产品销售情况良好.为了在推销产品时,接收定单不至于过多或过少,需要估测以后几个月的产量,你能
解决这一问题吗?
探索过程如下:
1)首先建立直角坐标系,画出散点图;
2)根据散点图设想比较接近的可能的函数模型:一次函数模型:()(0);
f x kx b k
=+≠
二次函数模型:2
()(0);
g x ax bx c a
=++≠
幂函数模型:
1
2
()(0);
h x ax b a
=+≠
指数函数模型:()x
l x ab c
=+(0,
a b
≠>0,1
b≠)
利用待定系数法求出各解析式,并对各模型进行分析评价,选出合适的函数模型;由于尝试的过程计算量较多,可同桌两个同学分工合作,最后再一起讨论确定.
(三)归纳小结,巩固提高.
通过以上四个题的练习,师生共同总结出了利用拟合函数解决实际问题的一般方法,指出函数是描述客观世界变化规律的重要数学模型,是解决实际问题的重要思想方法.利用函数思想解决实际问题的基本过程如下:
符合
不符合实际
【板书设计】
一、函数模型
二、例题
例1
变式1
例2
变式2
【作业布置】
导学案课后练习与提高。