郑君里信号与系统讲义
- 格式:pdf
- 大小:3.24 MB
- 文档页数:228
信号与系统(郑君⾥)第⼆版讲义第⼆章第⼆章连续时间系统的时域分析第⼀讲微分⽅程的建⽴与求解⼀、微分⽅程的建⽴与求解对电路系统建⽴微分⽅程,其各⽀路的电流、电压将为两种约束所⽀配: 1.来⾃连接⽅式的约束:KVL 和KIL ,与元件的性质⽆关。
2.来⾃元件伏安关系的约束:与元件的连接⽅式⽆关。
例2-1 如图2-1所⽰电路,激励信号为,求输出信号。
电路起始电压为零。
图2-1解以输出电压为响应变量,列回路电压⽅程:所以齐次解为:。
因激励信号为,若,则,将其代⼊微分⽅程:所以,从⽽求得完全解:由于电路起始电压为零并且输⼊不是冲激信号,所以电容两端电压不会发⽣跳变,,从⽽若,则特解为,将其代⼊微分⽅程,并利⽤起始条件求出系数,从⽽得到:⼆、起始条件的跳变——从到1.系统的状态(起始与初始状态)(1)系统的状态:系统在某⼀时刻的状态是⼀组必须知道的最少量的数据,利⽤这组数据和系统的模型以及该时刻接⼊的激励信号,就能够完全确定系统任何时刻的响应。
由于激励信号的接⼊,系统响应及其各阶导数可能在t=0时刻发⽣跳变,所以以表⽰激励接⼊之前的瞬时,⽽以表⽰激励接⼊以后的瞬时。
(2)起始状态:,它决定了零输⼊响应,在激励接⼊之前的瞬时t=系统的状态,它总结了计算未来响应所需要的过去的全部信息。
(3)初始状态:跳变量,它决定了零状态响应,在激励接⼊之后的瞬时系统的状态。
(4)初始条件:它决定了完全响应。
这三个量的关系是:。
2.初始条件的确定(换路定律)电容电压和电感电流在换路(电路接通、断开、接线突变、电路参数突变、电源突变)瞬间前后不能发⽣突变,即是连续的。
时不变:时变:例电路如图2-2所⽰,t=0以前开关位于"1"已进⼊稳态,t=0时刻,开关⾃"1"转⾄"2"。
(1)试从物理概念判断、和、。
(2)写出t>0时间内描述系统的微分⽅程式,求的完全响应。
图2-2解(1)换路前电路处于稳态电感相当于短路,电感电流,电容相当于开路= 0,= = 0。
信号与系统复习书中最重要的三大变换几乎都有。
第一章信号与系统1、信号的分类①连续信号和离散信号②周期信号和非周期信号连续周期信号f(t)满足f(t) = f(t + mT),离散周期信号f(k)满足f(k) = f(k + mN),m = 0,±1,±2,…两个周期信号x(t),y(t)的周期分别为T1和T2,若其周期之比T1/T2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。
③能量信号和功率信号④因果信号和反因果信号2、信号的基本运算(+ - ×÷)2.1信号的(+ - ×÷)2.2信号的时间变换运算(反转、平移和尺度变换)3、奇异信号3.1 单位冲激函数的性质f(t) δ(t) = f(0) δ(t) , f(t) δ(t –a) = f(a) δ(t –a)例:3.2序列δ(k)和ε(k)f(k)δ(k) = f(0)δ(k) f(k)δ(k –k0) = f(k0)δ(k –k0) 4、系统的分类与性质4.1连续系统和离散系统4.2 动态系统与即时系统 4.3 线性系统与非线性系统 ①线性性质T [af (·)] = a T [ f (·)](齐次性)T [ f 1(·)+ f 2(·)] = T[ f 1(·)]+T[ f 2(·)] (可加性) ②当动态系统满足下列三个条件时该系统为线性系统:y (·) = y f (·) + y x (·) = T[{ f (·) }, {0}]+ T[ {0},{x(0)}] (可分解性) T[{a f (·) }, {0}] = a T[{ f (·) }, {0}]T[{f 1(t) + f 2(t) }, {0}] = T[{ f 1 (·) }, {0}] + T[{ f 2 (·) }, {0}](零状态线性))0(d )()(f t t t f =⎰∞∞-δ)(d )()(a f t a t t f =-⎰∞∞-δ?d )()4sin(91=-⎰-t t t δπ)0('d )()('f t t f t -=⎰∞∞-δ)0()1(d )()()()(n n n ft t f t -=⎰∞∞-δ4)2(2])2[(d dd )(')2(0022=--=--=-==∞∞-⎰t t t t tt t t δ)(1||1)()()(t aa at n n n δδ⋅=)(||1)(t a at δδ=)(||1)(00at t a t at -=-δδ)0()()(f k k f k =∑∞-∞=δT[{0},{ax 1(0) +bx 2(0)} ]= aT[{0},{x 1(0)}] +bT[{0},{x 2(0)}](零输入线性) 4.4时不变系统与时变系统T[{0},f(t - t d )] = y f (t - t d )(时不变性质) 直观判断方法:若f (·)前出现变系数,或有反转、展缩变换,则系统为时变系统。
第二章 连续时间系统的时域分析第一讲 微分方程的建立与求解一、微分方程的建立与求解对电路系统建立微分方程,其各支路的电流、电压将为两种约束所支配: 1.来自连接方式的约束:KVL 和KIL ,与元件的性质无关。
2.来自元件伏安关系的约束:与元件的连接方式无关。
例2-1 如图2-1所示电路,激励信号为,求输出信号。
电路起始电压为零。
图2-1解以输出电压为响应变量,列回路电压方程:所以齐次解为:。
因激励信号为,若,则,将其代入微分方程:所以,从而求得完全解:由于电路起始电压为零并且输入不是冲激信号,所以电容两端电压不会发生跳变,,从而若,则特解为,将其代入微分方程,并利用起始条件求出系数,从而得到:二、起始条件的跳变——从到1.系统的状态(起始与初始状态)(1)系统的状态:系统在某一时刻的状态是一组必须知道的最少量的数据,利用这组数据和系统的模型以及该时刻接入的激励信号,就能够完全确定系统任何时刻的响应。
由于激励信号的接入,系统响应及其各阶导数可能在t=0时刻发生跳变,所以以表示激励接入之前的瞬时,而以表示激励接入以后的瞬时。
(2)起始状态:,它决定了零输入响应,在激励接入之前的瞬时t=系统的状态,它总结了计算未来响应所需要的过去的全部信息。
(3)初始状态:跳变量,它决定了零状态响应,在激励接入之后的瞬时系统的状态。
(4)初始条件:它决定了完全响应。
这三个量的关系是:。
2.初始条件的确定(换路定律)电容电压和电感电流在换路(电路接通、断开、接线突变、电路参数突变、电源突变)瞬间前后不能发生突变,即是连续的。
时不变:时变:例电路如图2-2所示,t=0以前开关位于"1"已进入稳态,t=0时刻,开关自"1"转至"2"。
(1)试从物理概念判断、和、。
(2)写出t>0时间内描述系统的微分方程式,求的完全响应。
图2-2解(1)换路前电路处于稳态电感相当于短路,电感电流,电容相当于开路= 0,= = 0。
12§1.2信号的描述,分类和典型示例(续)•指数信号和正弦信号•奇异信号–斜变信号–单位阶跃信号和符号函数–单位冲激和冲激偶信号正交信号•11(k 实指数信号1—(k 和s 都是实数)•若中的为0 , k 为实数βαj k +=β同时•0 , s ωσs +=ω若中的为,为实数j k则为实指数函数stke t x =)(正弦信号1—取周期复指数的实部•欧拉公式sin(cos()(0ωωφω+++=+t t et j •取实部则为正弦信号)()(00φφj =)cos()(0φω+t A t x 81.3§信号的运算(参考网站绪论的内容)Ee whu edu cn用Flash演示的动态过程§1.4阶跃信号与冲激信号一.奇异信号即本身、其导数或其积分有不连续点的函数。
1.斜变信号2.单位阶跃信号3.符号函数4.单位冲激5.冲激偶信号13信号加窗或取单边t t u t u e t t−−=−)]()([)(0f f(t)f()t(1)突然接入的直流电压()2)突然接通又马上断开电源K负载r(t)r(t 3)r(t 1)r(t 2)r(t-3)-r(t-1)-r(t-2)f(t)1)]2()2()[1()(.101.38−−+−=−t u t u tt f a p 题2....)2()1()()(.+−+−+=t u t u t u t f b )]()([(sin )(.T t u t u t E t f c −−=πT二.单位冲激函数)(t dr )(t du δ=)(t u dt =)(t dt 1.定义:(p17—21))]()([1)(.lim ττδ−−+=t u t u t a 220ττ→)()(t t =δ1=∞dt t limfnn ∞→)(∫∞−fn0=t )(lim ∞→fnn 0≠t 用规则函数脉冲序列的极限来定义)(t Rt ut )(t)(tδtb.Dirac 定义:=)(t δ∫∞=1)(dt t δ00≠t 0=∞t c.利用冲激函数的抽样性∞)()()(00t f dt t t t f =−∫∞δ∞−∫∞−=)0()()(f dt t t f δ∞−)()()(.00t f dt t t t f a =−∫∞−δ1∞)()]([.00t t t t b −=−−δδ)()(.t aat c δδ=)()()()(.000t t t f t t t f d −=−δδt)()(.t dtt u e δ=)()(t u d =∫∞−ττδ+−)(t i c 由于冲激电流的出现,电容两端的电压可以突变;电感电流也可以突变。