数学模型的定义
- 格式:doc
- 大小:97.50 KB
- 文档页数:11
数学模型与数学建模数学模型数学模型(Mathematical Model)是近些年发展起来的新学科,是数学理论与实际问题相结合的一门科学。
它将现实问题归结为相应的数学问题,并在此基础上利用数学的概念、方法和理论进行深入的分析和研究,从而从定性或定量的角度来刻画实际问题,并为解决现实问题提供精确的数据或可靠的指导。
一、建立数学模型的要求:1、真实完整。
1)真实的、系统的、完整的,形象的映客观现象;2)必须具有代表性;3)具有外推性,即能得到原型客体的信息,在模型的研究实验时,能得到关于原型客体的原因;4)必须反映完成基本任务所达到的各种业绩,而且要与实际情况相符合。
2、简明实用。
在建模过程中,要把本质的东西及其关系反映进去,把非本质的、对反映客观真实程度影响不大的东西去掉,使模型在保证一定精确度的条件下,尽可能的简单和可操作,数据易于采集。
3、适应变化。
随着有关条件的变化和人们认识的发展,通过相关变量及参数的调整,能很好的适应新情况。
根据研究目的,对所研究的过程和现象(称为现实原型或原型)的主要特征、主要关系、采用形式化的数学语言,概括地、近似地表达出来的一种结构,所谓“数学化”,指的就是构造数学模型.通过研究事物的数学模型来认识事物的方法,称为数学模型方法.简称为MM 方法。
数学模型是数学抽象的概括的产物,其原型可以是具体对象及其性质、关系,也可以是数学对象及其性质、关系。
数学模型有广义和狭义两种解释.广义地说,数学概念、如数、集合、向量、方程都可称为数学模型,狭义地说,只有反映特定问题和特定的具体事物系统的数学关系结构方数学模型大致可分为二类:(1)描述客体必然现象的确定性模型,其数学工具一般是代效方程、微分方程、积分方程和差分方程等,(2)描述客体或然现象的随机性模型,其数学模型方法是科学研究相创新的重要方法之一。
在体育实践中常常提到优秀运动员的数学模型。
如经调查统计.现代的世界级短跑运动健将模型为身高1.80米左右、体重70公斤左右,100米成绩10秒左右或更好等。
数学建模中模型的名词解释数学建模作为一门学科,是将实际问题转化为数学问题,并运用数学理论和方法来解决问题的过程。
在数学建模中,模型是其中最为重要的概念之一。
模型在解决实际问题时起着关键的作用,可以帮助我们更好地理解现象和规律,并进行预测和优化。
一、模型的定义模型是对实际问题的抽象和简化,通过数学形式来描述。
它可以是数学方程、图表或者其他数学表达形式。
模型的建立需要根据实际问题的特点和需求,选择合适的数学方法和变量,并对其进行适当的假设和简化。
二、数学模型的分类数学模型可以分为动态模型和静态模型两种类型。
1.动态模型动态模型是描述事物随时间变化的模型。
在动态模型中,时间是一个重要的变量,用来描述事物的演化过程。
动态模型可以采用微分方程、差分方程等数学方法进行描述,常见的动态模型包括物理系统的运动学模型、生态系统的种群动力学模型等。
2.静态模型静态模型是描述事物特定状态的模型。
在静态模型中,时间不再是一个重要的变量,模型的关注点集中于某一特定时刻或特定状态下的问题。
静态模型可以采用代数方程、优化模型等进行描述,常见的静态模型包括线性规划模型、统计回归模型等。
三、模型的构建步骤建立数学模型的过程可以分为问题的理解、建立数学模型、求解模型和模型的验证四个步骤。
1.问题的理解问题的理解是建立数学模型的第一步,需要深入了解问题的背景和需求,明确问题的目标和限制条件,分析问题的关键因素和变量。
2.建立数学模型建立数学模型是将实际问题转化为数学问题的过程,需要根据问题的特点和要求选择合适的数学方法和变量,并针对问题进行适当的假设和简化。
建立数学模型时,需要考虑模型的可解性、可行性和合理性。
3.求解模型求解模型是通过数学方法和计算工具,对建立的数学模型进行求解和分析,得到问题的解答或者优化结果。
求解模型时,需要选择合适的求解算法和计算方法,进行模型的计算和推导。
4.模型的验证模型的验证是对模型求解结果的合理性和可靠性进行分析和评价的过程。
数学模型和物理模型在动力学仿真中的比较分析数学模型和物理模型在动力学仿真中都起着非常重要的作用,它们都用来描述和预测复杂系统的运动行为。
然而,它们之间存在一些显著的区别,可以通过比较分析来更好地理解它们在动力学仿真中的作用和适用情况。
一、数学模型和物理模型的定义和特点数学模型是一种用数学语言和符号描述系统行为和特性的模型。
它通常以方程或者图形的形式表示,能够精确描述系统的运动规律,提供了对系统的定量分析和预测能力。
数学模型的特点是抽象性强,可以忽略系统的具体物理结构和机制,着重于描述系统的数学关系和规律。
物理模型是一种用物理理论和实验数据建立的模型,它通过对系统的物理结构和特性进行建模,描述系统的运动和行为。
物理模型常常是通过实验数据和物理定律得到的,更直观地反映了真实系统的性质和特征。
物理模型的特点是具体性强,能够直观地展现系统的物理特性和行为。
二、数学模型和物理模型在动力学仿真中的作用和应用数学模型在动力学仿真中具有重要的作用,它能够通过建立数学方程来描述系统的动力学行为,并进行数值计算和仿真分析。
例如,在机械系统动力学仿真中,可以利用牛顿运动方程和拉格朗日方程建立机械系统的数学模型,对系统的运动轨迹和受力情况进行仿真分析。
数学模型能够提供对系统的精确描述和深入分析,具有广泛的应用领域和灵活的建模方法。
物理模型在动力学仿真中也扮演着重要的角色,它能够通过对系统实际物理结构和特性的建模来进行仿真分析。
例如,在流体动力学仿真中,可以利用纳维-斯托克斯方程建立流体系统的物理模型,对流场和压力场进行仿真分析。
物理模型能够直观地展现系统的物理特性和行为,具有较强的可视化效果和直观性。
三、数学模型和物理模型的优缺点比较分析数学模型的优点包括:1.精确性高:数学模型能够提供对系统的精确描述和深入分析,能够准确预测系统的行为和性能。
2.灵活性强:数学模型具有灵活的建模方法和丰富的数学工具,能够适应不同系统的建模需求和仿真分析。
《数学模型电子教案》PPT课件第一章:数学模型概述1.1 数学模型的定义与分类1.2 数学模型的构建步骤1.3 数学模型在实际应用中的重要性1.4 数学模型与数学建模的区别与联系第二章:数学模型建立的基本方法2.1 直观建模法2.2 解析建模法2.3 统计建模法2.4 计算机模拟建模法第三章:线性方程组与线性规划模型3.1 线性方程组的求解方法3.2 线性规划的基本概念与方法3.3 线性规划模型的应用案例3.4 线性规划模型的求解算法第四章:微分方程与差分方程模型4.1 微分方程的基本概念与分类4.2 微分方程的求解方法4.3 差分方程的基本概念与分类4.4 差分方程的求解方法与应用第五章:概率论与统计模型5.1 概率论基本概念与随机变量5.2 概率分布与数学期望5.3 统计学基本概念与推断方法5.4 统计模型的应用案例第六章:最优化方法与应用6.1 无约束最优化问题6.2 约束最优化问题6.3 最优化方法的应用案例6.4 遗传算法与优化问题第七章:概率图与贝叶斯模型7.1 概率图的基本概念7.2 贝叶斯定理及其应用7.3 贝叶斯网络与推理方法7.4 贝叶斯模型在实际应用中的案例分析第八章:时间序列分析与预测模型8.1 时间序列的基本概念与分析方法8.2 自回归模型(AR)与移动平均模型(MA)8.3 自回归移动平均模型(ARMA)与自回归积分滑动平均模型(ARIMA)8.4 时间序列预测模型的应用案例第九章:排队论与网络流量模型9.1 排队论的基本概念与模型构建9.2 排队论在服务系统优化中的应用9.3 网络流量模型的基本概念与方法9.4 网络流量模型的应用案例第十章:随机过程与排队网络模型10.1 随机过程的基本概念与分类10.2 泊松过程与Poisson 排队网络10.3 马克威茨过程与随机最优控制10.4 排队网络模型的应用案例第十一章:生态学与种群动力学模型11.1 生态学中的基本概念11.2 种群动力学模型的构建11.3 差分方程在种群动力学中的应用11.4 种群动力学模型的案例分析第十二章:金融数学模型12.1 金融市场的基本概念12.2 金融数学模型概述12.3 定价模型与风险管理12.4 金融数学模型在实际应用中的案例分析第十三章:社会经济模型13.1 社会经济系统的基本特征13.2 经济数学模型的构建方法13.3 宏观经济模型与微观经济模型13.4 社会经济模型的应用案例第十四章:神经网络与深度学习模型14.1 人工神经网络的基本概念14.2 深度学习模型的构建与训练14.3 神经网络在数学建模中的应用案例14.4 当前神经网络与深度学习的发展趋势第十五章:数学模型在工程中的应用15.1 工程问题中的数学建模方法15.2 数学模型在结构工程中的应用15.3 数学模型在流体力学中的应用15.4 数学模型在其他工程领域中的应用案例重点和难点解析本《数学模型电子教案》PPT课件涵盖了数学模型概述、建模方法、线性方程组与线性规划、微分方程与差分方程、概率论与统计、最优化方法、概率图与贝叶斯模型、时间序列分析、排队论与网络流量模型、随机过程、生态学与种群动力学模型、金融数学模型、社会经济模型、神经网络与深度学习模型以及数学模型在工程中的应用等多个领域。
什么是数学建模人们在观察、分析和研究一个现实对象时经常使用模型,如展览馆里的飞机模型、水坝模型,实际上,照片、玩具、地图、电路图等都是模型,它们能概括地、集中地反映现实对象的某些特征,从而帮助人们迅速、有效地了解并掌握那个对象。
数学模型不过是更抽象些的模型。
简单地说:数学模型就是对实际问题的一种数学表述。
具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。
更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。
数学结构可以是数学公式,算法、表格、图示等。
当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。
这个建立数学模型的全过程就称为数学建模。
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段,是对现实世界的一特定现象,为了某特定目的,根据特有的内在规律,做出一些重要的简化和假设,运用适当的数学工具得到一个数学结构,用它来解释特定现象的现实性态,预测对象的未来状况,提供处理对象的优化决策和控制,设计满足某种需要的产品等。
数学建模是使用数学模型解决实际问题,数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一。
简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。
我校数学建模发展史以成就展自从人类进入文明社会,就与数学建立了千丝万缕的联系。
数学模型的定义
数学模型是指利用数学语言和符号来表达现实世界中某一过程、系统或现象的一种形式化抽象。
它通过精确的数学描述和符号化处理,将现实世界中的复杂问题简化成数学模型,从而更好地进行定量分析、预测和优化。
数学模型的建立需要根据实际问题的特征选择适当的数学工具和方法,以构建符合实际情况的数学公式或方程,进一步进行模拟、推演和验证,得出准确的结果和结论。
数学模型广泛应用于科学、工程、经济、社会学等领域,是现代科技与社会发展的基础之一。
数学模型的定义:根据对研究对象所观察到的现象和实践经验,归结成一套反映其数量关系的数学公式和具体算法,描述研究对象的规律,某个属性随时间、空间、其他属性、其他研究对象某些属性的变化特征数学模型的功能:再现历史(事件驱动的分布式参数非点源模型),预测未来,优化调控模型使用的意义:评价(回顾性评价,预测性评估),预测(社会经济发展/排放预测,环境质量预测),决策(单目标,多目标)数学模型的特征:抽象性:用数学符号表达具体事物的特征和数量关系,对研究对象的本质进行高度抽象。
局限性:对实际事物进行抽象,需要对研究对象作出简化和假设。
这些假设可能会偏离事物原来的特征,或者只反映事物的部分特征。
数学模型的分类:空间维数(零维、一维、二维、三维),变量与时间(稳态、动态(离散/连续)),变量间关系(线性模型、非线性模型),参数性质(集中式、分布式),变量变化规律(确定性模型、随机模型),模型用途(模拟模型、管理模型),研究方法(优化模型、系统动力学模型、神经网络模型、时间序列模型……),模型结构(白箱模型、灰箱模型、黑箱模型)✓白箱模型:通过逻辑演绎法建模,普遍适用,建立在模型变量的变化规律及其理论推理的基础上✓灰箱模型:介于“白”与“黑”之间,具有一定普适性,模型结构通过理论推导建立,参数取值利用实际数据确定✓黑箱模型:通过统计归纳法建模,仅适用于较窄的时空范围以反映事物客观变化的数据为基础,通过统计方法建立特定关系式来描述输入输出关系灰箱模型建立的基本过程:数据收集与处理(观测数据组1)→模型结构确定→模型参数估计→模型验证(观测数据组2)→模型应用✓数据收集与处理:收集反映研究对象特征的各种数据,与研究对象直接相关的数据(环境质量数据、污染源数据),与研究对象间接相关的数据(气象数据、社会经济发展数据)。
数据收集的途径:已有数据(二手)和现场监测数据(一手)。
对收集的数据进行整理分析,找出之间的相互关系(变量与变量、变量与时间、变量与空间,绘制变量的时间过程线、空间分布图等)✓模型结构的确定:环境模型大多属于灰箱模型,突发性污染事故的预测有时采用黑箱模型;既包含机理,又包含经验;质量守恒、能量守恒、经济理论、行为假设、反应类型、反应级数;根据研究对象内各个变量之间的物理、化学或生物过程建立起原则性的定量关系,同时引入一系列取值未知的参数。
一、数学模型的定义现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。
不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。
”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。
一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。
例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。
今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。
特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。
因此数学建模被时代赋予更为重要的意义。
二、建立数学模型的方法和步骤1. 模型准备要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。
2. 模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。
如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。
3. 模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。
这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。
不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。
4. 模型求解可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。
一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。
5. 模型分析对模型解答进行数学上的分析。
“横看成岭侧成峰,远近高低各不同”,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。
还要记住,不论那种情况都需进行误差分析,数据稳定性分析。
三、数模竞赛出题的指导思想传统的数学竞赛一般偏重理论知识,它要考查的内容单一,数据简单明确,不允许用计算器完成。
对此而言,数模竞赛题是一个“课题”,大部分都源于生产实际或者科学研究的过程中,它是一个综合性的问题,数据庞大,需要用计算机来完成。
其答案往往不是唯一的(数学模型是实际的模拟,是实际问题的近似表达,它的完成是在某种合理的假设下,因此其只能是较优的,不唯一的),呈报的成果是一编“论文”。
由此可见“数模竞赛”偏重于应用,它是以数学知识为引导计算机运用能力及文章的写作能力为辅的综合能力的竞赛。
四、竞赛中的常见题型赛题题型结构形式有三个基本组成部分:1. 实际问题背景涉及面宽——有社会,经济,管理,生活,环境,自然现象,工程技术,现代科学中出现的新问题等。
一般都有一个比较确切的现实问题。
2.若干假设条件有如下几种情况:1)只有过程、规则等定性假设,无具体定量数据;2)给出若干实测或统计数据;3)给出若干参数或图形;4)蕴涵着某些机动、可发挥的补充假设条件,或参赛者可以根据自己收集或模拟产生数据。
3.要求回答的问题往往有几个问题,而且一般不是唯一答案。
一般包含以下两部分:1)比较确定性的答案(基本答案);2)更细致或更高层次的讨论结果(往往是讨论最优方案的提法和结果)。
五、提交一篇论文,基本内容和格式是什么?提交一篇论文,基本内容和格式大致分三大部分:1. 标题、摘要部分题目——写出较确切的题目(不能只写A题、B题)。
摘要——200-300字,包括模型的主要特点、建模方法和主要结果。
内容较多时最好有个目录。
2. 中心部分1)问题提出,问题分析。
2)模型建立:①补充假设条件,明确概念,引进参数;②模型形式(可有多个形式的模型);③模型求解;④模型性质;3)计算方法设计和计算机实现。
4)结果分析与检验。
5)讨论——模型的优缺点,改进方向,推广新思想。
6)参考文献——注意格式。
3. 附录部分计算程序,框图。
各种求解演算过程,计算中间结果。
各种图形、表格。
六、参加数学建模竞赛是不是需要学习很多知识?没有必要很系统的学很多数学知识,这是时间和精力不允许的。
很多优秀的论文,其高明之处并不是用了多少数学知识,而是思维比较全面、贴合实际、能解决问题或是有所创新。
有时候,在论文中可能碰见一些没有学过的知识,怎么办?现学现用,在优秀论文中用过的数学知识就是最有可能在数学建模竞赛中用到的,你当然有必要去翻一翻。
具体说来,大概有以下这三个方面:第一方面:数学知识的应用能力归结起来大体上有以下几类:1)概率与数理统计2)统筹与线轴规划3)微分方程;还有与计算机知识交叉的知识:计算机模拟。
上述的内容有些同学完全没有学过,也有些同学只学过一点概率与数理统计,微分方程的知识怎么办呢?一个词“自学”,我曾听到过数模评卷的负责教师范毅说过“能用最简单浅易的数学方法解决了别人用高深理论才能解决的答卷是更优秀的答卷”。
第二方面:计算机的运用能力一般来说凡参加过数模竞赛的同学都能熟练地应用字处理软件“Word”,掌握电子表格“Excel”的使用;“Mathematica”软件的使用,最好还具备语言能力。
这些知识大部分都是学生自己利用课余时间学习的。
第三方面:论文的写作能力前面已经说过考卷的全文是论文式的,文章的书写有比较严格的格式。
要清楚地表达自己的想法并不容易,有时一个问题没说清楚就又说另一个问题了。
评卷的教师们有一个共识,一篇文章用10来分钟阅读仍然没有引起兴趣的话,这一遍文章就很有可能被打入冷宫了。
七、小组中应该如何分工?传统的标准答案是——数学,编程,写作。
其实分工不用那么明确,但有个前提是大家关系很好。
不然的话,很容易产生矛盾。
分工太明确了,会让人产生依赖思想,不愿去动脑子。
理想的分工是这样的:数学建模竞赛小组中的每一个人,都能胜任其它人的工作,就算小组只剩下她(他)一个人,也照样能够搞定数学建模竞赛。
在竞赛中的分工,只是为了提高工作的效率,做出更好的结果。
具体的建议如下:一定要有一个人脑子比较活,善于思考问题,这个人勉强归于数学方面吧;一定要有一个人会编程序,能够实现一些算法。
另外需要有一个论文写的比较好,不过写不好也没关系,多看一看别人的优秀论文,多用几次word,Visio就成了。
一、写好数模答卷的重要性1. 评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。
2. 答卷是竞赛活动的成绩结晶的书面形式。
3. 写好答卷的训练,是科技写作的一种基本训练。
二、答卷的基本内容,需要重视的问题1.评阅原则假设的合理性,建模的创造性,结果的合理性,表述的清晰程度。
2.答卷的文章结构1)摘要。
2)问题的叙述,问题的分析,背景的分析等。
3)模型的假设,符号说明(表)。
4)模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)。
5)模型的求解计算方法设计或选择;算法设计或选择,算法思想依据,步骤及实现,计算框图;所采用的软件名称;引用或建立必要的数学命题和定理;求解方案及流程。
6)结果表示、分析与检验,误差分析,模型检验。
7)模型评价,特点,优缺点,改进方法,推广。
8)参考文献。
9)附录、计算框图、详细图表。
3. 要重视的问题1)摘要。
包括:a. 模型的数学归类(在数学上属于什么类型);b. 建模的思想(思路);c. 算法思想(求解思路);d. 建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验……);e. 主要结果(数值结果,结论;回答题目所问的全部“问题”)。
▲注意表述:准确、简明、条理清晰、合乎语法、字体工整漂亮;打印最好,但要求符合文章格式。
务必认真校对。
2)问题重述。
3)模型假设。
根据全国组委会确定的评阅原则,基本假设的合理性很重要。
a. 根据题目中条件作出假设b. 根据题目中要求作出假设关键性假设不能缺;假设要切合题意。
4)模型的建立。
a. 基本模型:ⅰ)首先要有数学模型:数学公式、方案等;ⅱ)基本模型,要求完整,正确,简明;b. 简化模型:ⅰ)要明确说明简化思想,依据等;ⅱ)简化后模型,尽可能完整给出;c. 模型要实用,有效,以解决问题有效为原则。
数学建模面临的、要解决的是实际问题,不追求数学上的高(级)、深(刻)、难(度大)。
ⅰ)能用初等方法解决的、就不用高级方法;ⅱ)能用简单方法解决的,就不用复杂方法;ⅲ)能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。
d.鼓励创新,但要切实,不要离题搞标新立异。
数模创新可出现在:▲建模中,模型本身,简化的好方法、好策略等;▲模型求解中;▲结果表示、分析、检验,模型检验;▲推广部分。
e.在问题分析推导过程中,需要注意的问题:ⅰ)分析:中肯、确切;ⅱ)术语:专业、内行;ⅲ)原理、依据:正确、明确;ⅳ)表述:简明,关键步骤要列出;ⅴ)忌:外行话,专业术语不明确,表述混乱,冗长。
5)模型求解。
a. 需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论证严密。
b. 需要说明计算方法或算法的原理、思想、依据、步骤。
若采用现有软件,说明采用此软件的理由,软件名称。
c. 计算过程,中间结果可要可不要的,不要列出。
d. 设法算出合理的数值结果。
6)结果分析、检验;模型检验及模型修正;结果表示。
a. 最终数值结果的正确性或合理性是第一位的;b. 对数值结果或模拟结果进行必要的检验;结果不正确、不合理、或误差大时,分析原因,对算法、计算方法、或模型进行修正、改进。
c. 题目中要求回答的问题,数值结果,结论,须一一列出;d. 列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据;e. 结果表示:要集中,一目了然,直观,便于比较分析。
▲数值结果表示:精心设计表格;可能的话,用图形图表形式。
▲求解方案,用图示更好。
7)必要时对问题解答,作定性或规律性的讨论。
最后结论要明确。
8)模型评价优点突出,缺点不回避。
改变原题要求,重新建模可在此做。
推广或改进方向时,不要玩弄新数学术语。
9)参考文献10)附录详细的结果,详细的数据表格,可在此列出,但不要错,错的宁可不列。
主要结果数据,应在正文中列出,不怕重复。
检查答卷的主要三点,把三关:a. 模型的正确性、合理性、创新性b. 结果的正确性、合理性c. 文字表述清晰,分析精辟,摘要精彩三、关于写答卷前的思考和工作规划答卷需要回答哪几个问题――建模需要解决哪几个问题;问题以怎样的方式回答――结果以怎样的形式表示;每个问题要列出哪些关键数据――建模要计算哪些关键数据;每个量,列出一组还是多组数――要计算一组还是多组数。