专题3-_平差数学模型与最小二乘原理(实习用—概论与开始统讲)精品PPT课件
- 格式:pptx
- 大小:896.79 KB
- 文档页数:37
2.1 测量平差概述1、函数模型是怎样定义的?试举例说明函数模型的作用。
2、以下图2-1为例,说明必要元素、多余观测及其观测量的概念及其三者之间的关系。
图2-13、平差值和改正数是怎么定义的? 2.2 测量平差的数学模型1、试按条件平差法列出下列图形的函数模型已知点:A 、B 已知点:A 、B 观测值:31~ββ、1S 、2S 观测值:51~h h5h2、试按附有参数的平差法列出下列图形的函数模型已知点:A 、B 已知点:A 、B 观测值:41~h h 观测值:61~L L平差参数:C 点的高程 平差参数:角度ABC ∠、DBC ∠3、试按间接平差法列出下列图形的函数模型已知点:A 已知点:A 、B 、C 观测值:61~h h 观测值:31~S S平差参数:B 、C 、D 点的高程 平差参数:P 点的坐标4、试按附有限制条件的间接平差法列出下列图形的函数模型 已知值:矩形的对角边S 已知点:A 观测值:41~L L 观测值:41~h h平差参数:321~~~L L L 、、 平差参数:43~~h h H B 、、5、在下图所示的水准网中,A 为已知点,B 、C 、D 、E 为待定点,观测了9条路线的高差91~h h ,列出下列四种情况下的函数模型,并指出方程的个数。
(1) 条件平差法的函数模型;(2) 选取B 、C 、D 三点的高程平差值为参数; (3) 选取51~h h 的高差平差值为参数; (4) 选取85~h h 的平差值为参数。
6、试用表格的形式总结四种基本平差方法函数的异同。
7、四种基本平差方法的随机模型是什么?有什么作用?8、同精度观测了下图中的5个角度i L ,A 、B 为已知点,C 点为待定点,CD 边的方位角CD 为已知方位角,试列出条件平差的函数模型。
9、在下图所示的直角三角形中,我们观测了三角形的三个边长1L 、2L 、3L ,选取边长1~L 、2~L 为平差参数,试列出间接平差的观测方程。