支持向量回归简介
- 格式:docx
- 大小:18.86 KB
- 文档页数:2
支持向量机(SVM )原理及应用一、SVM 的产生与发展自1995年Vapnik(瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。
同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。
SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。
),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。
例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。
此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。
支持向量回归简介人类通过学习,从已知的事实中分析、总结出规律,并且根据规律对未来的现象或无法观测的现象做出正确的预测和判断,即获得认知的推广能力。
在对智能机器的研究当中,人们也希望能够利用机器(计算机)来模拟人的良好学习能力,这就是机器学习问题。
基于数据的机器学习是现代智能技术中的重要方面,机器学习的目的是通过对已知数据的学习,找到数据内在的相互依赖关系,从而获得对未知数据的预测和判断能力,在过去的十几年里,人工神经网络以其强大的并行处理机制、任意函数的逼近能力,学习能力以及自组织和自适应能力等在模式识别、预测和决策等领域得到了广泛的应用。
但是神经网络受到网络结构复杂性和样本复杂性的影响较大,容易出现“过学习”或低泛化能力。
特别是神经网络学习算法缺乏定量的分析与完备的理论基础支持,没有在本质上推进学习过程本质的认识。
现有机器学习方法共同的重要理论基础之一是统计学。
传统统计学研究的是样本数目趋于无穷大时的渐近理论,现有学习方法也多是基于此假设。
但在实际问题中,样本数往往是有限的,因此一些理论上很优秀的学习方法实际中表现却可能不尽人意。
与传统统计学相比, 统计学习理论(Statistical LearningTheory 或SLT ) 是一种专门研究小样本情况下机器学习规律的理论Vladimir N. Vapnik 等人从六、七十年代开始致力于此方面研究,到九十年代中期,随着其理论的不断发展和成熟[17] ,也由于神经网络等学习方法在理论上缺乏实质性进展, 统计学习理论开始受到越来越广泛的重视。
统计学习理论是建立在一套较坚实的理论基础之上的,为解决有限样本学习问题提供了一个统一的框架。
它能将很多现有方法纳入其中,有望帮助解决许多原来难以解决的问题(比如神经网络结构选择问题、局部极小点问题)等;同时, 在这一理论基础上发展了一种新的通用学习方法—支持向量机(Support Vector Machine 或SVM ) ,它已初步表现出很多优于已有方法的性能。
支持向量机(SVM)、支持向量机回归(SVR):原理简述及其MATLAB实例一、基础知识1、关于拉格朗日乘子法和KKT条件1)关于拉格朗日乘子法2)关于KKT条件2、范数1)向量的范数2)矩阵的范数3)L0、L1与L2范数、核范数二、SVM概述1、简介2、SVM算法原理1)线性支持向量机2)非线性支持向量机二、SVR:SVM的改进、解决回归拟合问题三、多分类的SVM1. one-against-all2. one-against-one四、QP(二次规划)求解五、SVM的MATLAB实现:Libsvm1、Libsvm工具箱使用说明2、重要函数:3、示例支持向量机(SVM):原理及其MATLAB实例一、基础知识1、关于拉格朗日乘子法和KKT条件1)关于拉格朗日乘子法首先来了解拉格朗日乘子法,为什么需要拉格朗日乘子法呢?记住,有需要拉格朗日乘子法的地方,必然是一个组合优化问题。
那么带约束的优化问题很好说,就比如说下面这个:这是一个带等式约束的优化问题,有目标值,有约束条件。
那么你可以想想,假设没有约束条件这个问题是怎么求解的呢?是不是直接 f 对各个 x 求导等于 0,解 x 就可以了,可以看到没有约束的话,求导为0,那么各个x均为0吧,这样f=0了,最小。
但是x都为0不满足约束条件呀,那么问题就来了。
有了约束不能直接求导,那么如果把约束去掉不就可以了吗?怎么去掉呢?这才需要拉格朗日方法。
既然是等式约束,那么我们把这个约束乘一个系数加到目标函数中去,这样就相当于既考虑了原目标函数,也考虑了约束条件。
现在这个优化目标函数就没有约束条件了吧,既然如此,求法就简单了,分别对x求导等于0,如下:把它在带到约束条件中去,可以看到,2个变量两个等式,可以求解,最终可以得到,这样再带回去求x就可以了。
那么一个带等式约束的优化问题就通过拉格朗日乘子法完美的解决了。
更高一层的,带有不等式的约束问题怎么办?那么就需要用更一般化的拉格朗日乘子法,即KKT条件,来解决这种问题了。
支持向量回归案例代码支持向量回归(Support Vector Regression, SVR)是一种基于支持向量机的回归方法,可以用于解决回归问题。
下面列举了一些支持向量回归的案例代码,以帮助读者更好地理解和应用该方法。
1. 一维线性回归案例:```pythonfrom sklearn.svm import SVRimport numpy as np# 创建训练数据X = np.sort(5 * np.random.rand(100, 1), axis=0)y = np.sin(X).ravel()# 训练支持向量回归模型svr = SVR(kernel='linear', C=1.0, epsilon=0.2)svr.fit(X, y)# 预测X_test = np.linspace(0, 5, 100).reshape(-1, 1)y_pred = svr.predict(X_test)# 可视化结果import matplotlib.pyplot as pltplt.scatter(X, y, color='darkorange', label='data') plt.plot(X_test, y_pred, color='navy', label='SVR') plt.xlabel('X')plt.ylabel('y')plt.title('SVR - Linear Kernel')plt.legend()plt.show()```2. 多维非线性回归案例:```pythonfrom sklearn.svm import SVRimport numpy as np# 创建训练数据X = np.sort(5 * np.random.rand(100, 2), axis=0)y = np.sin(X[:, 0]) + np.cos(X[:, 1])# 训练支持向量回归模型svr = SVR(kernel='rbf', C=1.0, epsilon=0.2)svr.fit(X, y)# 预测X1 = np.linspace(0, 5, 50)X2 = np.linspace(0, 5, 50)X_test = np.array(np.meshgrid(X1, X2)).T.reshape(-1, 2)y_pred = svr.predict(X_test)# 可视化结果import matplotlib.pyplot as pltfrom mpl_toolkits.mplot3d import Axes3Dfig = plt.figure()ax = fig.add_subplot(111, projection='3d')ax.scatter(X[:, 0], X[:, 1], y, color='darkorange', label='data')ax.scatter(X_test[:, 0], X_test[:, 1], y_pred, color='navy', label='SVR')ax.set_xlabel('X1')ax.set_ylabel('X2')ax.set_zlabel('y')ax.set_title('SVR - RBF Kernel')plt.legend()plt.show()```3. 支持向量回归中的参数调优:```pythonfrom sklearn.svm import SVRfrom sklearn.model_selection import GridSearchCVimport numpy as np# 创建训练数据X = np.sort(5 * np.random.rand(100, 1), axis=0)y = np.sin(X).ravel()# 定义参数范围param_grid = {'C': [0.1, 1.0, 10.0], 'epsilon': [0.1, 0.2, 0.5], 'kernel': ['linear', 'rbf']}# 使用网格搜索寻找最佳参数svr = SVR()grid_search = GridSearchCV(svr, param_grid, cv=5)grid_search.fit(X, y)# 输出最佳参数print("Best Parameters: ", grid_search.best_params_)# 预测X_test = np.linspace(0, 5, 100).reshape(-1, 1)y_pred = grid_search.predict(X_test)# 可视化结果import matplotlib.pyplot as pltplt.scatter(X, y, color='darkorange', label='data') plt.plot(X_test, y_pred, color='navy', label='SVR') plt.xlabel('X')plt.ylabel('y')plt.title('SVR - Best Parameters')plt.legend()plt.show()```4. 使用SVR进行时间序列预测:```pythonfrom sklearn.svm import SVRimport numpy as np# 创建时间序列数据X = np.arange(0, 10, 0.1).reshape(-1, 1)y = np.sin(X).ravel()# 训练支持向量回归模型svr = SVR(kernel='rbf', C=1.0, epsilon=0.2)svr.fit(X, y)# 预测X_test = np.arange(10, 20, 0.1).reshape(-1, 1)y_pred = svr.predict(X_test)# 可视化结果import matplotlib.pyplot as pltplt.plot(X, y, color='darkorange', label='data') plt.plot(X_test, y_pred, color='navy', label='SVR') plt.xlabel('X')plt.ylabel('y')plt.title('SVR - Time Series')plt.legend()plt.show()```5. 使用SVR进行异常点检测:```pythonfrom sklearn.svm import SVRimport numpy as np# 创建训练数据X = np.sort(5 * np.random.rand(100, 1), axis=0)y = np.sin(X).ravel()# 添加异常点X_outliers = np.array([[2.5]])y_outliers = np.array([10.0])X = np.concatenate((X, X_outliers))y = np.concatenate((y, y_outliers))# 训练支持向量回归模型svr = SVR(kernel='linear', C=1.0, epsilon=0.2)svr.fit(X, y)# 预测X_test = np.linspace(0, 5, 100).reshape(-1, 1)y_pred = svr.predict(X_test)# 可视化结果import matplotlib.pyplot as pltplt.scatter(X, y, color='darkorange', label='data')plt.plot(X_test, y_pred, color='navy', label='SVR')plt.scatter(X_outliers, y_outliers, color='red', label='outliers')plt.xlabel('X')plt.ylabel('y')plt.title('SVR - Outliers')plt.legend()plt.show()```6. 使用SVR进行多任务学习:```pythonfrom sklearn.svm import SVRimport numpy as np# 创建训练数据X = np.sort(5 * np.random.rand(100, 1), axis=0)y1 = np.sin(X).ravel()y2 = np.cos(X).ravel()# 训练支持向量回归模型svr = SVR(kernel='linear', C=1.0, epsilon=0.2, multioutput='uniform_average')svr.fit(X, np.column_stack((y1, y2)))# 预测X_test = np.linspace(0, 5, 100).reshape(-1, 1)y_pred = svr.predict(X_test)# 可视化结果import matplotlib.pyplot as pltplt.scatter(X, y1, color='darkorange', label='data1')plt.scatter(X, y2, color='limegreen', label='data2')plt.plot(X_test, y_pred[:, 0], color='navy', label='SVR1') plt.plot(X_test, y_pred[:, 1], color='purple', label='SVR2') plt.xlabel('X')plt.ylabel('y')plt.title('SVR - Multi-task Learning')plt.legend()plt.show()```7. 使用SVR进行特征选择:```pythonfrom sklearn.svm import SVRfrom sklearn.datasets import load_bostonfrom sklearn.feature_selection import SelectFromModel# 加载波士顿房价数据集X, y = load_boston(return_X_y=True)# 特征选择svr = SVR(kernel='linear', C=1.0, epsilon=0.2)sfm = SelectFromModel(svr)X_new = sfm.fit_transform(X, y)# 输出选择的特征print("Selected Features: ", sfm.get_support(indices=True)) ```8. 使用SVR进行稀疏数据回归:```pythonfrom sklearn.svm import SVRimport numpy as np# 创建稀疏训练数据X = np.sort(5 * np.random.rand(100, 1), axis=0)y = np.sin(X).ravel()X[::5] = np.nany[::5] = np.nan# 训练支持向量回归模型svr = SVR(kernel='linear', C=1.0, epsilon=0.2)svr.fit(X, y)。
3.支持向量机(回归)3.1.1 支持向量机支持向量机(SVM )是美国Vapnik 教授于1990年代提出的,2000年代后成为了很受欢迎的机器学习方法。
它将输入样本集合变换到高维空间使得其分离性状况得到改善。
它的结构酷似三层感知器,是构造分类规则的通用方法。
SVM 方法的贡献在于,它使得人们可以在非常高维的空间中构造出好的分类规则,为分类算法提供了统一的理论框架。
作为副产品,SVM 从理论上解释了多层感知器的隐蔽层数目和隐节点数目的作用,因此,将神经网络的学习算法纳入了核技巧范畴。
所谓核技巧,就是找一个核函数(,)K x y 使其满足(,)((),())K x y x y φφ=,代替在特征空间中内积(),())x y φφ(的计算。
因为对于非线性分类,一般是先找一个非线性映射φ将输入数据映射到高维特征空间,使之分离性状况得到很大改观,此时在该特征空间中进行分类,然后再返会原空间,就得到了原输入空间的非线性分类。
由于内积运算量相当大,核技巧就是为了降低计算量而生的。
特别, 对特征空间H 为Hilbert 空间的情形,设(,)K x y 是定义在输入空间n R 上的二元函数,设H 中的规范正交基为12(),(),...,(),...n x x x φφφ。
如果221(,)((),()),{}k k k k k K x y a x y a l φφ∞==∈∑,那么取1()()k k k x a x φφ∞==∑即为所求的非线性嵌入映射。
由于核函数(,)K x y 的定义域是原来的输入空间,而不是高维的特征空间。
因此,巧妙地避开了计算高维内积(),())x y φφ(所需付出的计算代价。
实际计算中,我们只要选定一个(,)K x y,并不去重构嵌入映射1()()k k k x a x φφ∞==∑。
所以寻找核函数(,)K x y (对称且非负)就是主要任务了。
满足以上条件的核函数很多,例如● 可以取为d-阶多项式:(,)(1)d K x y x y =+g ,其中y 为固定元素。
3.支持向量机(回归)3.1.1 支持向量机支持向量机(SVM )是美国Vapnik 教授于1990年代提出的,2000年代后成为了很受欢迎的机器学习方法。
它将输入样本集合变换到高维空间使得其分离性状况得到改善。
它的结构酷似三层感知器,是构造分类规则的通用方法。
SVM 方法的贡献在于,它使得人们可以在非常高维的空间中构造出好的分类规则,为分类算法提供了统一的理论框架。
作为副产品,SVM 从理论上解释了多层感知器的隐蔽层数目和隐节点数目的作用,因此,将神经网络的学习算法纳入了核技巧范畴。
所谓核技巧,就是找一个核函数(,)K x y 使其满足(,)((),())K x y x y φφ=,代替在特征空间中内积(),())x y φφ(的计算。
因为对于非线性分类,一般是先找一个非线性映射φ将输入数据映射到高维特征空间,使之分离性状况得到很大改观,此时在该特征空间中进行分类,然后再返会原空间,就得到了原输入空间的非线性分类。
由于内积运算量相当大,核技巧就是为了降低计算量而生的。
特别, 对特征空间H 为Hilbert 空间的情形,设(,)K x y 是定义在输入空间n R 上的二元函数,设H 中的规范正交基为12(),(),...,(),...n x x x φφφ。
如果221(,)((),()),{}k k k k k K x y a x y a l φφ∞==∈∑,那么取1()()k k k x a x φφ∞==∑即为所求的非线性嵌入映射。
由于核函数(,)K x y 的定义域是原来的输入空间,而不是高维的特征空间。
因此,巧妙地避开了计算高维内积(),())x y φφ(所需付出的计算代价。
实际计算中,我们只要选定一个(,)K x y ,并不去重构嵌入映射1()()k k k x a x φφ∞==∑。
所以寻找核函数(,)K x y (对称且非负)就是主要任务了。
满足以上条件的核函数很多,例如可以取为d-阶多项式:(,)(1)d K x y x y =+,其中y 为固定元素。
支持向量机算法的原理支持向量机(Support Vector Machine,SVM)是一种广泛应用于分类和回归问题的机器学习算法。
它的原理基于统计学习理论中的结构风险最小化原则,通过寻找一个最优的超平面来实现数据的分类。
在SVM中,数据被看作是高维空间中的点,每个点都有一个与之对应的特征向量。
这些特征向量的维度取决于特征的数量。
SVM的目标是找到一个超平面,使得其能够尽可能地将不同类别的数据点分隔开。
超平面是一个d维空间中的d-1维子空间,其中d为特征向量的维度。
在二维空间中,超平面即为一条直线,可以完全将两类数据点分开。
在更高维的空间中,超平面可以是一个曲面或者是一个超平面的组合。
为了找到最优的超平面,SVM引入了支持向量的概念。
支持向量是离超平面最近的数据点,它们决定了超平面的位置和方向。
通过最大化支持向量到超平面的距离,SVM能够找到一个最优的超平面,使得分类误差最小化。
SVM的核心思想是将低维空间中的数据映射到高维空间中,使得原本线性不可分的数据变得线性可分。
这一映射是通过核函数实现的。
核函数能够计算两个数据点在高维空间中的内积,从而避免了显式地进行高维空间的计算。
常用的核函数有线性核、多项式核和高斯核等。
SVM的训练过程可以简化为一个凸优化问题。
通过最小化结构风险函数,SVM能够找到一个最优的超平面,使得分类误差最小化。
结构风险函数由经验风险项和正则化项组成。
经验风险项衡量了分类器在训练集上的错误率,正则化项则防止过拟合。
SVM的优点是具有较好的泛化性能和较强的鲁棒性。
由于最大化支持向量到超平面的距离,SVM对异常值不敏感,能够有效地处理噪声数据。
此外,SVM还可以通过引入松弛变量来处理非线性可分的问题。
然而,SVM也存在一些限制。
首先,SVM对于大规模数据集的训练时间较长,且对内存消耗较大。
其次,选择合适的核函数和参数是一个挑战性的问题,不同的核函数和参数可能会导致不同的分类结果。
一种改进的再生核支持向量机回归模型再生核支持向量机 (Relevance Vector Machine, RVM) 是一种非常有效的机器学习算法,常用于分类和回归任务。
相比于传统的支持向量机 (SVM) 模型,RVM 的优势在于它使用稀疏贝叶斯方法自动选择重要的支持向量,从而减少了运算时间和内存消耗。
在本文中,我们将介绍一种改进的 RVM 回归模型,主要包括以下方面:1.EM 算法的优化2.模型的正则化3.与传统 SVM 的对比4.实验结果以及分析EM 算法是一种迭代算法,用于在含有隐变量的概率模型中进行参数估计。
在 RVM 模型中,EM 算法用于计算每个特征的权重以及噪声的方差。
原始的 EM 算法在迭代过程中可能会陷入到局部最优解中,影响模型的精度和鲁棒性。
因此我们使用了一种改进的 EM 算法,即二阶有效牛顿优化方法,来解决这个问题。
这种优化方法可以加快算法的收敛速度,同时提高了算法的精度和稳定性。
RVM 模型是一种稀疏的贝叶斯模型,通过正则化方法可以增加模型的泛化性能。
我们引入了 L1 正则化方法,对每个特征的权重进行约束,实现了特征的自动选择。
同时,L2 正则化方法用于控制模型产生过拟合现象。
这些正则化方法可以有效地提高模型的鲁棒性和精度。
在我们的实验中,我们将改进的 RVM 和传统 SVM 进行了对比。
结果显示,改进的RVM 模型在多个数据集上均获得了更好的表现。
这是由于 RVM 模型使用了稀疏贝叶斯方法自动选择支持向量,在保证模型精度的同时减少了计算量和内存消耗。
我们在多个公开数据集上进行了实验,包括波士顿房价数据集、气象数据集等等。
结果显示,改进的 RVM 模型在这些数据集上均取得了更好的表现,并且与传统 SVM 模型相比,RVM 模型具有更好的稀疏性和泛化性能。
在具体实现中,我们使用了 Python 编程语言以及相关的机器学习库,如 Scikit-learn 等。
结论:在本文中,我们介绍了一种改进的再生核支持向量机回归模型。
支持向量机的概念
支持向量机(Support Vector Machine,SVM)是一种常用的
机器学习算法,用于分类和回归问题。
它的核心思想是将样本映射到高维空间中,并在该空间中找到一个最优的超平面,以将不同类别的样本最大程度地分开。
具体来说,SVM在高维空间中寻找一个超平面,使得该超平
面与离它最近的各类样本的距离最大。
这些离超平面最近的样本点被称为支持向量,因为它们对于确定超平面起到了关键的作用。
通过这种方式,SVM能够有效地处理高维数据,并在
复杂的数据集中实现较好的分类效果。
SVM的基本原理可以理解为将原始的样本数据点映射到一个
高维特征空间,并通过最大化样本点与超平面之间的间隔来找到最优的超平面。
间隔表示了样本点与决策边界的距离,支持向量机的目标是找到使间隔最大化的超平面。
SVM的优点包括可以处理高维数据、对于样本点的位置不敏感、具有较好的泛化性能等。
它在分类问题上的应用非常广泛,并且在文本分类、图像识别、生物信息学等领域取得了很好的效果。
然而,SVM也存在一些缺点,例如对大规模数据集的
处理效率较低、需要选择合适的核函数等。
支持向量机的概念可以通过上述的描述理解,它是一种用于分类和回归问题的机器学习算法,通过在高维空间中寻找最优的超平面来实现分类任务。
02-36⽀持向量回归⽬录⽀持向量回归传统回归模型如线性回归,对于样本(x,y)是直接基于模型,通过预测值f(x i)y和真实值y之间的差别计算损失,并且当f(x i)y=y时损失才为零。
⽀持向量回归(support vector regression, SVR)则可以容忍f(x i)y和y之间有最多ϵ的偏差,即当|f(x i)y−y|>ϵ的时候才计算损失,这相当于以f(x i)y为中⼼,构建了⼀个宽度为2ϵ的间隔带,如果样本落⼊间隔带,则他的分类就是正确的。
⼀、⽀持向量回归学习⽬标⽀持向量机和⽀持向量回归的优化问题⽀持向量回归⽬标函数的对偶形式⽀持向量回归模型系数的稀疏性核⽀持向量回归⽀持向量机的优缺点⼆、⽀持向量回归详解2.1 ⽀持向量机⽬标函数优化问题回顾线性可分SVM⽬标函数优化问题为min ω,b 12||ω||2s.t.y i(ωx i+b)≥1,i=1,2,…,m 线性SVM由于在⽬标函数中加⼊了松弛因⼦ξi>0,⽬标函数优化问题为minω,b,ξ12||ω||2+Cm∑i=1ξis.t.y i(ωx i+b)≥1−ξi,i=1,2,…,mξi≥0,i=1,2,…,m2.2 ⽀持向量回归损失度量函数⽀持向量回归由于有⼀个间隔带,因此它的损失度量函数为l(f(x i),y i)=0,if|f(x i)−y i|≤ϵ|f(x i)−y i|−ϵ,if|f(x i)−y i|>ϵ2.3 ⽀持向量回归⽬标函数优化问题由于SVR的间隔带是⾃⼰引⼊的,所以SVR的⽬标函数变为min ω,b 12||ω||2+Cm∑i=1l(f(x i)−y i)如果和线性SVM⼀样引⼊松弛因⼦,但是由于我们的误差度量中的|f(x i)−y i|≤ϵ是绝对值⼩于,因此这个不等式其实是两个不等式,则SVR需要引⼊两个松弛因⼦ξi和^ξi,则SVR的优化问题将变成minω,b,ξi,^ξi12||w||2+Cm∑i=1(ξi+^ξi)s.t.f(x i)−y i≤ϵ+ξi,y i−f(x i)≤ϵ+^ξi,ξi≥0,^ξi≥0,i=1,2,⋯,m对SVR的优化问题引⼊拉格朗⽇乘⼦µi≥0,^µi≥0,αi≥0,^αi≥0,通过拉格朗⽇乘⼦法即可得到拉格朗⽇函数L(w,b,α,ˆα,ξ,ˆξ,µ,ˆµ)=12||w||2+Cm∑i=1(ξi+^ξi)−m∑i=1µiξi−m∑i=1^µi^ξi+m∑i=1αi(f(x i)−y i−ϵ−ξ)+m∑i=1^αi(yi−f(x i)−ϵ−^ξi)2.4 ⽀持向量回归⽬标函数对偶形式通过拉格朗⽇即可得到⽀持向量回归⽬标函数的原始形式{ Processing math: 48%minw ,b ,ξi ,^ξimaxµi ≥0,^µi ≥0,αi ≥0,^αi ≥0L (w ,b ,α,ˆα,ξ,ˆξ,µ,ˆµ)可以发现⽀持向量回归的⽬标函数的原始形式也满⾜KTT条件,即可以通过拉格朗⽇对偶将我们的问题转化为等价的对偶问题,即maxµi ≥0,^µi≥0,αi ≥0,^αi≥0minw ,b ,ξi ,^ξi L (w ,b ,α,ˆα,ξ,ˆξ,µ,ˆµ)⾸先求优化函数对让w ,b ,ξi,^ξi 的极⼩值,再求拉格朗⽇乘⼦µi,^µi ,αi,^αi 的极⼤值,即先得到拉格朗⽇函数L (w ,b ,α,ˆα,ξ,ˆξ,µ,ˆµ)分别对w ,b ,ξi,^ξi 求偏导为0可得w =m∑i =1(^αi −αi )x i ,0=m∑i =1(^αi −αi ),C =αi +µ,C =^αi +^µi ,将拉格朗⽇函数对w ,b ,ξi,^ξi 的偏导代⼊拉格朗⽇函数,即可得SVR的对偶问题max α,ˆαm∑i =1y i (^αi −αi )−ϵ(^αi +αi )−12m ∑i =1m∑j =1(^αi −αi )(^αi −αj )x T ix js .t .m∑i =1(^αi −αi )=00≤αi ,^αi ≤C对于上述SVR的⽬标函数的对偶形式取对数,即可变成最⼩化⽬标函数的优化问题,即minα,ˆα−m∑i =1y i (^αi −αi )+ϵ(^αi +αi )+12m ∑i =1m∑j =1(^αi −αi )(^αi −αj )x T ix js .t .m∑i =1(^αi −αi )=00≤αi ,^αi ≤C对于这个⽬标函数,依然可以使⽤SMO算法求出对应的\alpha_i,\hat{\alpha_i},进⽽求出回归模型的w,b 。
支持向量机回归超参数支持向量机回归是一种广泛应用于机器学习领域的算法,它可以在处理非线性问题时有效地提高预测准确度。
在使用支持向量机回归算法时,超参数的选择对于模型的性能有着极大的影响。
本文将介绍支持向量机回归算法的常见超参数,并提供一些超参数选择的实践经验。
1. C参数:C参数是支持向量机回归算法中最常用的超参数之一。
它控制着模型的惩罚力度,即决定了模型在训练时对误差和复杂度之间的折衷关系。
通常情况下,C值越大,模型的复杂度越高,预测准确度也相应提高。
但是,如果C值过大,可能会导致模型出现过拟合的情况,因此需要在实际应用中进行试探和调整。
2. gamma参数:gamma参数是支持向量机回归算法中控制核函数的超参数之一。
它决定了样本点对于模型的影响程度,即越接近样本点的数据在模型中的权重也越大。
通常情况下,gamma值越小,对于远离样本点的数据的影响也就越小,而对于靠近样本点的数据的影响则更加强烈。
但是,如果gamma值过小,可能会导致模型出现欠拟合的情况,因此需要进行合理的选择。
3. kernel参数:kernel参数是支持向量机回归算法中选择核函数的超参数之一。
核函数是支持向量机回归算法的核心,不同的核函数适用于不同的数据集。
常见的核函数有线性核函数、多项式核函数和径向基核函数等。
在选择核函数时需要考虑数据集的特点和所需的预测准确度。
4. epsilon参数:epsilon参数是支持向量机回归算法中控制回归曲线平滑度的超参数之一。
它决定了模型对于误差的容忍度,即当模型预测值与真实值之间的差距小于epsilon时,模型不再参与误差计算。
通常情况下,epsilon值越大,模型的平滑度越高,但是这也会导致模型预测的精度下降。
在实际应用中,选择合适的超参数往往需要进行多次试验和调整。
通过对不同超参数组合的尝试,可以逐步优化模型性能,提高预测准确度。
除了上述常见的超参数外,还可以考虑其他一些超参数,如缓存大小、收敛容差等等。
3.支持向量机(回归)3.1.1 支持向量机支持向量机(SVM )是美国Vapnik 教授于1990年代提出的,2000年代后成为了很受欢迎的机器学习方法。
它将输入样本集合变换到高维空间使得其分离性状况得到改善。
它的结构酷似三层感知器,是构造分类规则的通用方法。
SVM 方法的贡献在于,它使得人们可以在非常高维的空间中构造出好的分类规则,为分类算法提供了统一的理论框架。
作为副产品,SVM 从理论上解释了多层感知器的隐蔽层数目和隐节点数目的作用,因此,将神经网络的学习算法纳入了核技巧范畴。
所谓核技巧,就是找一个核函数(,)K x y 使其满足(,)((),())K x y x y φφ=,代替在特征空间中内积(),())x y φφ(的计算。
因为对于非线性分类,一般是先找一个非线性映射φ将输入数据映射到高维特征空间,使之分离性状况得到很大改观,此时在该特征空间中进行分类,然后再返会原空间,就得到了原输入空间的非线性分类。
由于内积运算量相当大,核技巧就是为了降低计算量而生的。
特别, 对特征空间H 为Hilbert 空间的情形,设(,)K x y 是定义在输入空间n R 上的二元函数,设H 中的规范正交基为12(),(),...,(),...n x x x φφφ。
如果221(,)((),()),{}k k k k k K x y a x y a l φφ∞==∈∑,那么取1()()k k k x a x φφ∞==∑即为所求的非线性嵌入映射。
由于核函数(,)K x y 的定义域是原来的输入空间,而不是高维的特征空间。
因此,巧妙地避开了计算高维内积(),())x y φφ(所需付出的计算代价。
实际计算中,我们只要选定一个(,)K x y ,并不去重构嵌入映射1()()k k k x a x φφ∞==∑。
所以寻找核函数(,)K x y (对称且非负)就是主要任务了。
满足以上条件的核函数很多,例如● 可以取为d-阶多项式:(,)(1)d K x y x y =+,其中y 为固定元素。
支持向量名词解释
支持向量是支持向量机(Support Vector Machine,SVM)算法中的关键概念之一。
支持向量机是一种用于分类和回归分析的监督学习算法。
在SVM中,支持向量是训练数据中最靠近决策边界(或称为超平面)的样本点。
这个超平面将不同类别的数据分开,使得同一类别的数据点在超平面的同一侧。
支持向量机的目标是找到一个最优的超平面,使得支持向量到超平面的距离最大化。
具体来说,支持向量有以下特点:
1.距离超平面最近:支持向量是那些离超平面最近的数据点。
这是因为超平面的位置是由这些支持向量决定的。
2.决定超平面位置:支持向量决定了超平面的位置和方向。
改变支持向量的位置可能会影响超平面的位置。
3.对决策边界起关键作用:在SVM中,决策边界由支持向量确定。
它们决定了分类器的性能和边界的位置。
4.带有类别信息:支持向量不仅是最靠近超平面的点,而且它们还是训练数据中的关键点,决定了不同类别之间的分隔。
支持向量机通过优化问题找到一个最佳的超平面,使得支持向量到超平面的间隔最大化。
这种最大间隔的超平面更有可能对未知数据进行准确的分类。
总体而言,支持向量是支持向量机算法中的重要元素,它们在定义决策边界和优化分类器性能方面发挥着关键作用。
测井时间序列的支持向量机回归预测支持向量机(Support Vector Machine, SVM)是一种常用的机器学习算法,能够对数据进行分类和回归分析。
在地球科学领域,测井数据是一种重要的地下信息获取手段,可以用于油气勘探、地质分析等。
本文将介绍如何使用支持向量机回归对测井时间序列进行预测分析。
首先,我们需要明确什么是测井时间序列。
测井时间序列是在地下井孔中进行测量的数据,通常包括地层参数、地球物理参数等。
由于地下地质条件的多样性和复杂性,测井时间序列往往具有高度的噪声和非线性特征,传统的预测方法往往难以处理。
支持向量机回归是一种机器学习方法,旨在通过构建一个合适的超平面来拟合和预测数据。
支持向量机回归能够处理高维数据和非线性关系,同时对噪声有较好的鲁棒性。
下面我们介绍支持向量机回归预测测井时间序列的步骤。
第一步是数据准备。
首先需要获取测井时间序列的原始数据,包括特征变量和目标变量。
特征变量是我们用来预测目标变量的输入参数,而目标变量是我们需要预测的结果。
对于测井时间序列,特征变量可以是时间、井深等信息,目标变量可以是地层参数、地球物理参数等。
第二步是数据清洗和特征选择。
由于地下环境的复杂性,测井时间序列往往包含大量的噪声和异常值。
因此,在进行支持向量机回归之前,需要对数据进行清洗和预处理,剔除异常值和噪声。
同时,还需要对特征变量进行选择和提取,选择对目标变量具有较高影响的特征变量。
第三步是数据标准化。
由于不同特征变量的量纲和范围不同,需要将数据进行标准化处理,使得各个特征变量处于相同的量级范围内。
这样可以避免某些特征变量对回归结果的影响过大。
第四步是模型构建和训练。
在支持向量机回归中,我们需要选择一个合适的核函数来建立模型。
常用的核函数包括线性核函数、多项式核函数和径向基函数等。
在选择核函数之后,我们需要通过训练数据对模型进行训练,建立出一个能够拟合数据的超平面。
第五步是模型评估和预测。
在模型训练完成后,我们需要使用测试数据对模型进行评估。
支持向量回归的主要内容
支持向量回归(Support Vector Regression, SVR)是一种监督学习算法,用于解决回归问题。
以下是支持向量回归的主要内容:
1.基本概念:支持向量回归使用支持向量机(SVM)的原理,通
过找到一个超平面来拟合训练数据,以最小化预测误差。
这个超平面被称为决策函数或回归函数。
2.间隔最大化:支持向量回归的目标是找到一个能够最大化间隔
的超平面。
间隔最大化意味着决策函数应该尽可能地远离训练数据中的样本点。
3.ε-不敏感:在支持向量回归中,引入了一个参数ε,称为
ε-不敏感。
当预测误差小于ε时,不会对模型的预测产生影响。
这个参数可以帮助控制模型对噪声的鲁棒性。
4.核函数:在支持向量回归中,使用核函数将输入空间映射到一
个更高维的特征空间,以便找到一个更好的决策函数。
常用的核函数有线性核、多项式核、径向基函数等。
5.软间隔:与硬间隔不同,软间隔允许一些样本点位于间隔的另
一侧,但会为它们分配一个较大的惩罚参数。
这使得模型更加灵活,能够更好地拟合训练数据。
6.参数选择:在支持向量回归中,需要选择合适的参数,如惩罚
参数C和ε-不敏感参数。
这些参数的选择对模型的性能和泛
化能力有很大影响。
通常使用交叉验证等方法来选择合适的参数。
总之,支持向量回归是一种基于支持向量机的回归算法,通过找到一个能够最大化间隔的超平面来拟合训练数据,以最小化预测误差。
它具有较好的鲁棒性和泛化能力,广泛应用于回归问题中。
支持向量机(SVM)、支持向量机回归(SVR):原理简述及其MATLAB实例一、基础知识1、关于拉格朗日乘子法和KKT条件1)关于拉格朗日乘子法2)关于KKT条件2、范数1)向量的范数2)矩阵的范数3)L0、L1与L2范数、核范数二、SVM概述1、简介2、SVM算法原理1)线性支持向量机2)非线性支持向量机二、SVR:SVM的改进、解决回归拟合问题三、多分类的SVM1. one-against-all2. one-against-one四、QP(二次规划)求解五、SVM的MATLAB实现:Libsvm1、Libsvm工具箱使用说明2、重要函数:3、示例支持向量机(SVM):原理及其MATLAB实例一、基础知识1、关于拉格朗日乘子法和KKT条件1)关于拉格朗日乘子法首先来了解拉格朗日乘子法,为什么需要拉格朗日乘子法呢?记住,有需要拉格朗日乘子法的地方,必然是一个组合优化问题。
那么带约束的优化问题很好说,就比如说下面这个:这是一个带等式约束的优化问题,有目标值,有约束条件。
那么你可以想想,假设没有约束条件这个问题是怎么求解的呢?是不是直接 f 对各个 x 求导等于 0,解 x 就可以了,可以看到没有约束的话,求导为0,那么各个x均为0吧,这样f=0了,最小。
但是x都为0不满足约束条件呀,那么问题就来了。
有了约束不能直接求导,那么如果把约束去掉不就可以了吗?怎么去掉呢?这才需要拉格朗日方法。
既然是等式约束,那么我们把这个约束乘一个系数加到目标函数中去,这样就相当于既考虑了原目标函数,也考虑了约束条件。
现在这个优化目标函数就没有约束条件了吧,既然如此,求法就简单了,分别对x求导等于0,如下:把它在带到约束条件中去,可以看到,2个变量两个等式,可以求解,最终可以得到,这样再带回去求x就可以了。
那么一个带等式约束的优化问题就通过拉格朗日乘子法完美的解决了。
更高一层的,带有不等式的约束问题怎么办?那么就需要用更一般化的拉格朗日乘子法,即KKT条件,来解决这种问题了。
⽀持向量机(三):优化⽅法与⽀持向量回归⽀持向量机 (三):优化⽅法与⽀持向量回归优化⽅法⼀、SMO算法回顾中 \((1.7)\) 式最后要求解的优化问题:\[\begin{align} \max_\alpha &\;\; \sum\limits_{i=1}^m \alpha_i - \frac12 \sum\limits_{i=1}^m\sum\limits_{i=1}^m\alpha_i\alpha_jy_iy_j\boldsymbol{x}_i^{\top}\boldsymbol{x}_j \tag{1.1}\\[1ex] \text{s.t.} & \;\; \sum\limits_{i=1}^m \alpha_iy_i = 0 \tag{1.2} \\ [1ex] & \;\; 0 \leqslant \alpha_i \leqslant C, \quad i = 1,2,\ldots m \tag{1.3} \end{align} \]在求出满⾜条件的最优 \(\boldsymbol{\alpha}\) 后,即可得 svm 模型的参数 \((\boldsymbol{w}, b)\) ,进⽽获得分离超平⾯。
可以⽤通⽤的⼆次规划算法求解,该⼆次规划问题有 \(m\) 个变量 ( \(m\) 为样本数), \((m+1)\) 项约束,所以当样本容量 \(m\) 很⼤时,问题变得不可解,⽽本节介绍的 SMO(sequential minimal optimization)算法就是⾼效求解上述问题的算法之⼀。
SMO 算法将原来⾮常⼤的⼆次规划问题分解成了⼀系列⾮常⼩的可解的⼆次规划问题。
SMO 算法最诱⼈的地⽅在于,这些分解后⼩的⼆次规划问题,都是拥有解析解的,也就是说,求解这些⼩的⼆次规划优化问题不需要通过⾮常耗时的循环来得到问题的结果。
由于不需要矩阵计算,使得 SMO 算法在实际的数据集的测试中,其计算复杂度介于线性复杂度和⼆次复杂度之间。
支持向量回归模型原理嘿,朋友们!今天咱来聊聊支持向量回归模型原理。
这玩意儿啊,就像是一个超级聪明的小助手,能帮我们解决好多问题呢!你看啊,支持向量回归模型就像是一个厉害的拼图大师。
它面对一堆乱七八糟的数据,就跟拼图碎片似的,然后它能找到一种最好的方式把这些碎片拼起来,形成一个完整的画面。
它可不会随便乱拼哦,它有自己的一套办法,能找到最合适的那条线或者那个面,让拼出来的图最接近真实的样子。
比如说,我们想预测明天的天气。
那今天的温度、湿度、风速等等这些数据就是那些拼图碎片啦。
支持向量回归模型就会开动它聪明的小脑袋瓜,从这些碎片中找出规律,然后给我们一个大概的预测。
是不是很神奇?它还特别会找重点呢!就像我们在一堆人里,总能一下子看到那个最特别的人一样。
支持向量回归模型能从众多的数据中,找到那些最关键的数据点,这些点就像是支撑起整个模型的柱子。
而且哦,它还很有韧性呢!不管数据怎么变来变去,它都能努力适应,调整自己的拼图方式,尽量给出最准确的结果。
这就好像我们走路,有时候路上有石头,有时候有坑洼,但我们总能想办法走过去,到达目的地。
那它到底是怎么做到这些的呢?这可就涉及到一些高深的数学知识啦。
但咱别被那些复杂的公式吓到,其实说白了,就是它会找一条线或者一个面,让数据点尽量靠近它,同时又能保持一定的距离。
这样就能用这个线或者面来预测未来的数据啦。
想象一下,如果我们没有这个神奇的小助手,那我们得费多大的劲儿去分析那些数据啊!说不定还分析得不准确呢。
但有了它,一切都变得简单多啦。
大家说,支持向量回归模型是不是超级厉害?它就像我们的秘密武器,能帮我们在数据的海洋中找到方向,解决问题。
所以啊,我们可得好好了解它,利用它,让它为我们的生活和工作带来更多的便利和惊喜呀!反正我是觉得它真的很棒,你们觉得呢?。
支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,主要用于分类问题,但它也可以用于回归分析。
在本文中,将介绍如何使用支持向量机进行回归分析。
**数据准备**在使用支持向量机进行回归分析之前,首先需要准备数据。
假设我们有一组数据集,包括自变量X和因变量y。
这些数据可以来自各种不同的领域,比如金融、医学、工程等。
在准备数据时,需要确保数据的质量,包括缺失值处理、异常值处理等。
**支持向量机回归模型**支持向量机回归模型与分类模型类似,但是它的目标是拟合一个函数,该函数能够最大化数据点与拟合函数之间的间隔。
在回归分析中,我们的目标是找到一个函数,能够最好地拟合数据点,从而预测因变量y的取值。
支持向量机回归模型的核心在于确定支持向量,这些支持向量是在拟合函数中起决定性作用的数据点。
**选择核函数**在支持向量机回归中,核函数的选择非常重要。
核函数可以将输入空间映射到高维空间,从而使得数据在高维空间中线性可分。
常用的核函数包括线性核、多项式核和高斯核。
在选择核函数时,需要考虑数据的特点和问题的复杂度。
如果数据是线性可分的,则可以选择线性核函数;如果数据的分布比较复杂,则可以选择多项式核或高斯核函数。
**模型训练**一旦选择了核函数,就可以开始训练支持向量机回归模型。
在训练模型时,需要调节模型的超参数,比如正则化参数C和核函数的参数。
这些超参数的选择会影响模型的性能和泛化能力。
通常可以使用交叉验证的方法来选择最优的超参数组合。
**模型评估**在训练完模型之后,需要对模型进行评估。
常用的评估指标包括均方误差(Mean Squared Error,MSE)、均方根误差(Root Mean Squared Error,RMSE)和决定系数(Coefficient of Determination,R-squared)。
这些指标可以帮助我们了解模型的预测能力和拟合程度。
**模型优化**如果模型的表现不理想,可以尝试进行模型优化。
支持向量回归简介
人类通过学习,从已知的事实中分析、总结出规律,并且根据规律对未来的现象或无法观测的现象做出正确的预测和判断,即获得认知的推广能力。
在对智能机器的研究当中,人们也希望能够利用机器(计算机)来模拟人的良好学习能力,这就是机器学习问题。
基于数据的机器学习是现代智能技术中的重要方面,机器学习的目的是通过对已知数据的学习,找到数据内在的相互依赖关系,从而获得对未知数据的预测和判断能力,在过去的十几年里,人工神经网络以其强大的并行处理机制、任意函数的逼近能力,学习能力以及自组织和自适应能力等在模式识别、预测和决策等领域得到了广泛的应用。
但是神经网络受到网络结构复杂性和样本复杂性的影响较大,容易出现“过学习”或低泛化能力。
特别是神经网络学习算法缺乏定量的分析与完备的理论基础支持,没有在本质上推进学习过程本质的认识。
现有机器学习方法共同的重要理论基础之一是统计学。
传统统计学研究的是样本数目趋于无穷大时的渐近理论,现有学习方法也多是基于此假设。
但在实际问题中,样本数往往是有限的,因此一些理论上很优秀的学习方法实际中表现却可能不尽人意。
与传统统计学相比, 统计学习理论(Statistical Learning
Theory 或SLT ) 是一种专门研究小样本情况下机器学习规律的理
论Vladimir N. Vapnik 等人从六、七十年代开始致力于此方面研究,到九十年代中期,随着其理论的不断发展和成熟[17] ,也由于神经网络等学习方法在理论上缺乏实质性进展, 统计学习理论开始受到越来越广泛的重视。
统计学习理论是建立在一套较坚实的理论基础之上的,为解决有限样本学习问题提供了一个统一的框架。
它能将很多现有方法纳入其中,有望帮助解决许多原来难以解决的问题(比如神经网络结构选择问题、局部极小点问题)等;同时, 在这一理论基础上发展了一种新的通用学习方法—支持向量
机(Support Vector Machine 或SVM ) ,它已初步表现出很多优于已有方法的性能。
一些学者认为,SVM 正在成为继神经网络研究之后新的研究热点,并将有力地推动机器学习理论和技术的发展。
支持向量机(SVM )是一种比较好的实现了结构风险最小化思想的方法。
它的机器学习策略是结构风险最小化原则为了最小化期望风险,应同时最小化经验风险和置信范围)
支持向量机方法的基本思想:
( 1 )它是专门针对有限样本情况的学习机器,实现的是结构风险最小化:在对给定的数据逼近的精度与逼近函数的复杂性之间寻求折衷,以期获得最好的推广能力;
( 2 )它最终解决的是一个凸二次规划问题,从理论上说,得到的将是全局最优解,解决了在神经网络方法中无法避免的局部极值问题;
( 3 )它将实际问题通过非线性变换转换到高维的特征空间,在高维空间中构造线性决策函数来实现原空间中的非线性决策函数,巧妙地解决了维数问题,并保证了有较好的推广能力,而且算法复杂度与样本维数无关。
目前,SVM 算法在模式识别、回归估计、概率密度函数估计等方面都有应用,且算法在效率与精度上已经超过传统的学习算法或与之不相上下。
对于经验风险R,可以采用不同的损失函数来描述,如e不敏感函数、Quadratic函数、Huber函数、Laplace函数等。
核函数一般有多项式核、高斯径向基核、指数径向基核、多隐层感知核、傅立叶级数核、样条核、 B 样条核等,虽然一些实验表明在分类中不同的核函数能够产生几乎同样的结果,但在回归中,不同的核函数往往对拟合结果有较大的影响
支持向量回归算法主要是通过升维后,在高维空间中构造线性决策函数来实现线性回归,用e不敏感函数时,其基础主要是 e不敏感函数和核函数算法。
若将拟合的数学模型表达多维空间的某一曲线,则根据e不敏感函数所得的结果,就是包括该曲线和训练点的“e管道”。
在所有样本点中,只有分布在“管壁”上的那一部分样本点决定管道的位置。
这一部分训练样本称为“支持向量”。
为适应训练样本集的非线性,传统的拟合方法通常是在线性方程后面加高阶项。
此法诚然有效,但由此增加的可调参数未免增加了过拟合的风险。
支持向量回归算法采用核函数解决这一矛盾。
用核函数代替线性方程中的线性项可以使原来的线性算法“非线性化”,即能做非线性回归。
与此同时,引进核函数达到了“升维”的目的,而增加的可调参数是过拟合依然能控制。