第三章 冶金反应动力学基础
- 格式:ppt
- 大小:629.50 KB
- 文档页数:24
第一章 冶金热力学基础1.基本概念:状态函数,标准态,标准生成自由能及生成焓,活度、活度系数和活度相互作用系数,分解压和分解温度,表面活性物质和表面非活性物质,电极电势和电池电动势,超电势和超电压。
2.△H 、△S 和△G 之间有何关系,它们的求算方法有什么共同点和不同点?3.化合物生成反应的ΔG °-T 关系有何用途?试根据PbO 、NiO 、SiO2、CO 的标准生成自由能与温度的关系分析这些氧化物还原的难易。
4.化学反应等温式方程联系了化学反应的哪些状态?如何应用等温方程的热力学原理来分析化学反应的方向、限度及各种 因素对平衡的影响?5.试谈谈你对活度标准态的认识。
活度标准态选择的不同,会影响到哪些热力学函数的取值?哪些不会受到影响?6.如何判断金属离子在水溶液中析出趋势的大小?7.试根据Kelvin 公式推导不同尺寸金属液滴(半径分别为r1、r2)的蒸汽压之间的关系。
8.已知AlF 3和NaF 的标准生成焓变为ΔH °298K,AlF3(S)=-1489.50kJ ·mol -1, ΔH °298K,NaF(S)=-573.60kJ ·mol -1,又知反应AlF 3(S)+3NaF (S)=Na 3AlF 6(S)的标准焓变为ΔH °298K=-95.06kJ ·mol -1,求Na 3AlF 6(S)的标准生成焓为多少?(-3305.36 kJ ·mol -1)9.已知炼钢温度下:(1)Ti (S)+O 2=TiO 2(S) ΔH 1=-943.5kJ ·mol -1(2)[Ti]+O 2=TiO 2(S) ΔH 2=-922.1kJ ·mol -1 (3)Ti (S)=Ti(l) ΔH 3=-18.8kJ ·mol -1求炼钢温度下,液态钛溶于铁液反应Ti(l)=[Ti]的溶解焓。
主要内容:第一章 冶金过程热力学基础,热力学基础,反应热力学分析 第二章 冶金过程动力学基础,动力学基础,反应动力学分析 第三章 铁的还原,铁氧化物还原的热力学,动力学分析第四章 碳的氧化反应,风口前碳的燃烧,生铁渗碳,炼钢脱碳 第五章 硅,锰,铬,钒等元素的氧化和还原 第六章 磷的去除,脱磷的热力学及动力学分析 第七章 硫的脱除,脱硫的热力学及动力学分析 第八章 脱氧,脱氧的热力学动力学分析第九章 钢中的非金属夹杂物,来源,对钢性能的影响,去除 参考书目:⑴钢铁冶金物理化学,北科大,陈襄武,冶金出版社(硕士教材) ⑵冶金热力学,北科大,李文超,冶金出版社⑶★钢铁冶金原理,重庆大学,黄希祜,冶金出版社(第三版)(本科教材)第一章 冶金过程热力学基础主要内容: §1.1 化学反应的热效应及自由能变化 §1.2 溶液的热力学性质(活度及活度系数) §1.3 冶金炉渣理论和性质 §1.4 氧化还原反应热力学⑴冶金过程热力学研究的主要任务: 利用化学热力学原理,分析计算冶金反应过程的热力学函数变化,判断反应的可能性、方向性及最大限度。
⑵冶金过程动力学研究的主要任务:利用化学动力学原理,分析计算冶金反应进行的途径、机理及速度。
§1.1 化学反应的热效应及自由能变化§1.1.1 热力学函数(体系的状态函数) 一,焓H :pV U H +=(U :内能)焓H 又称为热焓,它是体系的状态函数。
一个体系在等压下发生状态变化时,其焓变即为该过程的热效应。
备注:U :体系内质点所具有的总能量。
1221H H dT C H q T T p p -==∆=⎰二,熵S :熵也是体系的状态函数,体系中质点排列的状态数越多,越混乱,S 值越大,自发过程总是向着熵增大的方向进行。
备注:S :体系中排列混乱的度量。
对于可逆过程,Tq dS 可δ=Tq S S S 可=-=∆12T q dS 可δ≥不可逆 可逆 (状态变化时)绝热过程:0≥dS 不可逆可逆(自发)三,吉布斯自由能G :TS H G -=,TS H G -∆=∆ 对于等温等压过程,0≤∆G 自发平衡态§1.1.2 热力学函数之间的关系根据U 、H 、S 、G 等热力学状态函数的定义及其性质可得出共同的关系式:另:0,≥V U dS 。
第一篇冶金熔体第一章冶金熔体概述1。
什么是冶金熔体?它分为几种类型?在火法冶金过程中处于熔融状态的反应介质和反应产物(或中间产品)称为冶金熔体.它分为:金属熔体、熔渣、熔盐、熔锍。
2.何为熔渣?简述冶炼渣和精炼渣的主要作用.熔渣是指主要由各种氧化物熔合而成的熔体。
冶炼渣主要作用在于汇集炉料中的全部脉石成分,灰分以及大部分杂质,从而使其与熔融的主要冶炼产物分离。
精炼渣主要作用是捕集粗金属中杂质元素的氧化物,使之与主金属分离。
3.什么是富集渣?它与冶炼渣的根本区别在哪里?富集渣:使原料中的某些有用成分富集与炉渣中,以便在后续工序中将它们回收利用。
冶炼渣:汇集大部分杂质使其与熔融的主要冶炼产物分离。
4.试说明熔盐在冶金中的主要应用。
在冶金领域,熔盐主要用于金属及其合金的电解生产与精炼。
熔盐还在一些氧化物料的熔盐氯化工艺以及某些金属的熔剂精炼法提纯过程中广泛应用。
第二章冶金熔体的相平衡图1. 在三元系的浓度三角形中画出下列熔体的组成点,并说明其变化规律.X :A 10% ,B 70% ,C 20% ;Y :A 10% ,B 20% , C 70%;Z :A 70%,B 20% ,C 10%;若将3kg X 熔体与2kg Y 熔体和5kg Z 熔体混合,试求出混合后熔体的组成点。
2.下图是生成了一个二元不一致熔融化合物的三元系相图(1)写出各界限上的平衡反应(2)写出P、E两个无变点的平衡反应(3)分析下图中熔体1 、2 、3 、4 、5 、6 的冷却结晶路线.3.在进行三元系中某一熔体的冷却过程分析时,有哪些基本规律?答:1 背向规则 2杠杆规则 3直线规则 4连线规则5 三角形规则 6重心规则 7切线规则 8共轭规则等第三章冶金熔体的结构1。
熔体远距结构无序的实质是什么?2.试比较液态金属与固态金属以及液态金属与熔盐结构的异同点。
3.简述熔渣结构的聚合物理论。
其核心内容是什么?第四章冶金熔体的物理性质1。
炼铁过程中的冶金反应动力学炼铁是一项复杂的冶金过程,包括多个步骤和化学反应。
在这些过程中,金属和非金属之间发生了化学反应,这些反应形成了矿物和纯金属。
由于这些反应涉及到温度、压力和化学成分等多个因素,因此需要深入理解炼铁过程中的冶金反应动力学。
炼铁过程中最基本的反应是还原反应。
这个过程把铁矿石中的金属氧化物还原成纯铁。
在高温条件下,金属氧化物会和还原剂,如焦炭,反应生成金属和水蒸气。
这是一个很复杂的反应过程,涉及到多个物质和中间产物的转化。
由于还原反应是炼铁中的关键环节,它对整个过程的控制极其重要。
还原反应的速率取决于许多因素,例如反应温度、初始氧化物的浓度、还原剂的浓度和接触面积等。
这些因素影响着反应过程中物质的传输速率和化学反应速率。
研究这些动力学因素可以帮助我们优化炼铁过程中的还原反应。
此外,在炼铁过程中,还存在着其他的反应。
例如,燃烧反应是焦炭燃烧时发生的一个重要反应。
在高温氧化环境中,碳与氧气反应生成二氧化碳和水蒸气。
如果焦炭燃烧不充分,会导致还原反应受到影响。
因此,需要精确控制燃烧反应的条件,以确保总体反应过程的顺利进行。
由于炼铁过程中的反应过程极其复杂,因此需要掌握许多化学和物理的知识。
例如,炼铁过程中必须控制反应炉的温度、氧气流量和反应物质的流动速率等。
这些参数的变化会直接影响反应过程的动力学特性,因此需要通过实验和数学模型来精确预测反应过程中不同因素的影响。
在炼铁过程中,很重要的一点是了解反应中产生的气体产品的化学成分和量。
例如,炼铁过程中产生的高炉煤气是一种重要的副产品,其中含有一定量的一氧化碳、二氧化碳和气态烃类化合物。
这些气体产品对必要设备的设计和精密控制具有重要意义,也会直接影响气体处理系统的成本和效率。
总之,炼铁过程中的冶金反应动力学对整个炼铁过程的成败都有很大的影响。
了解这些反应的动力学特性和控制因素,可以帮助我们精细化炼铁工艺,并提升生产的效益和质量。
因此,在炼铁工业中,研究反应动力学是非常重要的。